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Traditional rehabilitation strategies become difficult in the chronic phase stage of

stroke prognosis. Brain–computer interface (BCI) combined with external devices

may improve motor function in chronic stroke patients, but it lacks comprehensive

assessments of neurological changes regarding functional rehabilitation. This study

aimed to comprehensively and quantitatively investigate the changes in brain activity

induced by BCI–FES training in patients with chronic stroke. We analyzed the EEG of two

groups of patients with chronic stroke, one group received functional electrical stimulation

(FES) rehabilitation training (FES group) and the other group received BCI combined with

FES training (BCI–FES group). We constructed functional networks in both groups of

patients based on direct directed transfer function (dDTF) and assessed the changes in

brain activity using graph theory analysis. The results of this study can be summarized

as follows: (i) after rehabilitation training, the Fugl–Meyer assessment scale (FMA) score

was significantly improved in the BCI–FES group (p < 0.05), and there was no significant

difference in the FES group. (ii) Both the global and local graph theory measures of the

brain network of patients with chronic stroke in the BCI–FES group were improved after

rehabilitation training. (iii) The node strength in the contralesional hemisphere and central

region of patients in the BCI–FES group was significantly higher than that in the FES

group after the intervention (p < 0.05), and a significant increase in the node strength of

C4 in the contralesional sensorimotor cortex region could be observed in the BCI–FES

group (p < 0.05). These results suggest that BCI–FES rehabilitation training can induce

clinically significant improvements in motor function of patients with chronic stroke. It can

improve the functional integration and functional separation of brain networks and boost

compensatory activity in the contralesional hemisphere to a certain extent. The findings

of our study may provide new insights into understanding the plastic changes of brain

activity in patients with chronic stroke induced by BCI–FES rehabilitation training.
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INTRODUCTION

Stroke is a cerebrovascular disease with high morbidity,
disability, and mortality (Sheorajpanday et al., 2011; Larivière
et al., 2018). Patients are likely to suffer various degrees of

functional impairment after the onset of stroke, among which

motor dysfunction is one of the most significant disabling
manifestations after stroke (Krueger et al., 2015). Motor
dysfunction seriously affects the quality of life of patients with
stroke and their families, and therefore stroke rehabilitation
is essential. Currently, resources for stroke rehabilitation are
focused on the prognosis of patients with stroke in the acute
and subacute phases (Teasell et al., 2012). For patients with
stroke in the chronic phase, which is more than 6 months after
stroke (Bernhardt et al., 2017), a standardized outpatient regimen
of exercise fails to effectively promote the recovery of motor
function. One possible contributing factor is the neuromuscular
adaptation to a standardized outpatient regimen of exercise
in patients with chronic stroke (Teasell et al., 2014). When
neuromuscular adaptation occurs, finding a treatment regimen
that differs from that during rehabilitation can be beneficial
in overcoming the adaptive state (Page et al., 2004). Several
recent studies have shown that alternative or new treatment
options, such as brain–computer interface (BCI) combined with
external devices or other neuromodulation paradigms, can be
effective in chronic stroke rehabilitation (Broetz et al., 2010;
Ramos-Murguialday et al., 2013; Mukaino et al., 2014; Naros and
Gharabaghi, 2017; Mohanty et al., 2018; Miao et al., 2020).

Brain–computer interface can directly measure brain activity
and convert it into control signals of computers or external
devices. The BCI used to overcome stroke-relatedmotor paralysis
can be broadly divided into two categories: assistive BCI and
rehabilitative BCI (Soekadar et al., 2015). The assistive BCI is
designed to continuously or permanently control the robotic
device to assist in daily life activities. The rehabilitative BCI
is meant to establish connections between the brain and the
periphery (Pichiorri andMattia, 2020) and induce neuroplasticity
to facilitate motor recovery (Soekadar et al., 2011). BCI focuses
on brain activity and can recognize and enhance motor-
related brain activity (Hallett, 2007). Due to this ability to
modify brain activity, BCI is considered a form of endogenous
neuromodulation that can induce plastic remodeling of brain
activity (Pichiorri and Mattia, 2020). By altering the brain
activity, BCI can induce recovery of function. There are two
common strategies for the application of the BCI technique in
motor function rehabilitation of patients with chronic stroke. The
first strategy is to drive external devices, such as robotic devices or
functional electrical stimulation (FES), to assist in the execution
of limb movements. This strategy can close the sensorimotor
loop disrupted by the stroke event and re-establish connections
between the central nervous system and the periphery (Pichiorri
and Mattia, 2020). Several studies have shown that patients
with chronic stroke who receive BCI-assisted robotic therapy
can achieve greater motor gains compared to robotic therapy
alone (Ramos-Murguialday et al., 2013; Keng et al., 2014; Frolov
et al., 2017). Representative among these studies is a randomized
controlled study conducted by Ramos-Murguialday et al. (2013)

in 32 patients with chronic stroke. Their results showed that BCI-
driven arm orthosis improved upper limb motor function more
significantly in patients with chronic stroke than in a control
group where movements of the arm orthoses occurred randomly.
Similar results have been reported in studies of the BCI combined
with the Haptic Knob (HK) robot (Keng et al., 2014) and the BCI-
controlled exoskeleton (Frolov et al., 2017) for the rehabilitation
of patients with chronic stroke. In addition, some studies have
compared the differences in motor function of patients before
and after intervention, and the results have shown that BCI-
driven robotic devices play a beneficial role in the rehabilitation
of patients with chronic stroke (Shindo et al., 2011; Takashi et al.,
2014; Sun et al., 2017; Lu et al., 2020). Similar effective effects were
also found in studies on the rehabilitation of patients with chronic
stroke based on BCI-driven FES (Tabernig et al., 2018). A recent
study by Biasiucci et al. (2018) showed that BCI-driven FES was
more effective in inducing significant and durablemotor recovery
in patients with chronic stroke than sham FES. They pointed out
that BCI combined with FES can promote significant functional
recovery and purposeful plasticity.

