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Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific 
malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the 
underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic 
approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate 
given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch 
pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-
dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-
mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the 
present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-
driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the 
involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to 
go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, 
the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective 
strategy to evade or reverse resistance in female-specific cancers.
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INTRODUCTION
Cancer is one of the principal causes of death worldwide among women in both high-income and 
low/middle-income countries[1]. Notably, female-specific cancers such as breast, cervix, uterus corpus 
endometrial, and ovarian cancers (OCs) account for about 60% of cancer cases and deaths among the 
female population worldwide[1]. All these numbers reflect the magnitude of female cancers incidence and 
highlight how the management of these malignancies is still challenging. This is mainly due to frequent 
tumor relapses promoted by the resistance to common chemotherapeutic agents or targeted therapies, 
especially for breast[2] and ovarian[3] cancers.

On the whole, drug resistance can be divided into two wide categories, intrinsic or acquired resistance, 
depending on the presence of pre-existing resistance-mediating factors or their development during the 
treatment, respectively[4]. Despite this binary categorization, the underlying molecular mechanisms are the 
same[5] and rely on several factors, such as genetic instability, heterogeneity, enhanced drug efflux, 
inactivation of the drugs, epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC) phenotype 
acquisition, and the involvement of the tumor microenvironment (TME)[6].

Since it has been extensively demonstrated that drug resistance limits the effectiveness of cancer therapy, 
finding novel therapeutic targets to evade or reverse it becomes of paramount importance[7].

An increasing number of studies has focused on the involvement of Notch signaling in the promotion of 
drug resistance in female cancers, hence evaluating the efficacy of targeting this pathway, as Notch signaling 
has demonstrated an important role in the development of normal female-specific tissues as well as in the 
carcinogenesis and tumor progression of several cancers, including breast, cervical, endometrial, and 
ovarian cancers[8,9].

In the present review, we overview the Notch-dependent molecular mechanisms which drive drug 
resistance in gynecological cancers (as depicted in Figure 1). On the one hand, CSCs and EMT have been 
deeply studied and we summarize the literature where Notch targeting overcomes drug resistance by 
interfering in these processes. On the other hand, we evaluate the role of Notch signaling in the remaining 
mechanisms even if the connection between Notch targeting and evasion or reversion of resistance has not 
yet been thoroughly investigated, thus giving hints for further studies.

OVERVIEW ON THE GYNECOLOGICAL CANCERS
Breast cancer (BC) is the most frequently diagnosed tumor and the principal cause of cancer-related death 
among women worldwide with the highest BC incidence rates in North America, Australia, New Zealand, 
and Northern and Western Europe. In 2008, about 1.4 million new cases were estimated worldwide[10] with 
nearly 459,000 related deaths[11]. It has been predicted that the worldwide incidence of this female cancer will 
reach approximately 3.2 million new cases per year by 2050[12], suggesting that worldwide cancer incidence 
is on rise.

In high-income countries (HICs), (such as USA, Canada, Brazil, Israel, Australia, and some European 
countries), the 5-year survival is 85%, while in low/middle-income countries (LMICs) (such as South Africa 
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Figure 1. Notch-driven drug resistance mechanisms. The cartoon schematically depicts the involvement of Notch signaling in several 
drug resistance mechanisms [CSCs (cancer stem cells), drug efflux, EMT (epithelial-to-mesenchymal transition), and TME (tumor 
microenvironment)].

or India), the survival rate decreases to 60%[13]. Furthermore, it is estimated that the probability for a 30-
year-old woman to develop BC over a 10-year period is about 10 times less than that for a 70-year-old 
one[14]. The prevalence of BC in the young population is increasing. In addition, in the younger population, 
the tumor is more aggressive[15], showing a greater rate of recurrence than in older women[16].

BCs are divided into five subtypes based on the expression of estrogen receptors (ER), progesterone 
receptors (PR), and HER2 oncogene. Overall, ER-positive tumors are usually smaller and lower grade than 
ER-negative ones[17]. The lack of expression of ER, PR, and HER2 characterizes the triple-negative breast 
cancer (TNBC) subtype, which accounts for approximately 15% of all BC cases[18], and it is the most 
aggressive subtype with the poorer outcomes[19]. TNBC incidence is generally higher in younger women, 
African and American women, and in patients with mutated BRCA1 gene[20].

According to site, BCs are distinguished in non-invasive and invasive, also recognized as “metastatic” BC[21].

In general, the BC risk factors include genetic history of the disease, BRCA1 or -2 mutations, endogenous 
estrogen, exposure to drinking, sedentariness, and the use of exogenous hormones[22].

The primary option of BC treatment remains surgical intervention[23]. However, several broad classes of 
drugs are chosen according to tumor molecular characteristics: (1) systemic chemotherapy, which is 
generally recommended after definitive surgery; (2) hormonal treatment, such as anti-estrogen drugs; or (3) 
targeted therapies, which include the use of monoclonal antibodies. The most common drugs used for 
chemotherapy are docetaxel, paclitaxel, platinum agents (cisplatin and carboplatin), vinorelbine 
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(Navelbine), capecitabine (Xeloda), liposomal doxorubicin (Doxil), and cyclophosphamide (Cytoxan)[24]. In 
addition, radiation therapy is used in combination with surgical intervention to optimize the treatment for 
each person’s anatomy and reduce acute or long-term toxicity[25]. Current research efforts are oriented 
towards more personalized treatments to minimize side effects and improve patients’ survival[26].

OC is the second most common malignancy in women over the age of 40, after BC[27]. Every year, about 
200,000 new OC cases and 150,000 deaths are estimated worldwide[28], thus representing the fifth leading 
cause of cancer-related death in women[29].

The high death-to-incidence ratio is mainly due to the absence of specific symptoms and effective screening 
strategies; as a result, OC is diagnosed at an advanced stage of the disease, when metastases are distributed 
in the abdomen[30]. The incidence rates are lowest in Asia and Africa and highest in Northern and Eastern 
Europe, where there are also the highest mortality rates[31]. OC is rare in young women, especially under the 
age of 30. Conversely, the risk of incidence increases with age, with a drastic increase after the age of 50[31].

OC is classified into three main subtypes: epithelial, germ cell, and stromal. Among the epithelial group, the 
most common histological type is the serous carcinoma, followed by endometrioid, clear cell, and mucinous 
histotypes[32].

It is reported that reproductive factors, hormonal factors, and lifestyle factors are associated with the risk of 
OC incidence[3,33].

OC-bearing patients are primarily undergoing a standard care consisting of combined cytoreductive surgery 
followed by platinum- and taxane-based chemotherapy[34]. The risk of relapse is around 50% within two 
years, mainly attributed to chemotherapy resistance[3].

Cervical cancer (CC) is the fourth most frequently diagnosed cancer and represents a major global health 
challenge[35]. It is the fourth leading cause of cancer-related death[36] with an overall survival estimated 
between 60% and 70%[13], showing a reduction by more than half over the past 30 years, thanks to the 
introduction of screening programs[37]. In LMICs, where mortality is 18 times higher than that observed in 
developed countries, it is the third most common cause of cancer death[31].

The median age at diagnosis is 47 years in the United States, where almost 50% of cases are diagnosed under 
age 35 years[38]. In South Africa, more than 25% of diagnoses are in women aged 40-49 years between 2004 
and 2012[39].

The main risk factor for this type of cancer is chronic infection with human papillomavirus (HPV)[40]. It has 
been estimated that approximately 291 million women have a cervical HPV infection at any given time[41]. 
However, about 85% of infections are spontaneously cleared from the body within a few years and only the 
persistent infections constitute a risk for cancer development[42]. To date, CC may be considered nearly 
completely preventable thanks to the availability of HPV vaccine and screening programs[1], which also 
allows the diagnosis in early stages of tumors.

Cervical pre-cancerous lesions can be detected and treated early with cryo-therapy, loop electrosurgical 
excision procedure, or thermo-coagulation[43], while the treatment of cancer lesions follows the criteria of 
the International Federation of Gynecology and Obstetrics clinical staging and derives from the disease 
extension at diagnosis. It might involve radical hysterectomy, chemo-radiation, or their combination[44]. 
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Nevertheless, the use of the anti-vascular endothelial growth factor (VEGF) agent bevacizumab, which 
impinges on the vascularization phase of cancer cells required for tumor survival, has been shown to be 
capable of extending the overall survival beyond 12 months, and it is currently used in combination with 
carboplatin and paclitaxel in cancer treatment[45].

Cancers of the uterine corpus, among which endometrial cancers (EC) are the most frequent, account for 
about 5% of worldwide cancer incidence among women. Incidence rates are generally higher in HICs, 
where early diagnosis and treatment is common due to early symptoms and the 5-year survival is around 
80%[46]. However, the cancer survival is lower in LMICs due to the few health services and treatments 
available[47]. The risk factors for uterine corpus cancer include excess body weight or diabetes, estrogen 
therapy, early menarche and late menopause, and polycystic ovary syndrome[48]. In contrast, pregnancy, oral 
contraceptive use, physical activity, and, unlike other cancers, smoking seem to be protective against risk[49]. 
The primary options for EC-bearing patients are surgery, radiotherapy with or without chemotherapy, or 
chemotherapy alone[50].

As mentioned above, drug resistance is mainly responsible for causing treatment failure in almost all 
cancers, including the female-specific ones[51].

