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Abstract. Parameter estimation of a nonlinear model based on maximizing the likelihood
using gradient-based numerical optimization methods can often fail due to premature
termination of the optimization algorithm. One reason for such failure is that these numerical
optimization methods cannot distinguish between the minimum, maximum, and a saddle
point; hence, the parameters found by these optimization algorithms can possibly be in any of
these three stationary points on the likelihood surface. We have found that for maximization
of the likelihood for nonlinear mixed effects models used in pharmaceutical development, the
optimization algorithm Broyden–Fletcher–Goldfarb–Shanno (BFGS) often terminates in
saddle points, and we propose an algorithm, saddle-reset, to avoid the termination at saddle
points, based on the second partial derivative test. In this algorithm, we use the approximated
Hessian matrix at the point where BFGS terminates, perturb the point in the direction of the
eigenvector associated with the lowest eigenvalue, and restart the BFGS algorithm. We have
implemented this algorithm in industry standard software for nonlinear mixed effects
modeling (NONMEM, version 7.4 and up) and showed that it can be used to avoid
termination of parameter estimation at saddle points, as well as unveil practical parameter
non-identifiability. We demonstrate this using four published pharmacometric models and
two models specifically designed to be practically non-identifiable.

KEY WORDS: estimation methods; NLME; parameter estimation; pharmacometrics; practical
identifiability.

INTRODUCTION

Inaccurately estimated parameter values can introduce
bias and inflate uncertainty, which in turn will influence any
decisions supported by modeling and simulation results.
There exist many parameter estimation methods for nonlin-
ear mixed effects models (1–11). In this paper, we focus on
maximum likelihood-based parameter estimation algorithms
where the likelihood is approximated either by the first-order
approximation (first order, FO; first-order conditional esti-
mate, FOCE) or second-order approximation (Laplace ap-
proximation) and then maximized using a gradient-based
optimization algorithm. More specifically, we focus our
investigation on minimization of the approximated − 2log
likelihood (objective value function, OFV) using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (12)
implementation in NONMEM (13), a software package for

population pharmacometric modeling that is commonly used
for regulatory submission.

TheOFV forms a surface in (p+ 1)-dimensional space, where
p is the number of estimated parameters. BFGS moves iteratively
to points across this surface in search of a stationary point, a point
where the gradient of the objective function is a zero vector. This
can be thought of as solving a system of nonlinear equations

∇OFV ¼ 0
!
, where the Hessian matrix (or its approximation)

determines the direction the point is moved at each iteration. As
can be seen in Fig. 1, for the case of two estimated parameters (i.e.,
p 0 2), the stationary point is a necessary, but not sufficient
condition for the point to be at a minimum. See Appendix I for
further mathematical background.

In this paper, we show that the maximum likelihood
estimation of nonlinear mixed effects models using BFGS can
terminate prematurely at saddle points. Then we propose an
algorithm, saddle-reset, to move the parameter away from such
non-minimum stationary points. We implemented the proposed
algorithm in NONMEM (version 7.4 and above), and using this
implementation, we show that the proposed algorithmhelps us find
more accurate maximum likelihood estimates. We also show that
the proposed algorithm can unveil non-identifiability of a param-
eter for the case where the parameter is not locally practically
identifiable. The NONMEM implementation is used by setting
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SADDLE_RESET0N, where N is the number of consecutive
user-requested repetitions of the algorithm.

Several approaches to the saddle point problem have
been suggested, for example, modified Newton methods or
methods using stochastic gradients (14,15). The proposed
algorithm is based on the second derivative test, similar to an
approach first used by Fiacco and McCormick (16,17), and
uses the Hessian of the OFV to derive the optimal direction
of the perturbation.

METHODS

Saddle-Reset Algorithm

Let f be a map from model parameter vector θ to −
2log(likelihood). We aim to find the maximum likelihood
parameter which is defined as θ̂ ¼ argminθ f θð Þð Þ. We con-

sider θe, a numerical approximation of θ̂, using a local search
algorithm for solving a system of nonlinear equations (e.g.,

Quasi-Newton methods, gradient-based methods, BFGS) by
solving ∇f(θ) 0 0. We denote this operation of applying the
algorithm to numerically approximate local minima of f(θ), by
an operator F, where F takes a nonlinear function f and the
initial guess of the minima θinit as the inputs. The operator F

outputs θe the numerical approximation of the local minima of
the nonlinear function f near the initial guess θinit. We denote

this operation as θe ¼ F f �ð Þ;θinitð Þ.
We assume that the algorithm finds a stationary point of

a function near a given initial guess θinit, i.e.:

θe ¼ F f �ð Þ;θinitð Þ ð1Þ
such that

∇ f θe� �
¼ 0 ð2Þ

f θe� �
≤ f θinitð Þ� ð3Þ

Fig. 1. Examples of the stationary point where ∇OFV ¼ 0
!

for the case of two parameter model (i.e., p 0 2). Top
left: a minimum on the surface, where the curvature is positive in all directions. Top right: a saddle point, marked *,
where the curvature is negative in one direction around a point, but positive in the other. Bottom left: a so-called
monkey saddle, a degenerate saddle point with reversing curvature (inflection) around a point. Bottom right: a
region of non-identifiability, where the curvature is zero in one direction, and all values of θ1 produce the same,
lowest OFV value along a vector

90 Page 2 of 11 The AAPS Journal (2020) 22: 90



The stationary point can be classified using a Hessian
matrix, and we denote the Hessian matrix of −
2log(likelihood) as the R-matrix, i.e.:

rij θð Þ ¼ ∂2

∂θi∂θ j
f θð Þ ð4Þ

where rij is the element of the matrix R at the ith row and jth
column. Note that if f is nonlinear, this matrix depends on θ so
we will denote the R-matrix that is evaluated at θ as R(θ).
Lastly, we denote p as the number of parameters in the
parameter vector θ; hence,R(θ) is a p × pmatrix. The algorithm
can use either the computed Hessian matrix after the end of the
BFGS search (R-matrix) or the BFGS Hessian approximation
from the last iteration of the search as a substitute.

The algorithm consists of the following 8 steps:

1. Estimate the maximum likelihood parameters by
finding a stationary point near an initial guess θinit

using a gradient-based local search algorithm and

denote it as θe (see Eq. (1)).
2. If an element in the gradient vector cannot be

computed at θe (e.g., the numerical integration of the
model ODE for that derivative component fails), then

reset the associated parameter values in θe to those
from θinit (initial parameters at start of estimation) and
proceed to step 6 with this new θnew

init .
3. Compute the Hessian, or acquire the BFGS Hessian

approximation, at the stationary point θe.
4. Find the lowest eigenvalue λl and the associated unit

eigenvector vl of the Hessian, i.e.:

λlvl ¼ R θe� �
vl ð5Þ

vTl vl ¼ 1 ð6Þ

5. Select new initial parameter values by a second-order
Taylor series approximation along vl to find an
approximate change in OFV of 1, i.e.:

θnewinit ¼ θeþ
ffiffiffiffiffiffiffi
2
λlj j

s
vl ð7Þ

with a protection for cases where λn→ 0 and step
length would approach ∞, i.e.:

θnew
init ¼ θeþmin maxi

1
2

θei
vl;i

�����
�����

 !
;

ffiffiffiffiffiffiffi
2
λlj j

s !
vl ð8Þ

Further justification for Eqs. (7) and (8) is shown in
Eq. (11–17) in Appendix II.

6. Resume parameter estimation to find a stationary
point near new initial guess θnew

init using the gradient-
based local search algorithm, i.e.:

θenew ¼ F f �ð Þ;θnew
init

� � ð9Þ

7. Check if the N user-requested saddle-resets have been
performed. If reset steps remain, return to step 2,

replacing θe with θenew:
8. Conclude the parameter estimation at θenew.

A Note on Step 2

In the case that there are numerical problems with the
evaluation of a gradient element, then the BFGS implemen-
tation in NONMEM sets that gradient element to zero, the
eigenvalue becomes zero, and the associated eigenvector
becomes a unit vector along the axis of the parameter with
numerical issues. If this vector is selected and used in steps 3–
5, then the parameter with the numerical problem would be
changed without any relation to the curvature of the − 2log
likelihood surface (see Eq. (8)). In this situation, the
parameter with the numerical problem is instead set to its
initial value.

NONMEM Implementation

We have implemented saddle-reset in NONMEM 7.4. It
is enabled by specifying the option SADDLE_RESET 0N on
the $ESTIMATION record, where N is the number of resets
to perform before concluding parameter estimation. The
option is applicable only when BFGS is used to maximize
the likelihood approximated by FO, FOCE, or Laplace
approximations.