Another strategy underlying the design of BCI for motor
rehabilitation after chronic stroke is called the “brain-to-brain”
strategy (Pichiorri and Mattia, 2020). The goal of this strategy is
to combine BCI with other neuromodulation paradigms to boost
neuroplasticity at the central nervous system level and improve
motor function. Mrachacz-Kersting et al. (2016) combined BCI
and non-invasive transcranial magnetic stimulation (TMS) in the
rehabilitation of patients with chronic stroke. They found that
patients showed clinically relevant and significant improvements
in motor function after the intervention. According to this result,
they pointed out the possibility of BCI-based neurofeedback
system for efficient and targeted induction of plastic changes
in the motor cortex. In addition, some studies combined
transcranial direct current stimulation (tDCS; Ang et al.,
2015) and transcranial alternating current stimulation (tACS;
Naros and Gharabaghi, 2017) with BCI for the rehabilitation
training of patients with chronic stroke, and the results showed
that the enhancement of sensorimotor rhythm (SMR) was
significantly improved.

The effectiveness of BCI-based interventions in chronic stroke
rehabilitation has been demonstrated in the aforementioned
studies. The clinical assessment scale is usually used to assess
the functional recovery of patients with chronic stroke. However,
the clinical scale only reflects external motor performance,
and the neurological changes related to functional recovery
in patients with chronic stroke induced by BCI rehabilitation
intervention need to be further studied. Brain regions and
their interactions can be modeled as brain networks that
describe the efficient transmission of information in the brain
(Jin et al., 2017). Therefore, brain network analysis plays an
important role in analyzing and revealing the complex neural
mechanism of the brain. Brain network analysis can analyze
brain signals from a new perspective and help to understand
the interaction between brain regions. In recent years, EEG-
based brain network analysis has been used to explore the
neurological changes related to functional recovery in patients
with chronic stroke. Christian et al. (2006) constructed brain
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networks by computing EEG coherence to assess differences
in cortical connectivity between well-recovered patients with
chronic stroke and healthy subjects. The results showed that
after stroke, connectivity in the stroke hemisphere decreased
and connectivity in the contralesional hemisphere was relatively
increased. Borich et al. (2016) constructed brain networks for
patients with chronic stroke by computing the imaginary part of
coherence (IPC) of EEG to assess changes in cortical connectivity
induced by transcranial magnetic stimulation (TMS). They
characterized changes in cortical connectivity through changes
in connection weights between electrode pairs. Their study
is the first to report the association between recovery (or
lack) and abnormal interhemispheric interactions in patients
with chronic stroke using TMS-EEG. Sun et al. (2021) built
brain networks by computational EEG coherence to investigate
intervention-specific markers of motor improvement in patients
with chronic stroke. Their analysis is based on connection
weights between electrode pairs. The results showed that
interhemispheric connectivity in the delta, theta, and alpha
bands, and contralesional connectivity in the beta band were
associated with motor improvement. Biasiucci et al. (2018)
constructed EEG-based brain networks by computing the short-
term direct directional transfer function (SdDTF) to explore
changes in brain connectivity before and after BCI intervention.
Their assessment of connectivity changes is based on changes
in connection weights between electrode pairs within the region
of interest. The results showed increased functional connectivity
between motor areas of the affected hemisphere in patients with
chronic stroke after BCI intervention.

Based on the above literature survey, we found that in the
brain network analysis of patients with chronic stroke, few
studies combined global and local graph theory measures to
comprehensively evaluate EEG-based brain network changes.
The above studies are based on changes in the connection
weights between electrode pairs to reflect changes in functional
connectivity and fail to measure the properties of the brain
network at both the global and local levels. A comprehensive
analysis of neurological changes in the brain can help to
understand the plastic changes in brain activity after stroke and
during rehabilitation. The main objective of this study was to
comprehensively and quantitatively investigate the neurological
changes induced by BCI–FES rehabilitation training in patients
with chronic stroke from the level of functional integration
and separation using global and local graph theory measures.
We hypothesized that BCI–FES rehabilitation training would
improvemotor function in patients with chronic stroke and cause
positive changes in brain networks.

MATERIALS AND METHODS

Subjects
Patients were recruited from Huashan Hospital affiliated to
Fudan University and Shanghai Jinshan Zhongren Geriatric
Nursing Hospital. Inclusion criteria were as follows: (1) ischemic
or hemorrhagic stroke diagnosed by computer tomography or
magnetic resonance imaging; (2) age between 60 and 90 years; (3)
stroke onset was more than 1 year; (4) being able to sit in a chair

for at least 1 h. Exclusion criteria were as follows: (1) patients with
vision problems; (2) unilateral neglect; (3) allergic to conductive
paste; (4) cannot complete basic treatment. Twenty-four elderly
patients with chronic stroke were enrolled in the study and
randomly allocated to the BCI–FES group (n = 12) and the
FES group (n = 12). Baseline demographic data and clinical
characteristics of patients are presented in Table 1. This study
was approved by the Ethics Committee of Huashan Hospital
(KY2014-266) and performed according to the Declaration of
Helsinki. All the patients signed the informed consent.