To date, the major hope in the fight against those aggressive cancers is the discovery of novel “druggable” 
targets to evade or reverse resistance, and Notch signaling represents a promising candidate.

NOTCH STRUCTURE AND SIGNALING AT A GLANCE
The conserved Notch signaling pathway acts as a mediator of short-range cell-cell communication between 
neighboring cells and controls the cell proliferation, differentiation, and apoptosis[52]. As depicted in 
Figure 2, Notch receptors are single pass transmembrane proteins, initially synthesized as inactive 
precursors in the endoplasmic reticulum and subsequently cleaved by a furin-like protein convertase in the 
Golgi compartment[53]. The first cleavage (S1) produces heterodimers expressed on the plasmatic membrane 
and containing a N-terminal ligand-accessible Notch extracellular domain (NECD) and a C-terminal Notch 
transmembrane region (NTM)[54].

The canonical Notch signaling is triggered by the association to specific ligands that mediate the interaction 
with adjacent cells[55]. Mammals have four Notch paralogs (Notch1-4) with variable structural homology 
that display both redundant and unique functions[56] and five canonical Notch ligands: Delta-like family 
(Dll1, Dll3, and Dll4) and Jagged family (Jagged1 and Jagged2)[57]. Following the binding to the Notch 
ligand, an S2 cleavage is triggered by the metalloprotease ADAM leading to the dissociation of the NECD 
and the production of a membrane-associated Notch extracellular truncated (NEXT) intermediate[58] further 
cleaved (S3) by a γ-secretases enzyme complex (Presenilin 1 and 2, Nicastrin, APH1, and PEN2)[58,59]. The S3 
cleavage results in the release of the active Notch intracellular domain (NICD) from the membrane, thus 
free to transfer to the nucleus where it interacts with the CBF1, suppressor of hairless, and Lag-1 (CSL) 
families of DNA binding proteins[60]. Subsequently, it forms an active complex with the co-activator 
mastermind-like family (MAML) leading to the upregulation of downstream target genes, such as hairy and 
enhancer of split (HES)[61]. In the absence of NICD, CSL interacts with a co-repressor complex, thus 
suppressing the transcription [Figure 2][62].

The Notch signaling pathway is known for its role in the regulation of cell self-renewal, differentiation, and 
proliferation during development[63], as well as in the maintenance of homeostasis in adult tissue[64]. Not 
surprisingly, given its pivotal role in several processes, dysregulation of Notch signaling has been implicated 
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Figure 2. The canonical Notch signaling pathway. In the signal-receiving cell, the Notch receptor precursor is cleaved (S1) by Furin-like 
convertase in the Golgi compartment, thereby producing Notch extracellular domain (NECD) and Notch transmembrane region 
(NTM). Upon ligand binding (DLL/JAGGED) expressed on signal-sending cell, NTM is cleaved (S2) by ADAM, resulting in Notch 
extracellular truncated intermediate (NEXT) exposition to γ-secretase complex cleavage (S3). S3 cleavage allows the release of Notch 
intracellular domain (NICD), which translocates to the nucleus and interacts with transcriptional regulators (MAML and CSL) to 
activate the Notch target genes (ON).

in the development of cancer, as either an oncogene or a tumor suppressor[65]. Over the years, an onco-
suppressive action of Notch receptors has been described in basal cell carcinoma of the skin, hepatocellular 
carcinoma, and B-cell lymphoblastic leukemia[66,67]. Conversely, Notch signaling acts as an oncogene in T-
cell acute lymphoblastic leukemia where there are mutations affecting Notch1 in more than 50% of cases[68]. 
Notably, several studies documented the oncogenic role of Notch receptors in female-specific cancers[9]. In 
particular, dysregulation of Notch signaling is involved in the promotion of BC[69], as well as in several 
hallmarks of OC such as proliferation, apoptosis, and metastasis[70]. Furthermore, the upregulation of the 
Notch pathway is a frequent event in EC, where it can increase the invasiveness of tumor cells[71], and it is 
also associated with malignant behavior and poor prognosis in CC[72].

Overall, the numerous reports regarding Notch signaling and gynecological cancers suggest the importance 
of considering it as a therapeutic target, especially in terms of drug resistance, as described in the following 
sections.

NOTCH SIGNALING AND CSCS
CSCs are a small subset of cancer cells with self-renewal potential, capable of giving rise to a heterogeneous 
tumor population[73,74]. CSCs are characterized by specific features, including the intense tumorigenic 
potential, the ability to grow as spheres under serum deprivation, and high levels of aldehyde 
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dehydrogenase (ALDH1) activity[75]. Many studies have demonstrated that CSCs are more resistant to 
chemotherapy because of the higher expression of the anti-apoptotic proteins and multidrug resistance 
genes[76]. Indeed, during primary chemotherapeutic treatment, CSCs play an important role in tumor 
recurrence, preserving tumor growth and heterogeneity through various drug resistance mechanisms[77,78] 
involving ALDH1 activity, DNA repair, and the activation of pro-proliferative signaling pathways [79]. 
Notably, the acquisition of stem cell characteristics is also linked to EMT[80], further adding another 
molecular mechanism for CSC-dependent drug resistance. Indeed, the concept of CSCs displaying both 
EMT and self-renewal properties provides the rationale for cancer cells to migrate and populate metastatic 
sites. Part of this expansion is due to an influence imposed by CSCs on non-CSCs to recall an EMT program 
in the cells, thus shifting them toward drug-resistant CSCs[75].

The role of Notch signaling in CSC functions has been well defined in several tumors[81]. Specifically, Notch 
pathway dysregulation is involved in the acquisition and maintenance of CSC-like properties by sustaining 
their self-renewal capacity[67]. As described in the following section, Notch pathway is also responsible for 
inducing EMT, which may result in the transformation of epithelial-like CSCs into cells with aggressive 
mesenchymal-like phenotypes[82], thereby highlighting the potentiality of inhibiting Notch to hamper the 
interplay between CSCs and EMT phenomena.

Furthermore, a vast body of literature correlates Notch pathway to CSC-driven chemo-resistance[83,84].

Exposure to chemotherapy, such as doxorubicin or docetaxel, as well as a hormone-based therapy, such as 
tamoxifen or fulvestrant, leads to an enrichment of ALDH+ BC stem cells (BCSCs) displaying resistance to 
these treatments[85]. Notch signaling is known to be pivotal for the maintenance of BCSCs and highly 
correlated with drug resistance[86,87]. Indeed, several studies documented that blocking Notch signaling 
reduces the stem-like population of BC cells by preventing mammosphere formation[88,89]. For instance, 
inhibition of Notch1 via the bioactive compound psoralidin or Notch1 silencing blocked the growth of 
ALDH1+ cells, thus resulting in a low mammosphere formation, increased apoptosis, and limited tumor 
growth in mice models[90]. Regarding chemotherapy, it has been demonstrated that TNBC cells treated with 
gemcitabine or paclitaxel displayed high levels of hypoxia-inducible factors (HIFs) activity, which is 
correlated with an increased BCSC population[91]. Hypoxia exploits Notch signaling pathways to regulate the 
development of CSCs[92]. In this scenario, Yan et al.[93] observed that Notch and Wnt signaling pathways may 
be activated by HIF-2α overexpression, under hypoxia conditions, thus leading to the stem cell phenotype 
conversion in BCSCs and the overexpression of BCSC markers associated with paclitaxel resistance.

JAK/STAT pathway is crucial for BCSC self-renewal and cancer chemoresistance[94]. In addition, EZH2 
binds to STAT3, which leads to the enhanced STAT3 activity via its increased tyrosine phosphorylation[95]. 
In keeping with these findings, more recently, it has been documented that chemotherapy activates the 
EZH2/STAT3 pathway in tumor cells, causing an increase in miR-378a-3p and miR-378d levels, in both 
cells and exosomes, which finally target the Notch pathway suppressor NUMB. This resulted in Notch 
overexpression and positive regulation of BCSC markers expression, thus confirming the involvement of 
Notch stem cell-associated pathways with paclitaxel and doxorubicin resistance of TNBCs[96].

Moreover, Qiu et al.[97] demonstrated that docetaxel treatment results in increased primary mammosphere 
formation and the specific block of Notch1 signaling enhanced chemotherapy efficacy by targeting BCSCs 
in vitro and in patient-derived xenograft (PDX) breast cancer models.
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It is worth mentioning that a molecular regulation mechanism of both Notch1 and Notch4 proteins has 
been shown, through which it is possible to control the BCSC drug resistance. In particular, Rustighiet al.[98] 
showed that both receptors are able to escape from the Fbxw7α-dependent proteasomal degradation 
following interaction with the prolyl-isomerase Pin1, which is required for the Notch-dependent induction 
and maintenance of stem cell self-renewal in BSCSs. Furthermore, ablation of Pin1 reduced the expression 
levels of Notch1/4, thus eliciting sensitivity to chemotherapeutic drugs and inhibiting tumor growth and 
metastatic spread in vivo[98].