In order to reduce runtime, NONMEM by default uses
the approximation of the Hessian matrix from the last
iteration of the BFGS method in step 3 of the algorithm. As
this matrix is already computed at the last iteration of BFGS,
using this matrix instead of computing the Hessian saves
computational cost. However, note that the BFGS approxi-
mation of the Hessian is constructed to be positive definite
and hence cannot be used for the second derivative test (i.e.,
it cannot be used to classify the stationary point). If the
SADDLE_HESS 0 1 option is specified, NONMEM will
instead compute the Hessian (R-matrix), Eq. (4), in step 3
of the algorithm.

Numerical Experiments

To demonstrate the utility of the proposed algorithm in
realistic and practical settings, we have obtained four
published nonlinear mixed effects models in pharmacometrics
with the original datasets. These four examples are chosen
from a wide range of pharmacokinetics (models for the time-
course change of drug concentration) and pharmacokinetic-
pharmacodynamic models (models of a biomarker or end-
point that is driven by the pharmacokinetics model). In
addition, to demonstrate the algorithm’s usefulness for
detecting practical non-identifiability, we have created two
nonlinear mixed effects models with one simulated dataset
each, so that one would be structurally non-identifiable and
another would be practically non-identifiable. An overview of
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the selected models is presented in Table I. For details of the
published models, we refer the reader to the original
publications (18–21). For details of the non-identifiable
models, see Appendix III.

Parameter estimation was performed on each model
using 1000 sets of initial parameters generated uniformly and
at random within, proportionally, 99% above and below the
best-known parameter values for the identifiable models, or
true parameter values used for simulation for the non-
identifiable models, according to Eq. (10),

θinit;keθbest þU θbest � 0:01;θbest � 1:99ð Þ ð10Þ

where θinit,k is the kth generated set of initial values, θbest is
the best-known parameter value, and U(a,b) is a uniform
random variable generated between a and b. This procedure
was done using Perl speaks NONMEM (23) (PsN). Given
that some of the parameters are off-diagonal elements of a
variance-covariance matrix for random effects of the models,
and the variance-covariance matrix needs to be positive
definite, if the randomly generated initial parameter vector
resulted in a non-positive definite variance-covariance matrix,
then a replacement matrix was constructed from its
eigendecomposition, replacing any negative eigenvalues with
a small positive value (i.e., 10−10).

For the examples with original data (models A–D), we
do not know the true parameter vector so we use the
published parameter values as the best-known parameter
values. Note that for all of these examples, throughout our
rich numerical experiment (i.e., many thousands of parameter
estimations using a wide range of initial estimates), we have
not found any better parameter sets (higher likelihood) than
those published. For models E and F, where simulated data is
used, the parameters used for simulation were the best-
known parameter values.

For each model, estimation of θe was performed from
each of the 1000 initial parameter values using the following
methods:

& Default estimation: Gradient-based estimation
performed using the method originally used in the
published model.

& Random perturbation and re-estimation:
Gradient-based estimation performed using the
method originally used in the published model (the
default estimation method, above), plus two subse-
quent estimations. One starting from the final param-
eter estimates of the default estimation, and one
starting from a randomly selected θnew

init from a
uniform distribution spanning, proportionally, 10%
above and below each of the final estimates of the
default estimation. The result with the lowest
– 2log(likelihood) of the two estimations is then
selected, regardless of NONMEM estimation status.

& Saddle-reset: Saddle-reset was tested with three
different settings: (1) a single saddle-reset step using
t h e B F G S H e s s i a n a p p r o x i m a t i o n
(SADDLE_RESET 0 1), (2) three consecutive reset
steps using the BFGS Hessian approximation
(SADDLE_RESET 0 3), and (3) a single saddle-
r e se t s t ep u s ing the computed Hes s i an
(SADDLE_RESET 0 1 SADDLE_HESS 0 1). Three
saddle-resets were included in order to compare one
saddle-reset and confirm whether one reset is
sufficient.

“Estimation success” for identifiable models A–D was
evaluated by if the estimation methods reached within 1 point
above the minimum known – 2log(likelihood) for that model/
data combination.

For the non-identifiable models (E and F), the methods
were evaluated based on the change in maximum likelihood
parameter estimates compared with default estimation, cal-
culated as the difference divided by the true value. For
identifiable models, the maximum likelihood estimate is a
single value within numerical error. If a method can produce
a changed parameter value with the same lowest known OFV,
we consider that as having exposed local, practical non-

Table I. Models Used for Numerical Experiments

Model Reference Model classification Fixed
effects

Random
effects

Residual error Number of
subjects

Number of
samples

Comment

A Jönsson et al. (18) Two-comp. PK 7 2 Additive 177 1196 Closed form
B Bergmann

et al. (19)
Two-comp. PK 10 3 Additive and

proportional
93 274 Closed form

C Wählby et al. (20) Two-comp. PK,
transit comp. power PD

7 4 Additive and
proportional

47 530 ODEs

D Grasela and Donn (21) One-comp. PK, 3 3 Proportional 59 155 Closed form
E Practically

non-identifiable
Emax model.