Rehabilitation Training
The patients in the two groups were routinely treated with
basic rehabilitation therapy, including exercise therapy and
occupational therapy for 1 h/time, 5 times a week, for a total of
4 weeks. Patients in the BCI–FES group received BCI training
for 40 min/time, 3 times a week for 4 weeks. Patients in the FES
group received FES training for 30 min/time, 3 times a week for
4 weeks. The FES electrodes were placed in the extensor carpi
radialis and extensor carpi ulnar muscles of the patient’s upper
limp and the stimulation intensity of FES was based on the feeling
of the patient and the induction of wrist dorsiflexion movement.
In the BCI–FES group, FES is triggered by BCI system induced by
the motor imagery of the patients. The upper limb of Fugl-Meyer
assessment and resting-state EEG data were collected before and
after 1-month intervention.

The schematic of the BCI–FES system is shown in Figure 1.
During BCI rehabilitation training, the patient’s successful motor
imagery of the affected hand is converted into control signals
that drive feedback devices, including visual feedback, auditory
feedback, and stimulus feedback. After a successful motor
imagery task, the patient can hear voice prompts and observe
handle movements on the screen. In addition, the control
signal also drives the stimulator to deliver functional electrical
stimulation to the patient.

Each rehabilitation session for patients in the BCI–FES group
included 4 courses, and each course contained 40 trials. The
rest period after each course was determined according to the
patient’s tolerance and was generally 2–5min. Figure 2 shows the
rehabilitation training protocol of the BCI–FES system. At the
beginning of each trial, the patient had a rest period of 6 s. At
the end of the rest period, a white fixation cross was displayed on
the handle for 1 s, indicating that the task is about to start. Then
a white arrow appears on the handle to indicate the direction of
movement of the motor imagery task. The arrow was present for
2 s. After the arrow disappeared, the patient imagined using the
affected hand to move the handle. The motor imagery task lasted
for 4 s, during which the patient kept the body still and avoided
moving. At the end of the motor imagery, the patient received
feedback. For successful motor imagery trials, patients heard a
beeping sound (auditory feedback) and received a single electrical
stimulus (stimulus feedback). For unsuccessful motor imagery
trials, neither the beeping sound nor the electrical stimulation
is present. The visual feedback is that the patient can observe
the handle moving from the center of the current square, and
the number of squares the handle moves depends on the motor
imagery score.
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TABLE 1 | Baseline demographic data and clinical characteristics of patients.

Patient Age (year) Diagnosis Lesion site Lesion

side

Time since

stroke (month)

FMA

Pre Post

BCI01 75–80 Ischemic Cortical and subcortical R 34 3 5

BCI02 75–80 Ischemic Cortical R 19 1 5

BCI03 80–85 Ischemic Subcortical L 74 25 28

BCI04 65–70 Ischemic Cortical R 12 12 12

BCI05 60–65 Ischemic Subcortical R 39 5 7

BCI06 65–70 Hemorrhagic Cortical R 12 4 6

BCI07 80–85 Ischemic Cortical R 145 32 35

BCI08 80–85 Ischemic Cortical and subcortical R 26 33 33

BCI09 80–85 Ischemic Cortical and subcortical L 14 52 53

BCI10 75–80 Hemorrhagic Cortical and subcortical R 16 30 30

BCI11 65–70 Ischemic Cortical and subcortical R 29 30 30

BCI12 70–75 Ischemic Cortical and subcortical R 40 3 5

FES01 80–85 Ischemic Cortical L 27 0 0

FES02 85–90 Ischemic Subcortical R 12 58 58

FES03 80–85 Ischemic Subcortical R 28 45 45

FES04 75–80 Ischemic Subcortical R 22 27 25

FES05 65–70 Ischemic Cortical and subcortical R 41 20 20

FES06 85–90 Ischemic Subcortical L 36 44 43

FES07 80–85 Ischemic Cortical L 44 2 2

FES08 75–80 Hemorrhagic Subcortical L 110 6 6

FES09 75–80 Ischemic Cortical and subcortical R 35 56 59

FES10 75–80 Ischemic Cortical L 180 31 30

FES11 80–85 Ischemic Cortical and subcortical L 30 24 24

FES12 70–75 Ischemic Cortical and subcortical L 32 30 30

M, male; F, female; L, left; R, right.

EEG Recordings and Preprocessing
Twenty-four electrodes placed in accordance with the
international 10–20 standard system were used for EEG
recordings. Before and after the intervention, we recorded EEG
signals at a sampling frequency of 512Hz for 10min. For the first
5min of EEG recording, the subject remained in an eye-closed
resting state; after 5min, the subject was asked to perform three
elevated leg movements on the affected side, and for the last
5min of EEG recording, the subject returned to an eye-closed
resting state. In this study, only the first 5min of EEG recordings
were used for connectivity analyses.

Due to EEG artifact contamination or data loss, we finally
used data from 17 of 24 patients with chronic stroke (BCI–
FES = 8, FES = 9). Since the recording electrodes included two
reference electrodes (A1 and A2), the reference electrodes were
first removed during EEG pre-processing to obtain 22 channels
(F3, F4, FC3, FC4, C3, C4, CP3, CP4, P3, P4, FT7, FT8, T3,
T4, TP7, TP8, Fz, Oz, FCz, Cz, CPz, and Pz) of EEG data.
Then all EEG recordings were filtered to the alpha band (8–
13Hz) by an FIR filter pass filter. After dividing the frequency
band, we re-referenced the signals by average reference. The
independent component analysis (ICA) was applied for the
removal of EOG artifacts. All EEG preprocessing was performed
based on EEGLAB toolbox of MATLAB.