Concerning hormone-based therapy, Notch4 and its ligands have been demonstrated to play a crucial role, 
as Notch4 is found upregulated in BCSCs and conferred resistance to tamoxifen in part through the 
sustainment of BCSC amplification[99]. Additionally, Jagged1-Notch4 signaling activation in ALDH1+ cell 
populations has been observed as a determining factor in the acquisition of endocrine resistance in patient-
derived BCSCs. Consequently, the inhibition of Notch4 via γ-secretase inhibitors (GSIs) in vivo is able to 
abrogate BCSC activity, thus decreasing mammosphere formation of BC isolated cells in acquired tamoxifen 
resistant PDX tumors[100]. In keeping with these findings, more recently, it has been reported that FK506-
binding protein-like (FKBPL) reduces endocrine therapy BCSC-mediated resistance through the 
downregulation of Notch4 and its ligand Dll4[101].

Several studies documented that cancer cells gain resistance to targeted therapies by upregulating 
compensatory signaling pathways, including Notch signaling. As a result, Notch inhibition represents a 
promising approach to restore sensitivity to targeted treatments[102,103].

For instance, it has been demonstrated that Notch3-specific inhibition increases TNBC sensitivity to the 
tyrosine kinase inhibitor (TKI) gefitinib, in TNBC-resistant cells, through regulating EGFR localization, 
thus rendering it readily targetable by the TKI gefitinib[102]. Moreover, a Notch binding sequence has been 
reported within the HER2 promoter, thus suggesting a mechanism for Notch/HER2 crosstalk[104,105]. HER2 
expression is shown to be dependent upon Notch signaling in BCSCs: Farnie et al.[106] obtained promising 
results by combining therapies targeting Notch and HER2, respectively, in ductal carcinoma in situ stem 
cells. Furthermore, blocking Notch activity by GSIs induces the downregulation of HER2 protein 
expression, as well as at the mRNA level, in HER2+ BC-derived mammospheres[107]. These studies 
documented the pivotal interaction between Notch1 and HER2 pathways, both of which are involved in the 
progression of breast cancer and regulation of BCSCs.

In keeping with these results, upon lapatinib treatment, which targets both EGFR and HER2 receptors, it 
has been observed that HER2+ breast cancer cells are enriched of high membrane-Jagged1-expressing 
BCSCs, thus resulting in a higher mammosphere forming efficiency causing lapatinib resistance[108]. In 
addition, the expression of Notch1, Jagged1, and their targets are increased after treatment with 
trastuzumab, which is a monoclonal antibody against HER2. The combined downregulation of Notch1 
sensitizes BC cells to trastuzumab treatment[109]. More recently, Baker et al.[110] showed that Notch1 
contributes to sustain the trastuzumab resistance of HER2+ BC cells, by influencing the survival and tumor-
initiating potential of BCSCs through the repression of PTEN, which results in the activation of the pro-
proliferative ERK1/2 signaling. These findings suggest that the high expression of Notch1 may predict 
poorer survival in women with trastuzumab-resistant BC[110]. Moreover, PTEN downregulation increases the 
PI3K/Akt activity, frequently hyperactivated in TNBC[111]. The PI3K/Akt/mTOR signaling pathway is also 
imperative for the regulation of CSC self-renewal, and the cooperation of Notch and PI3K/Akt/mTOR 
signaling contributes to induce tumorigenesis and chemoresistance in solid tumors[112,113]. Similarly, highly 
expressed activated Akt is associated with chemoresistance in BC[114] while PI3K/mTOR inhibition sensitizes 
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resistant cells to cytotoxic agents[115]. These findings suggest that inhibition of Notch sensitizes BC cells to 
chemotherapy by upregulating PTEN and consequently dampening PI3K/Akt/mTOR signaling.

It has been also demonstrated that Notch-dependent CSCs population sustains the resistance to PI3K or 
TORC1/2 inhibitors treatment in TNBCs. Indeed, Notch1 activity is induced in TNBC cells by the use of a 
PI3K or TORC1/2, inhibitor and this is associated with the upregulation of mitochondrial metabolism and 
FGFR1 signaling. In particular, genetic blockade of Notch1 combined with PI3K or TORC1/2 inhibition 
abrogates the increase of BCSC markers, mammosphere formation, and in vivo tumor-initiating capacity, 
thus eradicating drug-resistant BCSCs[116].

Furthermore, Notch1-mediated crosstalk with the transcription factor NF-κB signaling is evident in 
different tumors and both pathways are essential in maintaining the survival of CSCs[117]. An example of this 
interplay is explained in cervical and breast cancers where Notch1 forms a complex with the kinase IKK, 
which represents the core element of the NF-κB cascade, thus allowing its nuclear translocation[118,119]. 
However, the full interaction between these two pathways in the context of CSCs is not well understood. 
Recently, Hossain et al.[120] demonstrated the involvement of Notch1 in the NF-κB activation pathway and 
Akt phosphorylation via IKK kinase in TNBC cell resistance and CSCs formation. Pharmacological 
inhibition of Notch cleavage by GSI (PF-03084014) in combination with Akt inhibitor (MK-2206) or IKK 
inhibitor (Bay11-7082) blocks mammosphere formation and drug resistance, thus suggesting that 
combination strategies targeting at the same time Notch and PI3K/Akt or IKK/NF-κB may have potential 
therapeutic applications in targeting CSCs in TNBC context[120].

The above-mentioned preclinical data clearly demonstrate that Notch signaling is crucial for BC drug 
resistance and provide evidence of the ability of Notch inhibitors to sensitize cells, including BCSCs, to 
treatments. Concerning clinical data, interesting results were obtained mainly in TNBCs. Two recent phase 
I clinical trials have deployed the use of GSIs in combination with chemotherapy for the treatment of 
patients with advanced BC, including TNBC subtype[121]. A combined effect of Notch GSI inhibitors (PF-
03084014) and docetaxel was recently observed in a phase 1b study (NCT01876251), thereby showing 
clinical benefit in 25 patients with advanced TNBC[122]. Furthermore, this combination decreased ALDH1+ 
subpopulations and abrogated BCSCs by targeting the Notch signaling pathway, thus resulting in the 
reversion of drug resistance[123]. Moreover, Schott et al.[124] showed that residual BCSC subpopulation is 
insensitive to docetaxel alone. However, in tumor-derived xenografts, GSI treatment (MK-0752), together 
with docetaxel, by affecting both NICD and HES1 expression, results in reduced BCSC population. In this 
study, the authors also included 30 patients with relapsed BC disease after treatment with anthracyclines 
(NCT00645333) and demonstrated that multiples cycles of GSI treatments produces a reduction in ALDH+ 
BC cells, as well as a partial response in 11 patients, finally suggesting that additional treatment cycles are 
required to amplify BCSC reduction and tumor burden[124].

In addition to GSI treatments, other approaches to inhibit Notch signaling have also been evaluated in 
clinical trials. Preliminary activity against Notch has been further demonstrated by using tarextumab, a first-
class anti-Notch2/3 antibody, in a recently completed phase I clinical trial for the treatment of advanced 
solid tumors (NCT01277146), including breast cancer. Gene expression assays confirmed the 
downregulation of BCSC markers along with Notch2 and Notch3 inhibition[125], thus suggesting that 
tarextumab may be used in combination with other therapies that eradicate CSC population.

Both Notch1 and Notch3 are also involved in the self-renewal and maintenance of the CSC properties in 
OC (OCSCs)[126,127]. It has been shown that the expression of Notch1 is strongly associated with the 
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expression of ALDH1, which in turn increased the proliferation of OCSCs and their spheroid formation[128]. 
Interestingly, the combined inhibition of Notch1 and ALDH1 obtained by using liposomal doxorubicin 
DOXIL® and the anticancer compound withaferin A co-treatment produces a significant reduction in the 
tumorigenic functions of OCSCs. Therefore, the combination treatment elicits synergistic effects targeting 
OCSCs, thus suggesting an important potential approach to minimize the induction of Notch-dependent 
platinum resistance and recurrence of OC[128].

In high grade serous OC, a link between Notch3 and ALDH1 has been reported, already recognized as 
important in tumor formation[129] and drug resistance[130]. Interestingly, Kim et al.[131] showed that the 
combined co-expression of Notch3 and ALDH1 observed in human OC tissues correlates with all poor 
prognosis parameters, advanced clinical stage, and chemo-resistance in OC.

Moreover, Notch inhibition in paclitaxel-resistant OC cells significantly led to a decrease in viability and 
migration while apoptosis increased. Notably, both Notch3 silencing and pan-Notch inhibition via GSI 
treatments are able to induce reduced self-renewal ability of the OCSCs, accompanied by a significant 
downregulation of stem cell markers, including ALDH1, CD44, CD133, and SOX2. Together, these findings 
demonstrate that Notch3-specific blocking inhibits OCSC activation and re-sensitizes paclitaxel-resistant 
OC cells to paclitaxel with an efficacy comparable to GSI treatments[132]. In keeping with these findings, 
another study showed that Notch3 expression is regulated by miR-136 in association with paclitaxel 
resistance. The authors demonstrated that low expression of miR-136 is correlated with poor prognostic 
clinico-pathological parameters in OC-bearing patients, while its over-expression is associated with a 
reduction of proliferation, CSC spheroid formation, and CSC markers expression and increased apoptosis 
of paclitaxel-resistant cells. Mechanistically, miR-136 is able to suppress Notch3 expression by directly 
binding to its 3-UTR, thus acting as a tumor suppressor. These observations provide evidence that the miR-
136-Notch3 signaling axis plays a critical role in the development of OC chemo-resistance, thus suggesting a 
potential novel therapeutic target for OC treatment[133].