8 5 Additive and
proportional

326 1803 ED50 and γ cannot
both be estimated
on sim. Data

F Non-identifiable
example from
Aoki et al. (22)

Structurally
non-identifiable
two-comp. PK
w/ fraction of dose data

4 3 Proportional 25 612 V1, Q, V2, and CL
cannot all be
estimated

Comp., compartment; DEs, differential equations; γ, hill factor for Emax model; ED50, dose required for half effect; V1, volume of central
compartment; V2, volume of peripheral compartment; Q, intercompartmental clearance; CL, clearance
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identifiability of that parameter. A method that finds the same
lowest known OFV with a larger change in the parameter
value, translating to a wider distribution of delta values over
the 1000 estimations in our experiment, is considered more
successful, as this makes the non-identifiability more
apparent.

RESULTS

Identifiable Models

The default method failed to find the lowest known OFV
in a portion of estimations for all models. Compared with
default estimation, all other methods had a higher portion of
estimations that reached the lowest known – 2log(likelihood)
in all models, with the exception of saddle-reset with
computed R-matrix for model B, where many estimations
crashed. Saddle-reset consistently outperformed random
perturbation and re-estimation, with a larger portion of
estimations reaching the lowest known − 2log(likelihood) for
each tested model. The success rates for each examined
identifiable model and method are shown in Fig. 2.

Using the default estimation method, maximum likeli-
hood estimates were found to have terminated prematurely in
saddle points for all identifiable models between 1.6 and
26.5% of the time, as categorized by the positive definiteness
of the computed R-matrix, see Table II.

Boxplots of runtimes for the different methods and
models are presented in Fig. 3. For the identifiable models
A–D, performing a single saddle-reset increased estimation
time by a median 65% over default estimation. Perturbation
and re-estimation increased runtime in the same estimations
by a median of 118%.

Performing multiple saddle-reset steps in a single estima-
tion had only a small positive effect on estimation success rate.

Employing three saddle-reset steps (SADDLE_RESET 0 3)
instead of one (SADDLE_RESET 0 1) only improved success
rate by 1.4% on average across models A–D, while having a
major impact on runtime as shown in Fig. 3.

Using saddle-reset with computed R-matrix for identifi-
able models gave marginally worse estimation results than a
single saddle-reset step with the BFGS-approximated Hessian
for models A, C, and D. For model B, the method was
unstable, with 157 of the 1000 estimations producing no OFV,
compared with 11 and 13, respectively, for default estimation
and one saddle-reset step.

Non-Identifiable Models

Different parameter estimates producing the same −
2log(likelihood) are evidence of non-identifiable parameters. In
model E, the parameters ED50 and Gamma cannot be simulta-
neously identified, and in model F, the parameters’ volume of the
central compartment (V1), clearance (CL), volume of the
peripheral compartment (V2), and intercompartmental clearance
(Q) cannot be simultaneously identified. Figure 4 shows violin plots
of the change in parameter estimates between the default
estimation and each of the compared methods, for estimations of
models E and F that reach within 1 point of their lowest known −
2log(likelihood) for the compared methods. The saddle-reset
algorithm produced changed parameter values at a higher rate
than perturbation and re-estimation. For both models E and F,
saddle-reset identified a wide range of parameter values for the
non-identifiable or non-estimable parameters at the minimum
known − 2log(likelihood), translating into a wide distribution of
absolute delta parameter values.

Three consecutive saddle-reset steps provided very similar
results to one saddle-reset, although delta ED50 and delta Gamma
in model E are completely separated from zero by three saddle-

Fig. 2. Success rate of default estimation, perturbation, and re-estimation, and saddle-reset (1 time, 3 times, and 1
time with computed R-matrix) for models A–D. Successful minimizations to within one point above the lowest
known OFV are counted (OFV ≤ lowest known OFV+ 1). Comp. R marks saddle-reset with computed R-matrix
(SADDLE_HESS 0 1)

Table II. Final Status of the Default Estimation Method for the Identifiable Example Models. The Distinction Between Local Minima and
Saddle Points Was Made by Calculating the R-Matrix at the Final Estimate and Evaluating Its Positive Definiteness. This Calculation Includes

Numerical Approximation and the Classification Is Not Conclusive

Estimated to best-known minimum OFV Estimated to local minimum Estimated to saddle point Crashed estimations

Model A 814 13 171 2
Model B 698 25 265 12
Model C 693 53 126 128
Model D 981 0 16 3

Page 5 of 11 90The AAPS Journal (2020) 22: 90



reset steps, meaning that the non-identifiability is unveiled in every
estimation that reaches the lowest known OFV.