Since the subjects had different injury hemispheres, for the
consistency of analysis, the EEG data from patients with right
hemisphere lesion were flipped. In this way, we uniformly defined
the left hemisphere as the affected side and the right hemisphere
as the unaffected side.

After preprocessing, we constructed functional brain
networks based on EEG signals. To assess changes in the
brain networks induced by BCI rehabilitation training, we also
characterized brain networks using global and local graph theory
measures. Figure 3 shows the schematic diagram of building
functional brain networks based on EEG data using graph theory.

EEG Functional Connectivity Measurement
Directed transfer function (DTF) is a multivariate effective
connection measurement method based on Granger causality
(Baccalá and Sameshima, 2001), which is often used to construct
brain networks (De Vico Fallani et al., 2007). It is calculated on
a multivariate autoregressive model (MVAR; Liu et al., 2010).
For EEG data with k channels, its p-order MVAR model can be
expressed as:

X (t)=

p
∑

i=1

A (i)X (t − i)+E (t) (1)
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FIGURE 1 | The schematic of the BCI–FES system.

whereX (t) represents the vector of the EEG signal at time t and p
is the order of MVAR model. A (i) are the model coefficients and
E(t) is the vector of white noise values. The model equations are
transformed to the frequency domain:

X (t)= A−1
(

f
)

E
(

f
)

=H
(

f
)

E
(

f
)

(2)

whereH(f ) represents the transfer matrix of the system.
From the transfer matrix of the system, the normalized DTF is

defined as:

γ 2
ij

(

f
)

=

∣

∣Hij

(

f
)∣

∣

2

∑

k
n=1

∣

∣Hin

(

f
)∣

∣

2
(3)

where γ 2
ij

(

f
)

denotes the proportion of the total information

flowing into i from j to the total amount of information flowing
into i.

The disadvantage of the DTF method is that in some
cases it is not easy to distinguish between direct and indirect
connections. To overcome this drawback, Korzeniewska et al.
proposed an improved DTF method called direct directed
transfer function (dDTF), which combines the advantages of
DTF and partial coherences (Korzeniewska et al., 2003). The

mathematical formulation for dDTF is as follows:

δ2ij
(

f
)

= η2ij
(

f
)

P2
ij

(

f
)

(4)

η2ij
(
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=

∣
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(5)

P2
ij

(

f
)

=
N2
ij

(

f
)

Nii

(

f
)

Njj

(

f
) (6)

S
(

f
)

= H
(

f
)

VH
∗ (

f
)

(7)

where δ2ij

(

f
)

is dDTF, η2ij

(

f
)

is a different normalization of the

DTF, andP2
ij(f ) is partial coherence (pCoh). S

(

f
)

is power spectra

and V represents the variance of E(f ). Nij(f ) is obtained by
removing the i-th row and j-th column of S.

In this study, we used source information flow toolbox (SIFT)
to compute dDTF, which is an electrophysiological information
flow toolbox for EEGLAB. During the calculation, a rectangular
window with a window length of 20 s and a step length of
5 s is applied. For the model order selection, four information
criteria, including Akaike Information Criterion (AIC), Schwarz
Bayes Criterion (SBC), Akaike’s Final Prediction Error criterion
(FPE), and Hannan-Quinn Criterion (HQ) were considered
to determine a relatively suitable order. After completing the
calculation of dDTF, two 22 by 22 adjacent connectivity matrixes
(before and after intervention) were acquired for each subject.
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FIGURE 2 | Rehabilitation training protocol of the BCI–FES system.

Graph Theory
A graph is a structure, which consists of a set of nodes and
a set of lines called edges (Iakovidou, 2017). It can be used
to mathematically represent a network (De Vico Fallani et al.,
2007). When building a brain network based on graph theory,
the nodes and edges need to be defined. In this study, we defined
a single EEG channel as a node, and the weighted connections
between different channels as an edge to construct a directed
brain network.

Graph theory is an effective mathematical method for
analyzing brain networks constructed based on EEG. In this
study, five neurobiologically meaningful graph theory measures
were used to investigate the topological organization of the
brain network. Among them, the clustering coefficient and local
efficiency are used to characterize the functional separation
of brain networks, and the global efficiency characterizes the
functional integration of brain networks. Node strength was used
to measure the importance of a node in the brain network.
Network density represents how sparse or dense brain networks
are. All graph theory measures for each subject can be found in
the Supplementary Material.

Threshold Selection
In the adjacent connectivity matrix, weighted connections
exist between every possible pair of nodes, where there may
be some spurious connections of low weight (Smith et al.,
2015). Since spurious connections may cover up important
connections between node pairs and affect subsequent graph
theory analysis, it is necessary to threshold the weighted
connection matrix. An objective threshold has not yet been
proposed, so the determination of the threshold is arbitrary at
present. Considering the rationality of the network, it is necessary
to ensure that there are no isolated nodes in the network, and
that the connection density should not be too high or too
low when determining the threshold. Setting the threshold too
high may lead to low connection density as well as isolated
nodes, which may affect the integrity of the network. If the
threshold is set too low, it may result in the ineffective removal
of spurious connections.