In this regard, McAuliffe et al.[134] strongly supported the specific role of Notch3 signaling pathway in OCSC 
maintenance and tumor resistance to platinum using both in vitro and in vivo studies. They showed that 
inhibition of Notch3, by GSI or siRNA transfection, increases tumor sensitivity to platinum therapy but 
only the cisplatin/GSI combined treatments may be effective in targeting OCSCs, thus being critical for 
tumor eradication, and finally improving the sensitivity of OC cells to cisplatin response via enhancing the 
cellular response to DNA damage[134].

The nuclear orphan receptor NR2F6 expression is directly correlated with tumor progression, especially in 
epithelial ovarian cancer (EOC), but its role remains largely unclear. Consistently, Li et al.[135] demonstrated 
the interaction between NR2F6 and Notch signaling, where it promotes the transcriptional activity of the 
Notch3 through the interaction with its promoter and the enrichment of histone acetylase p300 on this, thus 
inducing Notch3 signaling activation, which results in increased OCSC properties and promoting cisplatin 
resistance[135].

Jiang et al.[136] also demonstrated that treatment with the specific GSI DAPT inhibits self-renewal and 
stemness development of OCSCs by downregulation of Oct4 and Sox2 marker proteins, required for their 
maintenance[136] and the promotion of EMT[137].

Moreover, it has been observed that the human follicle stimulating hormone (FSH) inhibits apoptosis in OC 
cells by positively regulating the Oct4 stem cell signaling pathway and induces OCSC expansion and 
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cisplatin resistance through Oct4-mediated Notch upregulation. This suggested that the stimulation of FSH-
stem cells is strongly associated to Notch-dependent drug resistance in OC cells[138].

Moreover, to prevent tumor recurrence, it has been observed that the Notch signaling pathway can be 
influenced by using different compounds, known for their ability to target other receptors involved in 
different signaling pathways. For instance, Notch can be downregulated by using the inhibitor poziotinib, a 
pan-human HER inhibitor, which is also able to inhibit the expression of target genes of Notch, such as c-
MYC, thereby suppressing OC stem cell growth[139], while it can be strongly activated by galectin-3, a 
member of the lectin family. Galectin-3, by favoring Notch signaling, is able to regulate stemness of OC 
cells, spheroids formation, and their mobility, thus emphasizing that the Notch pathway may be considered 
at the intersection between CSCs and EMT processes, which are crucial in cancer drug resistance 
acquisition, as well as in cancer cell plasticity.

Interestingly, galectin-3 directly interacted with the intracellular domain of Notch1 (NICD1) and increased 
its nuclear translocation. Indeed, downregulation of galectin-3 reduced the levels of cleaved NICD1 and the 
transcription of the Notch target genes, Hes1 and Hey1. In addition, an increased expression of galectin-3 
has been observed in OC patients at advanced stages compared to stages 1 or 2, thus suggesting its 
involvement in supporting stemness and drug resistance by affecting Notch1 cleavage[140].

More recently, Islam et al.[141] observed that the use of the natural compound eugenol, through 
downregulation of Notch and Hes1 expression, can effectively reverse chemo-resistance through the 
depletion of OCSCs in Notch1-dependent pathway.

Since various findings suggested a close relationship between drug resistance and Jagged1/Notch signaling, 
Jagged1 has been found to be a possible target to overcome resistance[142]. Indeed, downregulation of 
Jagged1 in the taxane-resistant OC cells increases docetaxel sensitivity of cells. In keeping with these data, 
Liu et al.[143] reported that GATA1, by binding directly to the ligand, represents the upstream regulatory 
factor controlling Jagged1-Notch dependent cancer stem cell progression and OC metastasis through 
enhancing migration, invasion, and EMT. These results confirm the role of Jagged1 in enhancing OC 
stemness, EMT, and drug resistance through activating Notch signaling pathway[143].

As described above, the crosstalk between hypoxia and Notch signaling pathways controls the development 
and maintenance of CSCs. It has been suggested that the Notch pathway is required for HIF-1α-induced 
maintenance of CSCs[92]. Seo et al.[144] reported that the hypoxia/Notch-1/Sox2 signaling is also crucial for 
maintaining OCSCs and, taken together, can thereby serve as a candidate for novel anti-CSCs therapeutics. 
Furthermore, the association between hypoxia and Notch signaling promotes drug resistance and self-
renewal of OCSCs. Indeed, Notch signaling facilitates hypoxia-induced upregulation of Sox2, which induces 
drug resistance in CSCs through the upregulation of the ABC transporters, ABCB1 and ABCG2, commonly 
involved in the efflux of anticancer agents. Consequently, DAPT treatment abolishes hypoxia-mediated 
induction of OCSCs, thereby reversing drug resistance[144].

CSCs have also been proposed to be responsible for high recurrence rate and chemo-resistance also in 
cervical carcinoma (CC)[145]. Yang et al.[146] observed an enrichment of the cervical CSC (CCSC) population 
and an increase in spheroid formation after cisplatin treatment. Interestingly, CCSCs display the 
upregulation of Notch expression, suggesting its specific correlation with cisplatin resistance also in CC. 
Indeed, the doxycycline-dependent inhibition of Notch blocks the proliferation and differentiation rate of 
CCSCs, bringing an enhancement in cisplatin therapy[146]. Moreover, the expression of the stemness markers 
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Oct-4 and Sox-2, Notch1, and the Notch signaling components (ADAM-17, γ-secretase, and JAG1) is found 
to be significantly elevated in 5-fluorouracil (5-FU)-resistant CC cell lines. Currently, it has been 
demonstrated that ADAM 17 inhibition through the nano-formulation of Quinacrine (NQC) in 5-FU 
resistant CSCs leads to the reduction of their proliferation, thus inducing re-sensitization to the 
treatment[147].

Notably, it has been documented that the Notch pathway is involved not only in CSC-driven chemo-
resistance but also in the radio-resistance event. A recent study reported that Notch signaling is upregulated 
by its interaction with fused toes homolog (FTS) determining the maintenance of CSCs and spheroid 
formation upon irradiation of CC cells. The authors showed that the silencing of FTS increases radio-
sensitivity by blocking Notch1 activation[148].

Concerning endometrial CSCs (ECSCs), it has been demonstrated that they acquire drug resistance due to 
high expression levels of CD133, a widely accepted biomarker for tumor-initiating cells. Indeed, CD133+ 
cells exhibited significant resistance to chemotherapy[149]. Studies indicated that the activation of Notch 
signaling pathway is a pivotal event in CD133+ cells as it promotes ECSC cell growth, proliferation, and self-
renewal while Notch inactivation can sensitize CD133+ cells to chemotherapy[150,151]. Furthermore, the 
molecular therapeutics targeting key biomarkers such as EGFR receptors showed some success in clinical 
trials, but the cancer stem cell-derived drug resistance hindered the drug effects[152]. Recently, Shang et al.[71] 
found that Notch signaling is expressed in both CD133+ and CD133- cells. However, the activation of 
Notch signaling in CD133+ cells leads to a higher proliferation rate and lower apoptosis and results in 
targeted-therapy resistance, compared to CD133- cells. Findings from xenograft experiments further 
demonstrated that CD133+ cells are able to retain a higher tumorigenic capacity than their counterpart, thus 
indicating their tumor-initiating feature. In addition, Notch inhibition by DAPT combined with EGFR 
inhibitor (AG1478) treatment on EC cells displays ameliorative effects compared to DAPT or AG1478 
treatments alone, thus reducing the CD133+ cells viability[71].

Therefore, given the pivotal role of Notch signaling in the regulation of CSC activity in drug resistance (as 
summarized in Table 1), it might be useful to further investigate the regulatory mechanisms of Notch-
mediated resistance and evaluate whether inhibition of the Notch signaling cascade can be considered as a 
potential therapeutic approach to abrogate drug resistance in female cancers.

NOTCH SIGNALING AND EMT
The EMT is a process whereby epithelial cells acquire mesenchymal properties through the downregulation 
of cell adhesion molecules expression (i.e., E-cadherin) and the upregulation of mesenchymal markers 
expression (i.e., N-cadherin), in order to gain migratory behaviors and invasive properties[153]. Increasing 
numbers of studies have not only suggested that EMT represents an essential process in normal embryonic 
development but also a significant mechanism involved in the progression of different cancer types[154].

Most importantly, the acquisition of the EMT phenotype is related to chemo-resistance[155], one of the most 
frequent causes of cancer mortality. Indeed, the targeting of key pathways which can regulate EMT may 
represent an effective treatment strategy.