Using saddle-reset with computed R-matrix greatly
improved the results for model F, but the method was
unstable for model E. Out of the 850 model E estimations
that reached the lowest known OFV in default estimation,
only 91 did so after saddle-reset with computed R-matrix.

Runtime with a single saddle-reset step was on par with
perturbation and re-estimation for both non-identifiable examples
(as seen in Fig. 3). Performing saddle-reset with a computed R-
matrix or performing three consecutive saddle-resets came at a
very small additional computational cost for these two models.

DISCUSSION

This work has presented saddle-reset, an algorithm to
improve the BFGS optimization method used to obtain
maximum likelihood parameters in pharmacometric models,
and to simultaneously check for local practical non-
identifiability. The proposed algorithm was more likely to
find accurate maximum likelihood parameters compared with
conventional methods and with random perturbation
methods. In addition, based on the implementation we have
tested, a single saddle-reset required less computational time
than the random perturbation method.

Both saddle-reset and random perturbation successfully
unveiled local non-identifiability by producing changed pa-
rameter values at the lowest known OFV, with a single
saddle-reset step providing more distinctly different values of
the non-identifiable parameters in a larger portion of
estimations for both examples. One saddle-reset step was
similar in performance to random perturbation and re-
estimation for model E, while being significantly better for
model F. This discrepancy in the relative performance is likely
due to two things: the number of parameters involved in the
non-identifiability, with model F having four non-identifiable
parameters compared with two parameters for model E, and

the required precision in step direction. The structurally non-
identifiable example can be exposed by evaluating parameter
values along many different directions around the estimated
parameter values, while the practically non-identifiable ex-
ample requires a more precise step direction. These differ-
ences between the examples may also help explain why using
a computed Hessian (i.e., SADDLE_HESS 0 1) was of great
benefit for the structurally non-identifiable model F, but was
very unstable for the practically non-identifiable model E.

The use of the approximate Hessian matrix from the last
iteration of the BFGS algorithm did not affect the algorithm’s
ability to surpass saddle points in the identifiable examples, and it
was more stable for models B and E. However, using the
numerically computed Hessian (i.e., setting SADDLE_RESET
0 1 and SADDLE_HESS 0 1) greatly improved the algorithm’s
performance in unveiling non-identifiable parameters for the
cases where estimation was successful, producing vastly different
parameter values at the same, lowest known OFV. Although the
finite difference scheme for the Hessian incurs additional
computational cost, resulting in longer runtime in all examples,
it may be more appropriate to use when identifiability issues are
indicated or suspected.

At a saddle point, there are two possible directions along the
selected eigenvector, positive and negative. Preliminary experi-
ments using both directions did not significantly improve perfor-
mance (results not shown). This came as a surprise to us since our
intuition was that a saddle point would, at least in some sense, be a
divider between two areas of the surface. The explanation for the
results is likely that this intuitive understanding underestimated the
flexibility of these systems.

This work has certain limitations. The saddle-reset
algorithm is unlikely to be effective for unveiling global
non-identifiability for cases that are locally identifiable, such
as flip-flop kinetics. Similarly, the method is not designed to
surpass local minima, although we would like to note that what
are colloquially referred to as local minima may often actually
be saddle points, as the classification results in Table II indicate.

Fig. 3. Boxplots of estimation time in seconds for the default estimation, random perturbation, and re-estimation,
and saddle-reset for all models. Note that the y-axes have different logarithmic scales for the different models.
Comp. R marks saddle-reset with computed R-matrix (SADDLE_HESS 0 1)
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The implementation of a multi-start algorithm (24) such as
libensemble (25) may be a possible extension for the presented
research to overcome these challenges. We have also not
evaluated the impact of different step length (OFV change of 1

point) or different eigenvector directions in the saddle-reset
step. Future improvements could add a layer to the algorithm to,
for example, test multiple different eigenvectors or step lengths,
or to select the best result of several consecutive saddle-reset