We use the absolute value method to threshold the adjacency
matrix. To build a reasonable network, we expand the range
of thresholds for graph analysis, and the range of thresholds
is 0.0075:0.0005:0.0095. Before subjecting the matrix values
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to a threshold, we set the weights on the diagonal of the
adjacency matrix to 0 to ensure that all self-connections are
removed. All weights below the threshold are then reset to 0.
For weights higher than the threshold, it can be retained or
set to 1. When we calculate the node strength, the connections
higher than the threshold are retained. The calculation of the
four graph parameters except node strength uses the binary
connection matrix, that is, the connection above the threshold is
set to 1.

Construction of Functional Brain Network
To more intuitively observe the changes in the number of
effective connections between and within the hemisphere before
and after the intervention, we averaged the weighted adjacency
matrices of all subjects in each group. The thresholded average
weighted connectivity matrix was used to construct the brain
network connectivity map. We define each EEG channel as a
node of the network. The size of the node indicates the node
strength and the color of the node indicates the normalized
node strength. Effective connections above the threshold are
represented by three colors to distinguish connections in
different regions, with red for connections within the ipsilesional
hemisphere, blue for connections within the contralesional
hemisphere, and purple for other connections. The thickness
of the edges in the network represents the connection weights
between the corresponding node pairs, and the direction of the
arrow indicates the direction of information flow.

Node Strength
Node strength can be used to measure the importance or
centrality of a node in the weighted network (Barrat et al., 2004).
Its calculation takes into account the information of connection
weights and the number of connections. Node strength is defined
as the sum of inflow and outflowweights from a node (Iakovidou,
2017). The mathematical formulation for node strength is as
follows (De et al., 2008):

Si =
∑

jǫV

wij+
∑

jǫV

wji (8)

Where Si represents the node strength of node i. For a weighted
connection matrix, wij represents the connection weight from
node j to node I, and wji represents the connection weight from
node i to node j. V = 1. . .N is the set of available nodes, and N is
the number of nodes within the network.

Network Density
Network density is defined as the fraction of actual connections
within the network to its possible maximal connections. The
density ranges from 0 to 1, and a smaller value indicates a lower
network density (De et al., 2008). The mathematical formulation
for network density is as follows:

D=
2L

N (N − 1)
(9)

where L is the actual connection in the network and N is the
number of nodes.

Clustering Coefficient
The local clustering coefficient can be used to measure the
neighborhood connectivity, which is defined as the ratio between
the actual number of connections between all neighbor nodes
and the maximal possible number of connections between these
neighbor nodes (Kaiser, 2011). The magnitude of the local
clustering coefficient is between 0 and 1. In an undirected
network, the local clustering coefficient of node i is defined as:

C (i)=
2ti

ki (ki−1)
(10)

where C(i) is the local clustering coefficient of node i, ki is the
degree of node i, ti is the number of triangles around node i. In
a network, triangle is defined as a subgraph with 3 nodes and 3
connections (Jin et al., 2017).

The clustering coefficient of a network is the average of
the local clustering coefficient of all nodes, which is generally
considered to be a measure of the functional separation of brain
networks. For an undirected network, the clustering coefficient is:

C =
1

N

∑

i∈N

C (i) (11)

where N is the number of nodes in a network. In a directed
network, clustering coefficient is:

−→
C=

1

N

∑

iǫN

−→
t i

(

kouti +kini
) (

kouti +kini −1
)

−2
∑

j∈N aijaji
(12)

where
−→
t i is the number of triangles around node i for a directed

network, kouti and kini represent the in-degree and out-degree
of node i, respectively. For a binary connection matrix, aij
represents the connection state between node j and node i, and
a value of 1 indicates that there is a connection, otherwise there
is no connection.

Local Efficiency
Similar to the clustering coefficient, local efficiency can also be
used to characterize the functional separation of brain networks.
It is the mean of efficiencies of the local subgraphs of the
first neighbors of each node i (Vragovi et al., 2005; Stam and
Reijneveld, 2007). In an undirected network, the local efficiency
of the entire network is:

Eloc =
1

N

∑

iǫN

∑

j,h∈N,j6=i,j6=h,i 6=h aijaih
[

djh (Ni)
]−1

ki (ki−1)
(13)

where djh(Ni) is the shortest path length between nodes j and h
(including only adjacencies of i.

For a directed network, the local efficiency is:

−→
E loc =

1

2N

∑

iǫN

∑

j,h∈N ,j 6=i,j 6=h,i 6=h

(

aij + aji
)

(aih + ahi)

(

[−→
d jh (Ni)

]−1
+

[−→
d hj (Ni)

]−1
)

(

kouti +kini
) (

kouti +kini −1
)

−2
∑

j∈N aijaji

(14)
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FIGURE 3 | Schematic diagram of building functional brain networks based on EEG data using graph theory.

Global Efficiency
The global efficiency is the average of inverse shortest path
length (Rubinov and Sporns, 2010; Li et al., 2016; Hossein
et al., 2018), which can be used to characterize the efficiency of

informational exchange across the whole network (Ismail and
Karwowski, 2020). The high global efficiency of a network means
high information integration value (Hossein et al., 2018). For
a directed network, the mathematical formulation for global
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efficiency is as follows:

−→
E glob =

1

N

∑

iǫN

∑

j∈N,j6=i

(−→
d ij

)−1

N − 1
(15)

All the above graph theory measures were calculated based on
the Brain Connectivity Toolbox (BCT) and scripts developed in
Matlab R2020a.