Several studies have demonstrated that Notch over-expression is able to induce the loss of E-cadherin, while 
Notch inhibition increases N-cadherin, thus suggesting that the Notch signaling pathway may represent a 
crucial regulatory mechanism for EMT[156]. Noteworthy, Notch signaling often interacts with other pathways 
in inducing EMT. Indeed, the authors also reported the presence of a crosstalk between Notch and TGF-β 
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Table 1. Effects of Notch-targeted therapeutics to reverse CSC-driven drug resistance. Summary of the pre-clinical and clinical studies

Notch-targeted therapeutics Target* Mechanism of action Reverse resistance to Model Cancer 
context Ref.

mAb Notch1 Notch1 Decrease of mammosphere formation Docetaxel (chemo-therapeutic agent) Preclinical study: mice Breast [97]

GSI (γ-secretase inhibitor) Jagged1/Notch signaling Decrease of mammosphere formation Tamoxifen (ER receptor inhibitor) Preclinical study: mice Breast [100]

AD01/ALM201 (FKBPL-based peptide) Dll4/Notch4 Abrogation of BCSCs activity Tamoxifen (ER receptor inhibitor) Preclinical study: mice Breast [101]

GSI (γ-secretase inhibitor) Jagged1/Notch signaling Decrease of mammosphere formation Lapatinib (EGFR/HER2 inhibitor) Preclinical study: cell lines Breast [108]

GSI (γ-secretase inhibitor) Jagged1/Notch1 Downregulation of HER2 expression in 
mammosphere

Trastuzumab (HER2 inhibitor) Preclinical study: cell lines Breast [109]

shRNA Notch1 Notch1 Downregulation of PTEN expression in 
BCSCs

Trastuzumab (HER2 inhibitor) Preclinical study: cell lines Breast [110]

GSI-IX (γ-secretase inhibitor) Notch1 Abrogation of BCSCs activity BEZ235 + MLN128 (TORC1/2 inhibitor) Preclinical study: cell lines Breast [116]

GSI (PF-03084014) Notch1 Block of mammosphere formation MK-2206 (Akt inhibitor) + Bay11-7082) 
IKK inhibitor

Preclinical study: cell lines Breast [120]

Withaferin A (anticancer compound) Notch1 Reduction of OCSCs function Doxorubicin (chemo-therapeutic agent) Preclinical study: mice Ovarian [128]

GSI/shRNA Notch3 Notch3 Inhibition of OCSCs activation Paclitaxel (chemo-therapeutic agent) Preclinical study: cell lines Ovarian [132]

miR-136 Notch3 Abrogate OCSCs activity Paclitaxel (chemo-therapeutic agent) Preclinical study: cell lines Ovarian [133]

GSI (γ-secretase inhibitor) Notch3 Abrogate OCSCs maintenance Cisplatin (chemo-therapeutic agent) Preclinical study: mice Ovarian [134]

shRNA Galectin-3 Notch1 Downregulation of OCSCs stemness Paclitaxel + Cisplatin (chemo-
therapeutic agent)

Preclinical study: cell lines Ovarian [140]

Eugenol (natural compound) Notch1 Depletion of OCSCs Cisplatin (chemo-therapeutic agent) Preclinical study: cell lines Ovarian [141]

shRNA Jagged1 Jagged1 Downregulation of OCSCs stemness Docetaxel (chemo-therapeutic agent) Preclinical study: cell lines Ovarian [143]

DAPT (γ-secretase inhibitor) Notch1 Abolishment of hypoxia-mediated 
induction of OCSCs

Paclitaxel (chemo-therapeutic agent) Preclinical study: cell lines Ovarian [144]

Doxyclycine (antibiotic) Notch1 Block of CCSCs proliferation and 
differentiation rate

Cisplatin (chemo-therapeutic agent) Preclinical study: mice Cervical [146]

NQC (Quinacrine)/GW280264 ADAM17/Notch signaling Reduction of CCSCs proliferation 5-Fluorouracil (5-FU) (chemo-
therapeutic agent)

Preclinical study: cell lines Cervical [147]

shFSH Notch signaling Abrogation of CCSCs maintenance Irradiation Preclinical study: cell lines Cervical [148]

DAPT (γ-secretase inhibitor) Notch signaling Reduction of ECSC viability AG1478 (EGFR inhibitor) Preclinical study: cell lines Endometrial [71]

GSI (PF-03084014) (γ-secretase 
inhibitor)

Notch signaling Abrogation of BCSCs activity Docetaxel (chemotherapeutic agent) Clinical trial: phase Ib 
(NCT01876251) 

Breast [122]

GSI (γ-secretase inhibitor) Notch signaling Reduction of BCSCs proliferation Anthracyclines (chemo-therapeutic 
agent)

Clinical trial: phase Ib 
(NCT00645333)

Breast [124]

GSI (γ-secretase inhibitor) Notch signaling Downregulation of BCSCs markers Tarextumab (mAb Notch2/3) Clinical trial: phase Ib 
(NCT01277146)

Breast [125]

*Notch receptor or ligand involved, when specified.
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pathway. Particularly, they suggested that Notch could act downstream of the TGF-β signaling, which is 
known to modulate the invasive and migratory properties of cancer cells. In addition, Kang et al.[157] 
revealed that Notch-1 signaling triggers EMT in different types of cancers, and, conversely, its inactivation 
is responsible for the EMT suppression.

The two critical EMT-associated markers, Slug and Snail, are regulated by Notch signaling in BC[158,159]. 
Particularly, Slug seems to be a direct target gene of Notch1[160]. Consistent with these findings, Notch2 is 
also able to upregulate some EMT-associated transcriptional regulators, i.e., Vimentin, Twist, Snail, and 
Slug, in basal type BC cells[161]. Jagged1 has been shown to positively regulate Slug via Notch signaling 
activation, thus resulting in E-cadherin downregulation and EMT promotion[159,160,162]. Consistent with a 
previous report[93], hypoxia-dependent activation of Notch signaling is also correlated with EMT in BC cells, 
as revealed by E-cadherin and β-catenin downregulation[158,163]. Mechanistically, Chen et al.[158] revealed that 
the hypoxia-dependent Notch signaling activation is mediated by both HIF-α isoforms, which synergized 
with the transcriptional coactivator of Notch receptor, MAML1, in the transcription of Notch target genes.

Increasing evidence suggests that EMT is also associated with drug resistance in BC[164] and that this process 
is partly responsible for chemo-resistance. Xiao et al.[164] demonstrated that Notch1 significantly contributed 
to chemo-resistance in TNBC cells through the promotion of the expression of major vault protein (MVP), 
the main component of the vault complex[165]. MVP is involved in the export of drugs from the nucleus[166] 
and is known to confer chemotherapy resistance in various tumor contexts[167]. The authors found that the 
intracellular domain of Notch1 is able to bind the promoter of MVP, thus inducing its transcription, and in 
turn promotes the AKT pathway activation. The activation of AKT resulted in EMT phenotype as well as in 
cisplatin and doxorubicin resistance. In the same tumor context, a Chinese study described a positive 
Notch1 association with the expression of the melanoma cell adhesion molecule (MCAM), an EMT 
activator protein[168]. In particular, the authors observed a time-dependent manner increased expression of 
both proteins after cisplatin treatment, even higher in cisplatin-resistant TNCB cells. This observation 
suggests the ability of Notch1 in promoting cisplatin chemo-resistance through MCAM-dependent EMT 
promotion in TNBCs[168].

In keeping with these findings, Zhang et al.[123] demonstrated that combined treatment of TNBC cells with 
GSI PF-03084014 and docetaxel is able to reverse the EMT phenotype and restore tumor chemo-sensitivity.

NumbL, the Numb homolog implicated in cell adhesion, migration, and division during central nervous 
system development[169], has been shown to be a tumor suppressor protein in BC also for its negative 
regulation upon Notch signaling pathway[170,171]. In BC cells, the authors observed that NumbL 
downregulation is correlated with the activation of Notch pathway, further increasing the EMT-dependent 
transcription of Snail and Twist and inducing chemotherapy resistance. This explains why low expression of 
NumbL protein is observed in relapsed cancers, including BC[170].

Gu et al.[172] investigated Notch3 involvement in adriamycin-resistant MCF-7 BC cells. Notch3 expression is 
associated with chemo-sensitivity, while its downregulation has been shown to be involved in MCF-7 
chemo-resistance. The authors showed that the Fos-related antigen 1 protein, a regulator involved in cell 
proliferation, differentiation, and transformation and EMT promotion, is negatively regulated by Notch3 in 
tumor cells, thus revealing the onco-suppressive role of the receptor[172]. In keeping with these findings, it 
has been observed that Notch3 may negatively regulate EMT[173-176], by acting, at least in part, via GATA-3 
induction in BC cells[174]. This suggest that the involvement of Notch signaling is complex and context-
dependent and further investigations are needed.
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The role of Notch signaling in EMT promotion is also largely demonstrated in OC. Alterations of Notch 
pathway are prevalent in OC[177], where the signaling confers metastatic properties by the promotion of 
EMT, as confirmed by the upregulation of the mesenchymal markers and the downregulation of the 
epithelial ones[178]. Consequently, Notch targeting might represent a promising therapeutic strategy for the 
chemo-sensitivity restoration in OC context.

It has been demonstrated that thyroid hormone receptor interactor 13 (TRIP13), which is implicated in 
progression and metastasis of multiple cancers, acts as an oncogene in EOC development by the modulation 
of Notch signaling[179]. In particular, the authors observed that TRIP13 inhibition in OC cells, through the 
suppression of Notch pathway, finally leads to EMT suppression, thus supporting the Notch involvement in 
the acquisition of the mesenchymal properties[179]. In addition, Bocci et al.[180] also showed that the block of 
the Notch signaling inhibitor Numb can be an effective strategy to modulate Notch-driven EMT.