Fig. 4. Violin plots displaying change in selected fixed effects parameter values between the respective method and
default estimation, relative to true values, delta values in percent, for the non-identifiable models E (top) and F
(bottom), at their respective lowest − 2log(likelihood). The four methods compared are, in order from the left,
perturbation and re-estimation, one saddle-reset step, three saddle-reset steps, and one saddle-reset step with
computed R-matrix. A wider distribution and separation from zero indicates better performance in exposing the
non-identifiability. Using a computed R-matrix produces parameter values that are vastly different from the default
estimation, clearly indicating non-identifiability. Some parameters remain identifiable, such as baseline in model E
and proportional error in model F. The total number of estimations that reached the lowest known OFV (ntot), and
the number of estimations that produced the same parameter estimates in default estimation and in the respective
method (nθ̃0θ̃

new), is shown in the bottom panel for each method in each model. A lower ntot indicates that
estimations crashed or did not reach the lowest OFV. A lower nθ̃0θ̃

new means that more estimations unveiled non-
identifiability
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steps. As presented here, saddle-reset is a single sequential
process just like BFGS. Lastly, we assume the likelihood surface
to be twice continuously differentiable, and that the Hessian
therefore exists, but this is not always the case for nonlinear
mixed effects models in pharmacometrics. However, with the
approximation of the hessian in the BFGS algorithm, some of
the effects of this assumption can be overcome.

CONCLUSION

Saddle-reset is an efficient and easy-to-use algorithm for
exposing and avoiding saddle points and local practical
identifiability issues in parameter estimation.We recommend using
one saddle-reset step (implemented as SADDLE_RESET0 1 in
NONMEM) when performing maximum likelihood-based param-
eter estimation by maximizing likelihood using gradient-based
numerical optimization algorithms (e.g., FO, FOCE, LAPLACE).
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APPENDIX I. MATHEMATICAL BACKGROUND

Interpretation of Hessian and the Shape of the OFV Surface

The Hessian of the objective function, also known as the
R-matrix (see Eq. (4)), describes the curvature of the OFV
surface. The geometrical feature of the OFV surface along
the eigenvector vi of the R-matrix can be classified by the
associated eigenvalues λi as follows:

& λi 0 0 flat
& λi < 0 concave (maximum)
& λi > 0 convex (minimum)

In addition, the stationary point (the point where the
gradient is the zero vector) can be classified using these
eigenvalues as follows:

& If all eigenvalues of the R-matrix are positive,
then the point is a local minimum.

& If the R-matrix has positive and negative eigen-
values, then the point is a saddle point.

& If at least one eigenvalue is zero, then this means
that the point is either:

& a saddle point with inflection such as the monkey
saddle, or

& that the surface does not change along the direction of
that eigenvector.

The classification of different stationary points according
to the above rules is trivial if the Hessian is evaluated exactly
at the location of the stationary point; however, one should
keep in mind that the Hessian obtained using computational
algorithms is subject to rounding error. For example, a low
surface curvature with one small positive eigenvalue (a local
minimum) can be computationally difficult to separate from a
negative (saddle point) or zero (non-identifiable parameter)
eigenvalue. Many methods also use approximations of the
Hessian that are biased or restrained. For example, BFGS
uses an approximation of the Hessian that is made to be
positive definite, and thus cannot be used to classify the
stationary point.

Saddle Points

A saddle point is a stationary point on a surface, i.e., a point
where the gradient is zero, around which there is at least one
direction with decreasing function value, and at least one of
increasing function value. On objective function surfaces, this
means that there are better parameter values that can be found
with a local step in the right direction. See the top right and
bottom left panels of Fig. 1 for two examples of saddle points.

Saddle-reset can surpass saddle points by taking a step
along the lowest curvature and thus reach a lower objective
function value from which to resume estimation.

Non-Identifiability

It is important to differentiate between structural
identifiability, where all parameters can be identified with
infinite data available, and practical identifiability, sometimes
called estimability or deterministic identifiability, where all
parameters can be identified with the available data. Locally
structurally non-identifiable models are, by their nature, also
practically non-identifiable and can be exposed as locally
practically non-identifiable using the same local methods.
Structural non-identifiability has been studied extensively
(26–28) and is not a common problem in pharmacometrics
as shown for example in excellent analyses by Janzen et al.
(29) and Shivva et al. (30). Practical non-identifiability, on the
other hand, is a prominent problem (31).