Statistical Analysis
To compare the differences between the experimental group
and the control group before and after intervention, we
conducted the statistical analysis of four graph theory measures.
Shapiro–Wilk tests, which is an appropriate normality test
in case of small sample sizes, were first used to check the
normality of the variables. For variables conforming to
the normal distribution, the paired sample T-tests were
used for intra-group comparison before and after the
intervention. The independent sample T-tests were applied
to the difference between the experimental group and the
control group. For variables that do not follow a normal
distribution, we use non-parametric tests. The paired sample
Wilcoxon signaled rank tests were used to compare the
intra-group differences before and after the intervention.
Mann Whitney U tests were performed between the two
groups to determine whether the difference was statistically
significant. All statistical tests took p < 0.05 as the criterion for
significant differences.

RESULTS

Clinical Scales Results
We performed a statistical analysis of the FMA scores. As
shown in Figure 4, there was no significant difference between
the BCI–FES and FES groups before the intervention. This
result indicates that there was no significant difference in the
initial clinical status between the two groups, excluding the
effect of the patients’ initial condition. After the intervention,
there was no intergroup difference in FMA scores. For within-
group changes, there was a significant difference in FMA scores
in the BCI–FES group before and after the intervention (pre:
19.17 ± 16.62, post: 20.75 ± 16.08, p = 0.008), indicating
a significant improvement in motor function after the BCI
rehabilitation training. However, no significant differences were
found in the FES group before and after the intervention, which
could indicate that the motor function of the patients was not
significantly improved.

Local Effective Connections
We constructed the functional brain networks before and after
the intervention for the two groups within the alpha band
with the threshold set to 0.0085. Figure 5 shows the effective
connections within the two hemispheres of the brain network
of the two groups before and after the intervention. Figure 6
shows the effective connections between the hemispheres in
the brain network of the two groups of patients. The effective

FIGURE 4 | The FMA scores of patients in the two groups before and after the

intervention. Hollow squares represent mean values. *p < 0.05.

connections in the BCI–FES group after the intervention were
much more than those before the intervention. Moreover, the
effective connections within both hemispheres increased after the
intervention, but the increase of effective connections within the
contralesional hemisphere was more. Different from the BCI–
FES group, the number of effective connections in the network
decreased after the intervention in the FES group, and the
number of effective connections within both the hemispheres
decreased. For the average brain network in both groups,
there were more effective connections within the contralesional
hemisphere than within the ipsilesional hemisphere before and
after the intervention. Before the intervention, the FES group had
more effective connections than the BCI–FES group. But after
rehabilitation training, the BCI–FES group had more effective
connections in the brain network than the FES group.

Nodal Metric Results
Figure 7 shows nodes with statistically significant differences in
node strength between and within groups before and after the
intervention. In terms of the node strength of these eight nodes,
after the intervention, the node strength of the BCI–FES group
increased, while the node strength of the FES group decreased.
Before the intervention, the node strength of the FES group was
higher than that of the experimental group, but the situation was
reversed after the intervention.

For the BCI–FES group, statistical analysis showed that the
node strength of C4 in the contralesional sensorimotor cortex
was significantly increased (pre-C4: 0.154± 0.175, post-C4: 0.424
± 0.285, p = 0.035). For the FES group, node strength in the
ipsilesional hemisphere (P3) (pre-P3: 0.23± 0.103, post-P3: 0.169
± 0.131, p= 0.049) and central region (Cz, CPz) (pre-Cz: 0.228±
0.183, post-Cz: 0.125± 0.088, p= 0.029) (pre-CPz: 0.24± 0.157,
post-CPz: 0.126 ± 0.109, p = 0.043) decreased significantly after
rehabilitation training. Differences in node strength between the
two groups after the intervention were compared. It can be found
that the node strength in the contralateral hemisphere (F4, FC4,
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FIGURE 5 | Effective connections within both hemispheres. (A) BCI–FES group before intervention; (B) BCI–FES group after intervention; (C) FES group before

intervention; and (D) FES group after intervention. Gray edges indicate connections below the threshold, red edges represent effective connections within the

ipsilesional hemisphere, blue edges indicate effective connections within the contralesional hemisphere, node size represents node strength, and node color indicates

normalized node strength. The direction of the arrow indicates the direction of information flow.

C4, TP8) (BCI–FES-F4: 0.355 ± 0.191, FES-F4: 0.169 ± 0.156,
p = 0.032) (BCI–FES-FC4: 0.32 ± 0.188, FES-FC4: 0.16 ± 0.088,
p= 0.042) (BCI–FES-C4: 0.424± 0.285, FES-C4: 0.132± 0.077, p
= 0.035) (BCI–FES-TP8: 0.435± 0.252, FES-TP8: 0.229± 0.101,
p = 0.049) and the central region (Cz, CPz) (BCI–FES-Cz: 0.349
± 0.152, FES-Cz: 0.125± 0.088, p= 0.003) (BCI–FES-CPz: 0.337
± 0.173, FES-CPz: 0.126 ± 0.109, p = 0.016) of the BCI–FES
group was significantly higher than that of the FES group.

Global Metric Results
Network Density
Figure 8A shows that the network density of both groups
decreased as the threshold increased. When the threshold value
was constant, the network density of the BCI–FES group
increased after the intervention, while the network density of the
FES group decreased. Comparing the changes between groups,

it can be found that the network density of the FES group was
higher than that of the BCI–FES group before the intervention.
However, after the intervention, the network density of the BCI–
FES group was higher than that of the FES group after the
intervention. The results of the statistical analysis show that there
were no statistically significant differences between and within
groups before and after the intervention.