Some studies investigated the effects of the GSI DAPT on TGF-β-induced EMT, which is found in OC cells 
but is not expressed in normal ovarian epithelial cells[181,182]. DAPT treatment is able to reverse the TGF-β-
induced EMT process, thus revealing the TGF-β pathway’s ability to control the OC mesenchymal 
phenotype via Notch signaling, finally favoring the chemo-resistance acquisition[181,182]. These findings 
contribute evidence that the Notch activation is partially required for the EMT induction by TGF-β also in 
OC cells.

Notch signaling is also involved in the Rap1A-mediated EMT induction. The Ras-associated protein is able 
to promote the OC cell proliferation, migration, and invasion by activating Notch pathway, as well as ERK 
and MAPK pathways promotion and the EMT markers expression[183]. Indeed, it has been demonstrated 
that Notch signaling inhibition is able to revert the expression of those molecules, thus preventing the 
mesenchymal phenotype.

In cisplatin-resistant OC cells, a Chinese study revealed that Jagged1 is able to interact with the JAK/STAT3 
pathway by physically interacting with STAT3 and cooperating with the protein in supporting EMT, further 
reinforcing the invasion and migration abilities of platinum-resistant OC cells[184]. Indeed, the knockdown of 
Jagged1 reverts EMT both in vitro and in vivo, thus reducing the cisplatin-resistant cells’ abilities of invasion 
and migration[184]. Furthermore, a recent study reported that Numb knockdown, which in turn affected 
Notch pathway activation, inhibited cell proliferation, invasion, and migration, thus enhancing the anti-
tumor effect of cisplatin in different OC cell lines[185].

Notch3 seems to be specifically involved in the OC EMT-mediated chemo-resistance. Gupta et al.[178] 
demonstrated that Notch3 activation in OVCA429 cells is responsible for the fibroblast-like morphology 
acquisition, the expression of EMT markers (i.e., Slug and Snail) and the decrease of E-cadherin expression 
on cell surface[178]. Notably, Notch3 expression is able to support OVCA429 resistance to carboplatin by the 
reduction of chemotherapy-induced apoptosis[178].

The Notch signaling pathway also plays a pivotal role in CC development and progression, and it correlates 
with invasive and metastatic properties[186]. In particular, Wang et al.[72] investigated the impact of Notch 
pathway on the survival, invasiveness, EMT, and chemo-resistance of CC cells; they observed that the 
expression of Notch2 was higher than in the normal HPV-16-immortalized human cervical epithelial cells 
CRL2614. Interestingly, the treatment with Notch inhibitor GSI RO4929097 is able to impair not only 
cancer cells proliferation but also the expression of the mesenchymal markers Snail, Twist, and N-cadherin, 
thus affecting their migration, invasion, and drug resistance[72].
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In CC, radiotherapy represents one of the most common treatments for advanced tumor[187], despite 
frequently resulting in recurrence. Several studies have demonstrated that the Notch receptor ligand Dll4 
could be considered as a prognostic biomarker, thus predicting the pelvic lymph node metastasis in patients 
with CC[188]. In this study, Yang et al.[189] observed that the Dll4 expression was higher in radiotherapy-
resistant SiHa CC cells in comparison with radiotherapy-sensitive CC Me-180 cells. In addition, they 
demonstrated that the Dll4 small interfering is able to inhibit the EMT and to reduce proliferation, invasion, 
and migration of CC cells, thus finally increasing CC radio-sensitivity.

Progestin treatment has been used as a conservative therapy for a long time in EC[190,191], showing recurrence 
in more than half of treated EC patients[192]. For the first time, Zhou et al.[193] demonstrated that EMT is also 
involved in progestin resistance of EC, which represents the main hormone treatment for this cancer. It has 
been demonstrated that dachshund homolog 1 (DACH1) was a tumor suppressor in progestin-resistant 
Ishikawa PR EC cells because its overexpression was able to inhibit EMT and reverse drug resistance[193]. 
Interestingly, DACH1 regulated EMT by Notch1 pathway suppression, thus revealing how the Notch 
pathway is strongly involved in the regulation of EMT also in EC context, being ultimately responsible for 
therapy resistance.

As highlighted above, the Notch signal pathway can be considered a key regulator in the promotion of 
EMT, which is in turn involved in drug resistance in various cancer types, including female tumors (as 
summarized in Table 2). Indeed, its down-modulation may represent a novel approach for cancer treatment 
in order to overcome not only chemo-resistance but also other types of resistance, such as resistance to 
hormone-based treatments. However, much has not been investigated and there would be much to learn on 
this topic.

NOTCH SIGNALING AND DRUG EFFLUX
The human genome encodes 49 different ATP-binding cassette (ABC) transporters, grouped into seven 
subfamilies (from A to G)[194]. They are responsible for the intracellular levels of small molecules and are 
involved in physiological processes[195]. Notably, ABC transporters such as multidrug resistance protein1 
(MDR1/ABCB1), multidrug resistance-associated protein (MRP1/ABCC1), and breast cancer resistance 
protein (BCRP/ABCG2) are overexpressed in cancer cells[196], and they can efflux anticancer agents, thereby 
leading to drug resistance[6].

Several studies performed in various tumor contexts indicated that Notch signaling regulates ABC 
transporter transcription[197-199].

Concerning female-specific malignancies, this relationship was investigated mainly in OC and BC (as 
summarized in Table 3). For instance, Park et al.[200] demonstrated that Notch3 increases the expression of 
MDR1/ABCB1 in OC cell lines. Indeed, Notch3 knockdown led to the downregulation of MDR1/ABCB1, 
thus reversing carboplatin resistance[200]. Moreover, Zhang et al.[123] evaluated the anti-tumor efficacy of the γ
-secretase inhibitor PF-03084014 in combination with docetaxel in TNBCs both in vitro and in vivo studies: 
the authors demonstrated that PF-03084014 improves taxane-based therapy by multiple mechanisms, 
among them the decrease of MDR1/ABCB1 and ABCC2 transporters[123].

Furthermore, ectopic expression of the intracellular domain of Notch1 (N1ICD) correlated to the increase 
of another ABC transporter (MRP1/ABCC1), both at mRNA and protein levels, in BC cell lines. The 
authors clearly demonstrated that N1ICD induces the transcription of MRP1/ABCC1 by interacting with 
CBF1 and its effects in promoting drug resistance by the induction of this transporter[201]. Consistent with 
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Table 2. Effects of Notch-targeted therapeutics to reverse EMT-driven drug resistance. Summary of the pre-clinical studies

Notch-targeted 
therapeutics Target* Mechanism of action Reverse resistance 

to Model Cancer 
context Ref.

shRNA Notch1 Notch1 Inhibition of the major vault protein 
(MVP)-dependent AKT pathway 
activation and EMT promotion

Cisplatin + Doxorubicin 
(chemo-therapeutic 
agents)

Preclinical 
study: cell 
lines

Breast [164]

shRNA Notch1 Notch1 Inhibition of the melanoma cell adhesion 
molecule (MCAM)-dependent EMT 
promotion

Cisplatin (chemo-
therapeutic agent)

Preclinical 
study: cell 
lines

Breast [168]

GSI PF-03084014 (γ-
secretase inhibitor)

Notch 
signaling

Inhibition of EMT phenotype Docetaxel (chemo-
therapeutic agent)

Preclinical 
study: cell 
lines

Breast [123]

shRNA Notch3 Notch3 EMT phenotype revertion and 
enhancement of chemo-therapy-
induced apoptosis

Carboplatin (chemo-
therapeutic agent)

Preclinical 
study: cell 
lines

Ovarian [178]

shRNA Jagged1 Jagged1 Inhibition of EMT phenotype Cisplatin (chemo-
therapeutic agent)

Preclinical 
study: mice

Ovarian [184]

shRNA Numb Notch 
signaling

Enhancement of chemo-therapy-
induced cell proliferation, invasion and 
migration

Cisplatin (chemo-
therapeutic agent)

Preclinical 
study: cell 
lines

Ovarian [185]

shRNA Dll4 Dll4 Inhibition of EMT phenotype Irradiation Preclinical 
study: cell 
lines

Cervical [188]

Dachshund homolog 1 
(DACH1) overexpression

Notch1 Inhibition of EMT phenotype Progestin (endocrine 
therapy)

Preclinical 
study: cell 
lines

Endometrial [193]

*Notch receptor or ligand involved, when specified.

Table 3. Effects of Notch-targeted therapeutics to reverse drug efflux-dependent drug resistance. Summary of the pre-clinical 
studies

Notch-targeted 
therapeutics Target* Mechanism of action Reverse resistance to Model Cancer 

context Ref.

PF-03084014 (γ-
secretase inhibitor)

Notch 
signaling

Downregulation of MDR1/ABCB1 
and ABCC2 transporters

Docetaxel (chemo-
therapeutic agent)

Preclinical study: 
mice

Breast [123]

shRNA Notch3 Notch3 Downregulation of MDR1/ABCB1 
transporter

Carboplatin (chemo-
therapeutic agent)

Preclinical study: 
cell lines

Ovarian [200]

lncRNA MALAT1 Notch1 Downregulation of MRP1/ABCC1 
transporter

Cisplatin (chemo-
therapeutic agent)

Preclinical study: 
mice

Ovarian [204]

*Notch receptor or ligand involved, when specified.

these findings, in a recent study, Zhang et al.[202] demonstrated that the inhibitor of DNA-binding 4 (ID-4) 
protein sustains chemo-resistance in BC because it is positively associated with Notch1 pathway by favoring 
CBF1-MRP1/ABCC1. Moreover, Kim et al.[203] documented that Notch1 and MRP1/ABCC1 are upregulated 
after chemotherapy and their protein expression is positively correlated in BC clinical samples. 
Interestingly, a more recent study documented that Notch1 is also connected to MRP1/ABCC1 in OC, and 
it confers cisplatin resistance to OC cell lines[204].