In a flat region of the objective function, there are multiple
sets of parameter values that yield the same objective function
value. If there exists two or more separate such sets for a model/
data combination, then there is no optimal value of at least one
parameter, and the model is non-identifiable. This can have
implications for modeling efforts that use the likelihood ratio
test, since it defies Wilk’s theorem and thus hampers the
assumption that likelihood ratios follow a χ2 distribution
(32,33). The bottom right panel of Fig. 1 shows the simplest
example of non-identifiability, where a change in value of one
parameter has no impact on the − 2log(likelihood). This
produces a line, rather than a point that, in this example, runs
along one parameter axis. While such a line is not a stationary
point, it may appear as such to a gradient-based search
algorithm due to rounding errors or the search path.
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Saddle-reset can expose non-identifiability by taking a
step along the line of optimal values and thus showing the
same − 2log(likelihood) for different parameter values
before and after the saddle-reset step and re-initiated
estimation.

APPENDIX II. JUSTIFICATION FOR EQS. (8) AND
(9)

Claim: f
ffiffiffiffiffi
2
λlj j

q
vl þ θe� �

− f θe� ���� ���≈1 for small
ffiffiffiffiffi
2
λlj j

q
.

Proof: Consider the second-order Taylor series expan-

sion of f at θe, i.e.:
f θ eþ Δθ
� �

≈ f θe� �
þ ΔθT∇f θe� �

þ 1
2
ΔθTR θe� �

Δθ ð11Þ

for small Δθ. We will now let Δθ ¼
ffiffiffiffiffi
2
λlj j

q
vn and assume thatffiffiffiffiffi

2
λlj j

q
vn is small, (e.g., λl ≠ 0):

f θ eþ
ffiffiffiffiffiffiffi
2
λlj j

s
vl

0@ 1A≈ f θe� �
þ

ffiffiffiffiffiffiffi
2
λlj j

s
vTl ∇ f θe� �

þ 1
2

�
ffiffiffiffiffiffiffi
2
λlj j

s
vTl R θe� � ffiffiffiffiffiffiffi

2
λlj j

s
ð12Þ

For small
ffiffiffiffiffi
2
λlj j

q
vn. Assuming θ e is at a stationary point,

i.e., ∇ f θe� �
¼ 0 (cf. Eq. (2)), and some calculation, Eq. (12)

can be simplified as follows:

f θeþ
ffiffiffiffiffiffiffi
2
λlj j

s
vl

0@ 1A≈ f θe� �
þ 1

λlj j v
T
l R θe� �

vl ð13Þ

¼ f θ e� �þ 1
λlj j v

T
l λlvl since vl is an eigenvector; cf:6ð Þ ð14Þ

¼ f θ e� �þ λl
λlj j since vl is a unit vector; cf:7ð Þ ð15Þ

By subtracting f θe� �
from both sides of Eq. (15), we

have the following:

f θeþ
ffiffiffiffiffiffiffi
2
λlj j

s
vl

0@ 1A− f θe� �
≈

λ
λlj j ð16Þ

¼ 1 if λl > 0
−1 if λl < 0

�
ð17Þ

The claim is proven.

APPENDIX III. DETAILED DESCRIPTION OF NON-
IDENTIFIABLE MODELS

Model E – Practically Non-Identifiable Emax Model

The model expresses a biomarker for an individual i,
measured during visit j to a clinic (yi,j), as a function of fixed effects
(θ) inter-individual random effects (ηi), covariate effects (βi), dose
(D), and additive and proportional residual error (εAdd,i,j, εProp,i,j).

yi; j ¼ f θ; ηi; β i;D; εi; j
� � ¼ EBaseline;i þ EPlacebo;i þ EDrug;i; j

� �
1þ εProp;i; j
� �þ εAdd;i; jεProp;i; je N 0;σ2� �

; εAdd;i; je N 0;σ2� �
;

ð18Þ
EBaseline;i ¼ θBaseline � βSex;i �

1þ βAge Agei−45:16ð Þ þ βFEV1 � FEV1PN;i−70
� �� �

� eηBaseline;i
ηBaseline;ie N 0;ω2� �

ð19Þ

EPlacebo;i ¼ θPlacebo þ ηPlacebo;i; ηPlacebo;ie N 0;ω2� �
ð20Þ

EDrug;i; j ¼
0 if j < 4

Emax
Dγ

i

Dγ
i þ ED50

γ if j≥4

8<: ð21Þ

The parameter values used for simulations, and as the
center for the random perturbation before estimation, are
shown in Table III.