Clustering Coefficient
Figure 8B shows the clustering coefficients of the BCI–FES
and FES groups before and after the intervention at different
thresholds. Comparing the changes in the mean values of
clustering coefficients before and after the intervention, it can
be found that the BCI–FES group showed an increasing trend,
while the FES group showed a decreasing trend. The differences
in mean clustering coefficients between the two groups were
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FIGURE 6 | Effective connections between hemispheres. (A) BCI–FES group before intervention; (B) BCI–FES group after intervention; (C) FES group before

intervention; and (D) FES group after intervention. Gray edges indicate connections below the threshold, red edges represent effective connections within the

ipsilesional hemisphere, blue edges indicate effective connections within the contralesional hemisphere, node size represents node strength, and node color indicates

normalized node strength. The direction of the arrow indicates the direction of information flow.

compared. It can be found that before the intervention, the
FES group had a higher clustering coefficient, but after the
intervention, the clustering coefficient of the BCI–FES group was
higher than that of the FES group. The comparisons between and
within groups at different thresholds did not show statistically
significant differences.

Local Efficiency
As is shown in Figure 8C, the mean value of the local efficiency of
all subjects after the intervention tended to increase in the BCI–
FES group, with no statistically significant differences. In the
threshold interval, the local efficiency of the FES group showed
a decreasing trend after the intervention, and when the threshold
value was set to 0.0095, the mean value of local efficiency in the
FES group after the intervention was significantly lower than that

before the intervention (pre: 0.651 ± 0.167, post: 0.448 ± 0.238,
p= 0.049).

Comparing the changes between groups, it can be found that
the mean local efficiency of the FES group was higher than that
of the BCI–FES group before the intervention. However, the
mean local efficiency of the BCI–FES group outperformed the
control group after the intervention. There were no statistically
significant differences between the groups before and after
the intervention.

Global Efficiency
Figure 8D shows that within the threshold interval, the mean of
global efficiency of all subjects in the BCI–FES group improved
after the intervention. For the FES group, a decreasing trend
in the mean value of global efficiency of all subjects after
the intervention could be observed. There was no statistically
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FIGURE 7 | Node strength of seven nodes. Solid diamonds indicate outliers. Hollow squares represent mean values. *p < 0.05.

significant differences within the group before and after the
intervention for both of the two groups.

Moreover, the mean values of global efficiency were similar
between the two groups before the intervention. But the global
efficiency of the BCI–FES group was higher than that of the
FES group after the intervention. There were no statistically
significant differences between the two groups before and after
the intervention.

DISCUSSION

Global Alterations of Brain Network
We used four-graph theory measures, including network density,
clustering coefficient, local efficiency, and global efficiency, to
compare and analyze the overall changes in the brain network
of patients with stroke before and after the intervention. After
the intervention, the four measures were higher in the BCI–FES
group than before the intervention, and the opposite changes
were observed in the FES group. In terms of the mean values
of the four measures, the FES group was higher than or similar
to the BCI–FES group before the intervention, but the BCI–
FES group was higher than the FES group after the intervention.
These experimental results suggest that patients in the BCI–
FES group showed positive changes in their brain networks
after the intervention, and these changes were consistent with
the changes in the FMA scores. The FES group did not show
statistically significant differences in FMA scores before and
after the intervention, but the overall network parameters in
the control group tended to decrease after the intervention (no
statistically significant differences).

This change in the FES group was not surprising due
to our experimental design. We recruited subjects who were
elderly patients with chronic stroke with a disease duration
of 1 or 2 years. Usually, 3 or 6 months after stroke, the
recoveries for the patients reach a plateau (Aziz, 2010), as
evidenced by patients becoming more chronic and/or not
responding positively to motor rehabilitation (Page et al., 2004).
Six to twelve months after stroke, the potential for recovery
substantially diminishes according to the conventional clinical
wisdom (Soekadar et al., 2015). Moreover, the chronic phase
of stroke is usually considered to be the terminal stage when
the adaptive regenerative process stops (Barios et al., 2021).
Page et al. (2004) pointed out that a contributing factor to the
plateau in post-stroke rehabilitation is neuromuscular adaptation
to a standardized outpatient exercise regimen. Based on this,
it is understandable that there was no statistically significant
difference in FMA scores before and after the intervention in the
control group. Our experimental results show that FES combined
with conventional rehabilitation training has no significant effect
on the rehabilitation of patients with chronic stroke.

Different from the FES group, the clinical scale results
show that the motor function of patients in the BCI–
FES group was significantly improved. Moreover, the brain
network showed positive changes. The clustering coefficient,
local efficiency, and global efficiency of the BCI–FES group after
intervention were higher than those before intervention. This
result indicates that brain networks of patients with chronic
stroke in the BCI–FES group showed a higher capacity for
separation and integration after the intervention, with relatively
easy information exchange between brain regions. All these
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FIGURE 8 | Global graph theory measures of the brain networks of the two groups before and after the intervention at different thresholds. (A) network density; (B)

clustering coefficient; (C) local efficiency; and (D) global efficiency. Solid diamonds indicate outliers. Hollow squares represent mean values. *p < 0.05.

experimental results demonstrate that BCI–FES intervention
therapy plays an effective and positive role in the recovery
of patients with chronic stroke, which is consistent with the
findings of some previous studies (Broetz et al., 2010; Ramos-
Murguialday et al., 2013; Mukaino et al., 2014). Although
recovery is clinically considered to substantially diminish in
patients with chronic stroke, several recent studies have shown
that non-invasive treatment strategies used for rehabilitation,
including constraint-inducedmovement therapy (CIMT) (Sirtori
et al., 2009), functional stimulation (Biasiucci et al., 2018),
and BCI (Ramos-Murguialday et al., 2013) are effective in the
rehabilitation of chronic stroke. The success of these strategies
suggests that recovery from chronic stroke depends to some
extent on learning and environmental conditions, and the results
of these studies provide evidence for the concept of Page et al.
(2004) that new treatment options can facilitate recovery as well
as overcome neuromuscular adaptations.