Given that it has been widely documented that ABC transporters are highly expressed in CC[205,206] and 
EC[207], it may be worthwhile investigating whether blocking ABC transporter function by Notch signaling 
inhibition could represent a potential approach to CC and EC treatment.
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NOTCH SIGNALING AND TME
The extracellular environment where cancer cells reside is generally characterized by hypoxia and low 
pH[208] and consists of several cellular elements [i.e., cancer-associated fibroblasts (CAFs), immune cells 
including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), ECs, etc.] 
and non-cellular ones [i.e., cytokines, chemokines, extracellular matrix (ECM), etc.], collectively known as 
the TME[209].

Notably, given that TME is a dynamic and often-changing network which influences and favors cancer cells, 
more and more studies are investigating how the TME is involved in responsiveness or resistance to various 
drugs[210]. For instance, stromal cells in the TME interact directly with cancer cells, sustaining their growth 
and promoting hypoxia, acidosis, and oxidative stress, thus contributing to ECM remodeling to induce 
angiogenesis and mechanical stiffness[211]. Moreover, MDSCs and TAMs protect cancer cells from immune 
elimination[212,213], and CAFs induce drug resistance by secreting cytokines, chemokines, and exosomes[214]. 
Therefore, since the TME plays a crucial role in cancer resistance to therapies, deepening the understanding 
of the underlying molecular mechanisms is a promising strategy to overcome drug resistance[215].

In this scenario, Notch receptors are involved in every aspect of the TME[216,217]. In the following subsections, 
we describe their role in shaping the female cancer TME and the consequences of targeting them in a 
therapeutic perspective (as summarized in Table 4).

Disrupting Notch-dependent tumor and stromal cell interactions to overcome EMT- or CSC-driven 
drug resistance
During tumor progression, it is well known that tumors co-evolve with the surrounding 
microenvironment[218] and cancer cells recruit stromal cells, which in turn promote drug resistance and 
metastasis[219].

Among female-specific cancers, the Notch-mediated interaction between cancer and stromal cells has 
principally been studied in the BC context.

Xing et al.[220] found that BC brain metastatic cells secrete IL-1β to activate astrocytes via the NF-κB pathway. 
Consequently, cancer-activated astrocytes express Jagged1, which interacts with Notch1 in cancer cells to 
sustain CSCs in brain metastasis[220]. In line with these findings, Zheng et al.[221] observed that chemotherapy 
induces the over-expression of Jagged1 in the osteoblasts, thereby leading to the activation of Notch 
signaling in tumor cells. The authors developed a fully human monoclonal antibody against Jagged1, named 
15D11, to disrupt osteoblasts-tumor cells interaction and this was functional to reverse chemo-
resistance[221]. The role of Jagged1 in activating Notch signaling was also studied in OC: it has been shown 
that endothelial cells activate Notch3 signaling in OC cells via Jagged1, and this interaction mediates 
chemo-resistance by sustaining PI3K/Akt and ERK pathways[222].

Furthermore, some studies focused on the Notch pathway and CAFs crosstalk in BC. Overall, on the one 
hand, Notch signaling is involved in regulating CAFs activation[223], but, on the other hand, CAFs may 
activate Notch pathway in cancer cells leading to CSCs self-renewal and EMT[217], thereby potentially 
favoring drug resistance, as described in the previous sections. Concerning the latter phenomenon, 
Tsuyada et al.[224] documented a crosstalk circuit that involves STAT3 and Notch pathway. They showed that 
STAT3 binds the promoter of the cytokine CCL2 in CAFs, thereby augmenting the secretion of CCL2, 
which in turn promotes Notch1-dependent breast CSC self-renewal[224]. Moreover, it has been demonstrated 
that CAFs secrete the cytokine IL-6, which enhances Notch3 signaling and consequently invasiveness in 
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Table 4. Effects of Notch-targeted therapeutics to reverse TME-driven drug resistance. Summary of the pre-clinical and clinical 
studies

Notch-targeted 
therapeutics Target* Mechanism of action Reverse resistance 

to Model Cancer 
context Ref.

Tumor-stromal cell interaction

15D11 (mAb α-
Jagged1)

Jagged1/Notch 
signaling

Reduction of bone metastasis Paclitaxel (chemo-
therapeutic agent)

Preclinical study: mice Breast [221]

DAPT (γ-secretase 
inhibitor)

Jagged1/Notch3 Inhibition of the expansion of 
radiotherapy-resistant BCSCs 
(CD44+CD24low+)

Irradiation Preclinical study: mice Breast [227]

shRNA Notch3 Notch3 Inhibition of the expansion of 
hormonal therapy-resistant 
BCSCs (CD133high)

Fulvestrant (ER 
inhibitor)

Preclinical study: cell 
lines

Breast [228]

GSI (γ-secretase 
inhibitor)

Jagged1/Notch3 Inhibition of the expansion of 
chemo-resistant OC cells

Cisplatin + Taxol 
(chemo-therapeutic 
agents)

Preclinical study: cell 
lines

Ovarian [222]

Tumor-immune cells interaction

Ginsenoside Rg3 
(natural compound)

Notch signaling Inhibition of MDSC-induced 
cancer stemness and EMT

Irradiation Preclinical study: cell 
lines

Breast [244]

RO4929097 (γ-
secretase inhibitor)

Jagged1/Notch 
signaling

Inhibition of tumor-associated 
macrophages M2 polarization

Aromatase inhibitor 
(ER inhibitor)

Preclinical study: cell 
lines

Breast [245]

Tumor vasculature

ABT-165 (bsAb α-
Dll4/VEGF)

Dll4 Disruption of functional tumor 
vasculature

Paclitaxel (chemo-
therapeutic agent)

Preclinical study: mice Breast [259]

HB-32 (bsAb α-
Dll4/VEGF)

Dll4 Disruption of functional tumor 
vasculature

Docetaxel (chemo-
therapeutic agent)

Preclinical study: mice Breast [260]

REGN421 (mAb α-
Dll4)

Dll4 Disruption of functional tumor 
vasculature

Aflibercept (VEGF 
inhibitor)

Preclinical study: mice Ovarian [262]

REGN421 (mAb α-
Dll4)

Dll4 Disruption of functional tumor 
vasculature

Aflibercept (VEGF 
inhibitor)

Preclinical study: mice Ovarian [263]

Endostar 
(recombinant human 
endostatin)

Dll4 Restoration of vascular 
homeostasis

Cisplatin + Paclitaxel 
(chemo-therapeutic 
agents)

Clinical study Cervical [266]

Demcizumab (mAb α-
Dll4)

Dll4 Disruption of functional tumor 
vasculature

Paclitaxel (chemo-
therapeutic agent)

Clinical trial: phase Ib 
(NCT01952249)

Ovarian [267]

Navicixumab (bsAb α-
Dll4/VEGF)

Dll4 Disruption of functional tumor 
vasculature

Paclitaxel (chemo-
therapeutic agent)

Clinical trial: phase Ib 
(NCT03030287)

Ovarian [268]

*Notch receptor or ligand, when specified.

ERα-positive BC models. Indeed, IL-6 exposure leads to the chronic STAT3 phosphorylation, which induces 
the transcription of Notch3 receptor[225]. In both cases, CAFs act in a paracrine manner, but they can act also 
via cell-cell interactions: in particular, Pelon et al.[226] reported that Notch1, Notch2, and Notch3 are 
upregulated in a specific subset of CAFs which promote BC cell invasion in a 3D model.

Interestingly, two studies reported that CAFs promote the upregulation of Notch3 signaling followed by the 
expansion of therapy resistant breast CSCs through either Jagged1-Notch3 interaction[227] or CAF-derived 
microvesicles[227,228], thus pinpointing that Notch signaling may be targeted to overcome stroma-mediated 
resistance in BC. Notably, Boelens et al.[227] observed that the paracrine activation of STAT1 increases the 
transcription of Notch target genes, thus suggesting that anti-Notch-based therapies may be hindered by the 
activation of different pathways which converge on the same substrates.

These observations highlight the potential benefits of investigating the Notch-mediated crosstalk between 
tumor cells and the stroma not only in BC context but also in other female malignancies since recent 
findings underpin the emerging role of stromal cells in drug resistance also in OC[229,230], EC[231], and CC[232].
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Disrupting Notch-dependent tumor and immune cells interaction to overcome drug resistance
It is well established that the interplay between tumor and immune cells in the TME influences immune 
surveillance and responsiveness to therapies[233].

Notably, Notch signaling is a key regulator of the immune infiltrate within the TME[234]. Indeed, both 
myeloid and lymphoid lineages are affected by Notch pathway[235,236]. On the one hand, Notch signaling is 
involved in the thymic development of T cells[237] and plays a pivotal role in CD8+ T-cell activation and 
effector functions[238,239]. On the other hand, Notch signaling is required for the expansion and activity of 
immunosuppressive cells, such as MDSCs[240] and TAMs[241]. These contradictory findings imply that the 
function of Notch receptors in tumor immunity is dependent upon components of the TME.

