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Editorial on the Research Topic

Long-term toxicity and epigenetic effects of environmental exposures

Introduction

The Developmental Origins of Health and Disease (DOHaD) hypothesis emphasizes

how effects of prenatal or perinatal environmental exposures can determine later-life

human health and disease (Suzuki, 2018). While this concept is supported by a variety of

experimental and epidemiological studies, explicit mechanisms driving the long-term

effects of early-life exposures are not well described. Epigenetic changes, such as

differences in DNA methylation, histone modifications, and changes of non-coding

RNAs, are suggested as potential regulators of environmentally-induced long-term health

effects (Bollati and Baccarelli, 2010). As evidenced in the results of multiple studies,

epigenetic modifications can be affected by environmental exposures early in life that

impact later health (Perera et al., 2020). For instance, exposure to lead (Pb) in early

development can cause the overexpression of genes related to neurodegenerative diseases,

resulting in epigenetic changes later in life (Dórea, 2019).

With recent technological advancements in genomic research, several next-

generation sequencing-based omics techniques can be used to detect genome-wide

epigenetic changes. These techniques include chromatin immunoprecipitation (ChIP-

seq) (Park, 2009) and DNase I hypersensitive sites-sequencing (DNase1-seq) (Furey,

2012) for detecting DNA-protein interactions; assay for transposase-accessible chromatin

using sequencing (ATAC-seq) (Buenrostro et al., 2015) for discovering chromatin
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accessibility; chromatin isolation by RNA purification (ChiRP-

seq) (Chu et al., 2012) for identifying DNA-RNA interactions;

and whole genome bisulfite sequencing (WGBS) (Suzuki et al.,

2018) and enhanced reduced representation bisulfite sequencing

(ERRBS) (Garrett-Bakelman et al., 2015) for distinguishing DNA

methylation changes. Applying these techniques, one can detect

and characterize the epigenetic changes caused by environmental

exposures and discover potential molecular mechanisms

involved in regulating gene expression that cause adverse

health effects in later life.

Three of the studies, using children from the ECHO (Gillman

and Blaisdell, 2018) longitudinal cohort of over 50,000 children

in the United States, investigated how prenatal exposures to

environmental chemicals affect DNA methylation in the

children: Petroff et al. showed how phthalates and common

phthalate replacement chemicals are associated with DNA

methylation in newborns in a sex-specific manner (https://

www.frontiersin.org/articles/10.3389/fgene.2022.793278/full);

Guo et al. developed statistical approaches that correlated

neonatal exposures including phenols, pesticides, phthalates,

flame retardants, and air pollutants with DNA methylation

changes in children and their corresponding cognitive,

behavioral, and mental health outcomes (https://www.

frontiersin.org/articles/10.3389/fgene.2022.871820/full); and

Song et al. showed how prenatal ambient air pollution

exposures during pregnancy are associated with decelerated

epigenetic aging in the newborns (https://www.frontiersin.org/

articles/10.3389/fgene.2022.929416/full).

In an EWAS using umbilical cord blood from a seperate

cohort, Ulloa et al. identified several genes that have an altered

DNA methylation pattern in children exposed to 2–8.5 μg/L

MeHg and confirmed these DNA methylation changes in

several of the genes by exposing SH-SY5Y neuroblastoma cells

to 8 or 40 nM MeHg (https://www.frontiersin.org/articles/10.

3389/fgene.2022.993387/abstract). In a human study with

adult men, Maggioet al. showed how elevated exposures to

persistent endocrine disrupting compounds can impact the

sperm methylome in regions associated with autism spectrum

disorder (https://www.frontiersin.org/articles/10.3389/fgene.

2022.929471/full). Finally, two studies investigated differences

in microRNAs with environmental exposures, in non-human

models: Yang et al. showed how four differentially expressed

microRNAs mediate insecticide tolerance in Spodoptera

frugiperda (https://www.frontiersin.org/articles/10.3389/fgene.

2021.820778/full); and Zhang et al. conducted miRNA

expression analysis in Bemisia tabaci under insecticide

tolerance to assess stable reference genes for qPCR analyses

(https://www.frontiersin.org/articles/10.3389/fgene.2022.

899756/full). These studies contribute to the burgeoning progress

in understanding mechanisms of long-term toxicity and

epigenetic effects upon environmental exposures.
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