Table III. Model E Pharmacodynamic Parameter Values Used for
Simulation. For Estimation, the Random Perturbation Was Made

Around These Values

Parameter Typical value ω (IIV, app.
SD scale)

σ (residual error,
app. SD scale)

EBaseline 2.55013 0.1
EPlacebo 0.0676556 0.1
Emax 0.137501
ED50 10
γ 0.6304
βSex

Male 0.715994
Female 1

βAge − 0.0116814
βFEV1 0.0129253
Additive error 0.1
Proportional error 0.1

IIV, inter-individual variability; app. SD scale, estimate of variability
on approximate standard deviation scale; EPlacebo, placebo effect;
EBaseline, baseline effect; Emax, maximal effect; γ, hill factor for Emax
model; ED50, dose required for half effect; βSex, sex effect on baseline;
βWeight, weight effect on baseline; βAge, age effect on baseline; βFEV1,
FEV1 effect on baseline; FEV1, forced expiratory volume in 1 s;
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The study design has 326 individuals making a total of 1803
observation visits after receiving a dose of 0, 10, 40, or 400 units.
Each individual makes six (n0 261), five (n0 18), four (n0 19),
three (n0 15), or two (n0 13) observation visits. An example
dataset for a single individual is shown in Table IV.

Model F - Structurally Non-Identifiable Two-Comp. PK with
Fraction of Dose Data

The model expresses observed fraction of dose amount
data in an individual i at time t (yi,t) as a function of fixed
effects (θ) inter-individual random effects (ηi), time (t), dose
(D), and proportional residual error (εi,t). The variables u1
and u2 denote the fractions of absorbed amount in compart-
ment one and two, respectively, after an arbitrary bolus dose
at time t 0 0.

yi;t ¼ f θ;ηi; t; εi;t
� � ¼ u1;i;t 1þ εi;t

� �
; εi;teN 0;σ2� �

ð22Þ

d
dt

u1;i ¼ −CLi
u1
V1

−Q
u1
V1

þQ
u2
V2

ð23Þ

d
dt

u2;i ¼ Q
u1
V1

−Q
u2
V2

ð24Þ

CLi ¼ θCL � eηCL;i ; ηCL;i

ηV1;i

" #
eN2 0

!
;Ω

� �
ð25Þ

V1;i ¼ θV1 � eηV1 ;i ;
ηCL;i

ηV1;i

" #
eN2 0

!
;Ω

� �
ð26Þ

Q ¼ θQ ð27Þ

V2 ¼ θV2 ð28Þ

For proof of the non-identifiability, please see Aoki et al.,
appendix section C.2.5 (22). The model was implemented
using ADVAN3 TRANS4 in NONMEM.

The parameter values used for simulations, and as the
center for the random perturbation before estimation, are
shown in Table V.

The study design includes 612 observations of fraction of
amount in 25 individuals after a dose of 100 units. An
example dataset for a single individual is shown in Table VI.

Table IV. Model E Example Data for One Individual

ID Visit Age Sex FEV1PN Dose y

2 2 41 2 67.7 40 3.18
2 3 41 2 67.7 40 3.01
2 4 41 2 67.7 40 2.723675
2 5 41 2 67.7 40 3.013675
2 6 41 2 67.7 40 2.443675
2 7 41 2 67.7 40 2.793675

Table V. Model F Pharmacokinetic Parameter Values Used for
Simulation

Parameter Typical value ω (IIV, variance
scale)

Σ (residual error,
approx. SD scale)

CL 2.825120 0.211405
CL – V1 IIV

covariance
− 0.01629

V1 4.189603 0.211405
Q 15.32572
V2 9.830136
Proportional

error
0.103916

IIV, inter-individual variability; SD, standard deviation; CL, clear-
ance; V1, volume of the central compartment; Q, intercompartmental
clearance; V2, volume of the peripheral compartment

Table VI. Model F Example Data for One Individual

ID Time y Dose amount

1 0 0 100
1 1.6116 6.6235 0
1 2.2645 4.4116 0
1 3.3643 3.7568 0
1 4.1419 3.0119 0
1 5.9355 1.7335 0
1 7.2877 1.0309 0
1 8.9445 0.69203 0
1 9.1647 0.56351 0
1 9.7232 0.63195 0
1 11.258 0.32338 0
1 11.691 0.23928 0
1 11.759 0.32525 0
1 12.632 0.23712 0
1 14.506 0.11139 0
1 15.03 0.10224 0
1 16.169 0.05597 0
1 16.888 0.063123 0
1 16.942 0.066703 0
1 17.943 0.052598 0
1 19.597 0.026317 0
1 20.115 0.019472 0
1 20.207 0.023866 0
1 20.7 0.016556 0
1 22.021 0.013256 0
1 22.68 0.01025 0
1 23.999 0.006928 0
1 24.025 0.0061189 0
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