Beyond its function in several subpopulations of the immune compartment, Notch signaling influences the 
crosstalk between immune and cancer cells, which may drive drug resistance.

Interestingly, emerging evidence suggests that MDSCs and TAMs, in addition to their canonical role in the 
immune system, are crucial players in TME-related drug resistance by secreting cytokines, chemokines, and 
growth factors or by interacting directly with tumor cells[210]. Concerning female malignancies, there are 
only a few recent examples of how Notch signaling is involved in the immune cells-mediated resistance in 
BC.

It has been shown that the expansion of MDSCs correlates with tumor burden of BC-bearing patients, and 
the alteration of MDSC-tumor interaction is considered a promising strategy to combat this disease[242]. 
Consistently with this observation, Peng et al.[243] demonstrated that MDSCs accelerate tumor progression 
and increase tumor incidence in NOD-scid IL2Rγ null (NSG) mice in vivo. To dissect the underlying 
molecular mechanism, they observed that MDSCs promote and sustain BCSCs by regulating the crosstalk 
between STAT3 and Notch signaling in tumor cells. Indeed, MDSCs secretes IL-6, which induces STAT3 
phosphorylation, and activates Notch signaling, which enforces IL-6/STAT3 activation, thereby affecting 
cancer stemness. Interestingly, the inhibition of these two pathways decreased tumor incidence in vivo[243].

More recently, Song et al.[244] made a step forward linking Notch-mediated MDSC-tumor interaction to 
drug resistance. By testing the main active component extracted from ginseng (Rg3), the authors 
documented that the natural compound effectively hampers MDSCs expansion, and this correlates with 
Notch and STAT3 signaling pathways’ down-modulation, which in turn suppresses cancer stemness and 
EMT in vitro and in vivo. Moreover, they showed that Rg3 is able to reverse MDSC-related radio-resistance 
in BC cell lines co-cultured with MDSCs[244]. The above-mentioned studies reported that MDSCs induce 
Notch signaling in cancer cells to promote drug resistance. Conversely, Liu et al.[245] demonstrated that 
cancer cells shape the TME by inducing the polarization of TAMs towards the anti-inflammatory M2 
phenotype. They documented that this polarization is induced by Jagged1 upregulation in ER+ BC cells, and 
it contributes to the development of resistance to the treatments against ER receptor such as aromatase 
inhibitors[245].

Collectively, the mechanisms through which Notch signaling and immune cells favor drug resistance must 
be elucidated, but these recent studies prove that it is an evolving field and may prompt further 
investigations. Nevertheless, given the different role of Notch signaling in the immune infiltrate, the 
evaluation of Notch-modulating agents should take into account the subpopulation of cells in the TME.
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Disrupting Notch signaling in tumor vasculature to overcome anti-angiogenic therapy resistance 
and favor chemotherapy
Female-specific cancers are frequently characterized by exacerbated angiogenesis, which is fundamental for 
nutrient and oxygen supply to tumor tissue[246]. Given that anti-angiogenic therapy has shown promising 
clinical efficacy, many ongoing clinical trials have been investigating the effects of angiogenesis inhibition in 
the OC, EC, CC[247], and BC[248] contexts.

In this scenario, VEGF signaling represents the main target, but the efficacy is limited by the non-
responsiveness or resistance to the therapy[249]. Multiple mechanisms are involved in the afore-mentioned 
refractoriness[250], including redundancy of the angiogenic signals[251], thereby highlighting the necessity of 
finding novel strategies to affect the compensatory angiogenic pathways.

Since growing evidence is unraveling the relationship between angiogenesis and Dll4/Notch signaling, Dll4 
has emerged as a promising target[252-254]. Indeed, over the years, several studies documented that Dll4 
inhibition has proved extremely fruitful to overcome anti-VEGF resistance due to the augmented observed 
effects when combined with anti-VEGF inhibitors[255-257].

Concerning BC, it has been shown that endothelial cells are characterized by high Dll4 expression, and this 
correlates with adverse prognosis for BC-bearing patients[258]. Therefore, these findings pave the way for 
therapeutic strategies targeting both VEGF and Dll4 pathways. For instance, two independent research 
groups recently developed dual-specific antibodies targeting both Dll4 and VEGF (ABT-165 and HB-32), 
obtaining promising results in vitro and in vivo[259,260].

Similarly, given that high expression of Dll4 in OC correlated with non-responsiveness to anti-VEGF 
therapy[261], it has been proposed to also block both pathways in this tumor type. Kuhnert et al.[262] evaluated 
the activity of the developed fully human IgG1 monoclonal antibody against Dll4 (REGN421) in OC 
xenograft models. They observed that REGN421 alone is able to reduce tumor angiogenesis through the 
disruption of juxtacrine Dll4-Notch1 interactions between endothelial and tumor cells, but the effects are 
magnified by VEGF blockade[262,263].

Collectively, these data in OC and BC underpin that the simultaneous inhibition of VEGF and Dll4 is a 
promising therapeutic approach and may warrant further investigations also in the CC and EC contexts.

Notably, an increasing number of studies revealed that angiogenesis is connected to drug resistance[264]. 
Specifically, several studies conducted in female-specific malignancies proved that an effective anti-
angiogenic therapy via Notch signaling inhibition favored chemotherapy in OC[263,265] and BC[259,260] 
preclinical models.

It is worth noting that some interesting results were also obtained in the clinics.

Recently, a recombinant human endostatin (Endostar) was tested on CC-bearing patients in combination 
with paclitaxel and cisplatin. Since Endostar was developed as a multi-target anti-angiogenic agent, it 
augmented the cytotoxicity of the chemotherapeutic agents by restoring vascular homeostasis, which was 
consistent with Dll4 and VEGF inhibition[266]. Interestingly, Endostar is currently tested in combination with 
chemoradiotherapy on CC-bearing patients in two clinical trials in the initial phase (status: recruitment) 
(NCT04121975; NCT03622827).
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Moreover, demcizumab (OMP-21M18), an IgG2 humanized monoclonal antibody targeting Dll4, was 
tested in Phase Ib (NCT01952249) in combination with paclitaxel on platinum-resistant OC, and it 
produced a positive response[267]. Furthermore, a novel bispecific antibody against Dll4/VEGF, navicixumab 
(OMP-305B83), has completed Phase I (NCT03030287)[268], and it showed antitumor activity in 
combination with paclitaxel in OC patients, thereby obtaining fast track designation by the FDA.

Overall, this therapeutic strategy needs further development, but it is undoubtedly effective against 
gynecological cancers.

CHALLENGES AND FUTURE DIRECTIONS
Many pre-clinical studies have been carried out to elucidate the molecular mechanisms of Notch-mediated 
drug resistance in female tumors. Although the possibility of manipulating a key regulator of tumoral, 
stromal, and immune compartments makes this pathway a promising candidate to cope with drug 
resistance, its inhibition may be challenging.

First, given that Notch receptors are active in healthy tissues, pan-Notch inhibition led to off-target effects 
in several clinical trials[269]. Therefore, research is moving towards Notch-specific targeted therapies to 
reduce normal tissue toxicity, as clearly described by Majumder et al.[270]. As a result, more efforts are 
required in the future to test these novel Notch-modulating agents in synergistic combination with current 
treatments to effectively tackle Notch-driven resistance.

Second, since Notch signaling is deeply interconnected with other pathways which work in concert to 
promote drug resistance[271], Notch signaling modulation may be made ineffective by the activation of 
compensatory pathways. As a result, the dissection of the underlying crosstalks will be necessary to come 
closer to the above-mentioned goal.

Third, Notch signaling may act differently in cell subpopulations within the same tumor and TME, thereby 
adding a further layer of complexity. For instance, as mentioned above, Notch signaling plays a pivotal role 
in shaping tumor immunity, but it can promote a pro- or anti-tumor response, thus questioning the effects 
of unspecific Notch targeting. These findings underscore the need for selective delivery. In this scenario, 
nanocarriers may circumvent this obstacle to increase tissue/cell-specific targeting. Interestingly, GSIs and 
other Notch-modulating agents have begun to be encapsulated in nano-formulations in BC and OC 
preclinical models[272], thus providing foundations for further studies.

To sum up, taking into account the above-mentioned evidence, further studies should be carried out to 
achieve higher efficacy and clinical translation of Notch targeting.

CONCLUSION
Development of resistance severely hampers therapy efficacy and decreases the survival of tumor-bearing 
patients, including women affected by female-specific cancers. Indeed, given that researchers and clinicians 
are continuously obliged to face this obstacle, over the past decades, a lot of effort has been put into 
dissecting this complex phenomenon. Emerging evidence proves the key role played by the evolutionary 
conserved Notch pathway. In the present review, we describe how Notch signaling contributes to several 
kinds of resistance, from chemo- and radio-resistance to hormone-based and targeted therapies in female 
malignancies. The preclinical results obtained in BC, OC, CC, and EC contexts suggest that Notch signaling 
inhibition can be an effective tool to counteract drug resistance. Nonetheless, given that Notch signaling is 
broadly involved in tumoral, stromal, and immune compartments, future studies need to focus even more 
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on a way to obtain higher efficacy before translating into the clinics.
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