Regional Alterations of Brain Network
We compared the changes in node strength and the number
of effective connections within the hemisphere before and after
the intervention in two groups of patients with chronic stroke.

The results show that the node strengths in the contralesional
hemisphere and the central region were significantly higher
in the BCI–FES group than in the FES group after the
intervention. In addition, the number of effective connections in
the contralesional hemisphere increased in the BCI–FES group
and decreased in the FES group after the intervention. The
changes in node strength and number of effective connections
indicated that the functional connectivity in the contralesional
hemisphere was enhanced in the BCI–FES group compared with
the FES group.

After intervention, the node strength and the number of
effective connections in the FES group were both lower than
before the intervention. One possible explanation for this result
is that our subjects were all elderly patients with chronic stroke,
and aging negatively affects brain networks. Since motor function
in the FES group did not improve as significantly as in the
BCI–FES group, the brain network in the FES group did not
show positive changes with the improvement of motor function.
A graph theory-based study of brain networks has shown that
normal aging results in a certain degree of damage to brain
functional networks (Achard and Bullmore, 2007). Based on the
above conclusions and the fact that our subjects were all elderly,
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we speculated that the decrease in brain connections in the FES
group might be caused by normal aging.

One possible explanation for the findings of enhanced
functional connectivity in the contralateral hemisphere in
BCI–FES group of patients with chronic stroke is that the
contralesional hemisphere compensates for the activity of the
ipsilesional hemisphere. The contralateral hemisphere of some
patients with chronic stroke retains compensatory mechanisms
that are absent in others (Barios et al., 2021). It was found
that patients with chronic stroke had increased activation in the
contralesional hemisphere duringmovement of the affected hand
(Christian et al., 2006; Barios et al., 2021). After receiving BCI–
FES intervention, the number of effective connections in the
contralesional hemisphere was higher than that in the ipsilesional
hemisphere in patients with chronic stroke. Furthermore, the
node strength of the C4 node in the contralesional sensorimotor
cortical area was significantly enhanced. This result suggests
that nodes in the contralesional hemispheric sensorimotor area
of patients with chronic stroke are more important in the
transmission of information throughout the brain network
after receiving BCI–FES rehabilitation training compared to
before the intervention. After the intervention, the activation
of the contralesional hemisphere was increased in the BCI–
FES group. But patients with chronic stroke treated with the
FES intervention did not show this increased activation of
the contralesional hemisphere. Therefore, we believe that the
increased activation of the contralesional hemisphere in the BCI–
FES groupmay be caused by the BCI–FES rehabilitation training.
Similarly, Sun et al. (2017) found that BCI rehabilitation resulted
in a significant increase in EEG fApEn in the central region of
the contralesional hemisphere in patients with chronic stroke.
Previous studies have shown that changes in the activity of
the contralesional hemisphere in patients with chronic stroke
are associated with functional recovery (Barios et al., 2021).
Patients with chronic stroke who received BCI–FES intervention
had significantly improved motor function. However, the motor
function of patients with chronic stroke in the FES group did
not improve significantly. Based on this, we speculate that the
improved motor function in the BCI–FES group may be related
to the increased activation of the contralesional hemisphere. The
results of a previous study also suggest that BCI rehabilitation
can exploit the plasticity of the contralesional corticospinal
tracts to change them from a deleterious to a compensatory
effect (Young et al., 2016). Activation of the contralateral
hemisphere is increased, and compensatory action leads to
improved motor function. In conclusion, we suggest that BCI–
FES rehabilitation training played a role in inducing increased
activation of the contralesional hemisphere and facilitating the
activity of the contralesional hemisphere to compensate for the
affected hemisphere.

Conclusion
For chronic stroke prognosis, BCI combined with external
devices may be more effective than traditional rehabilitation
strategies, but it is lacks a comprehensive assessment of
neurological changes associated with functional rehabilitation.
In this study, we used EEG-based brain network analysis to

comprehensively and quantitatively investigate the changes in
brain activity of patients with chronic stroke induced by BCI–
FES rehabilitation training. The clinical scale results show
that the patients’ FMA scores improved significantly after
BCI–FES rehabilitation training. Also, according to the graph
theory analysis, both the functional integration and functional
separation of the brain network of the patients in the BCI–FES
group were improved. These findings demonstrate that BCI–FES
rehabilitation training can effectively improve motor function in
patients with chronic stroke, which is consistent with previous
studies. In addition, we also found that the node strength in
the contralesional hemisphere was significantly higher in BCI–
FES patients than in the FES group. The increased importance
of the contralesional hemisphere in network information
transmission suggests that BCI–FES rehabilitation training may
promote compensatory activity in the contralesional hemisphere.
In conclusion, the findings of our study demonstrate the
effectiveness of BCI–FES rehabilitation training in the prognosis
of patients with chronic stroke. It is also pointed out that
BCI–FES rehabilitation training improves the efficiency of
brain network information transmission and promotes the
compensatory effect of the contralesional hemisphere.

Our study provides a new perspective for a comprehensive
assessment of changes in brain activity induced by BCI–FES
rehabilitation training. However, due to the limited number
of EEG samples, the statistical analysis of some graph theory
measures did not show significant differences. Future studies
need to evaluate more patients with chronic stroke to validate the
conclusions of this study.
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