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Abstract

Background: Although human leukocyte antigen (HLA) genotyping based on amplicon, whole exome sequence
(WES), and RNA sequence data has been achieved in recent years, accurate genotyping from whole genome
sequence (WGS) data remains a challenge due to the low depth. Furthermore, there is no method to identify the
sequences of unknown HLA types not registered in HLA databases.

Results: We developed a Bayesian model, called ALPHLARD, that collects reads potentially generated from HLA
genes and accurately determines a pair of HLA types for each of HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, and -DRB1
genes at 3rd field resolution. Furthermore, ALPHLARD can detect rare germline variants not stored in HLA databases
and call somatic mutations from paired normal and tumor sequence data. We illustrate the capability of ALPHLARD
using 253 WES data and 25 WGS data from Illumina platforms. By comparing the results of HLA genotyping from SBT
and amplicon sequencing methods, ALPHLARD achieved 98.8% for WES data and 98.5% for WGS data at 2nd field
resolution. We also detected three somatic point mutations and one case of loss of heterozygosity in the HLA genes
from the WGS data.

Conclusions: ALPHLARD showed good performance for HLA genotyping even from low-coverage data. It also has a
potential to detect rare germline variants and somatic mutations in HLA genes. It would help to fill in the current gaps
in HLA reference databases and unveil the immunological significance of somatic mutations identified in HLA genes.

Keywords: HLA genotyping, Next generation sequencing, Whole genome sequencing, Whole exome sequencing,
Cancer immunogenomics, Bayesian hierarchical model, Markov chain Monte Carlo

Background
Human leukocyte antigen (HLA) genes play a key role
in immunological responses by presenting peptides to
T cells. It is well known that HLA loci are highly poly-
morphic, and the polymorphism patterns define several
thousands of types within HLA genes. HLA genotyp-
ing is a process that determines a pair of HLA types
for an HLA gene. Since the relationships between HLA
types and diseases have now been intensively investigated
[1–5], HLA genotyping is considered as a fundamental
step in immunological analysis. Further analysis enables
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us to identify novel HLA types and detect somatic muta-
tions, which potentially affect the efficacy of immune
therapy.
Recently, next generation sequencing-based approaches

have been developed for HLA genotyping. These can
be generally separated into two categories: those based
on amplicon sequencing of HLA loci [6, 7] and others
based on unbiased sequencing methods such as whole
exome sequencing (WES) and RNA sequencing (RNA-
seq) [8–15]. The amplicon sequencing-based methods
are the most accurate owing to the sufficient coverage
of sequence data, but are relatively expensive to per-
form and require specialized materials and equipment.
The unbiased sequencing ones can be used without addi-
tional costs, but the accuracy of the results depends on
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the amount and quality of sequence reads generated from
HLA loci. Previous papers have shown that the accu-
racy can reach 95% at 2nd field resolution from WES
and RNA-seq data [10, 12, 13, 15] However, Bauer et
al. has reported that these methods cannot achieve 80%
accuracy from whole genome sequence (WGS) data [16].
Thus, HLA genotyping from WGS data remains a sig-
nificant challenge, although this approach would provide
more information of HLA loci than possible with WES
and RNA-seq data, including details of the non-coding
regions such as the introns and the untranslated regions.
To achieve high accuracy for WGS-based HLA geno-

typing and further analysis of HLA genes, we developed
a series of computational methods, which involve collec-
tion of sequence reads that are potentially generated from
a target HLA gene followed by HLA genotyping, using a
novel Bayesian model termed ALelle Prediction in HLA
Regions from sequence Data (ALPHLARD). This model
was found to yield comparable accuracy to those based on
WES and RNA-seq data at 3rd field resolution. Together
with HLA genotyping, a notable feature of ALPHLARD
is that it can estimate the personal HLA sequences of the
sample. This enables achieving high accuracy for a sam-
ple whose HLA sequence is not included in the reference
databases and further allows for calling rare germline
variants not stored in the databases. We can also detect
somatic mutations by comparing the HLA sequences of
paired normal and tumor sequence data.

We illustrate the capability of our method by compar-
ing the performance of ALPHLARD and existing methods
usingWES data from 253HapMap samples andWGS data
from the normal samples of 25 cancer patients. We also
applied ALPHLARD to WGS data of the tumor samples
of the cancer patients and detected three somatic point
mutations and one case of loss of heterozygosity (LOH) in
the HLA genes, which were validated by the Trusight HLA
Sequencing Panels [17] and the Sanger sequencing.

Methods
Overview of our pipeline
Our pipeline consists of two steps as shown in Fig. 1. First,
for each read and each HLA type, the HLA read score (HR
score) is calculated, which quantifies the likelihood that
the read comes from the HLA type. Based on the calcu-
lated HR scores, it is determined whether or not the read
comes from a certain HLA gene. For example, by align-
ing read x to the reference sequences in HLA databases,
we obtained the HR scores as shown in the bar graph of
Fig. 1a. Then, if the maximum HR score for the HLA-A
gene is large enough and the difference in the maximum
scores for the HLA-A gene and the other HLA genes is
also large, we conclude that read x is most likely a specific
read of the HLA-A gene. Otherwise, read x is judged to
be a read produced from other regions. HLA genotyping
is then performed using the collected reads for each HLA
gene, as shown in Fig. 1b. ALPHLARD outputs candidate

Fig. 1 Schematic overview of ALPHLARD: a For each read and each HLA type, the HLA read score (HR score) is calculated, which quantifies the
likelihood that the read comes from the HLA type. Based on the calculated HR scores, it is determined whether or not the read comes from a certain
HLA gene. b For each read and each HLA type, the HLA read score (HR score) is calculated, which quantifies the likelihood that the read comes from
the HLA type. Based on the calculated HR scores, it is determined whether or not the read comes from a certain HLA gene
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pairs of HLA types according to the Bayesian posterior
probabilities.

HLA reference data
We used HLA reference information that can be obtained
from the IPD-IMGT/HLA database (release 3.28.0) [18].
There are two types of HLA reference sequences in the
database: one is a complete genomic reference and the
other is an exonic reference without non-coding regions.
Some HLA types have both genomic and exonic refer-
ence information, but most HLA types have only exonic
reference information.
The database also provides multiple sequence align-

ments (MSAs) at the genomic and the exonic lev-
els for each HLA gene. We combined the two MSAs
into a common MSA as follows: First, some gaps were
inserted into exons of the genomic MSA for consis-
tency with the exonic reference sequences. Then, miss-
ing non-coding sequences were replaced with the most
similar genomic reference sequences. This integrated
MSA is then used for alignment and realignment of
the reads.

Collection and realignment of reads
First, all reads are mapped to a human reference genome,
and reads mapped to the HLA region and unmapped
reads are used at the next step. We use hg19 [19] as
the reference sequence and define the HLA region as
chr6:28,477,797-33,448,354, which covers HLA-A, -B, -C,
-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1 genes.
Next, the filtered reads are mapped to all HLA genomic

and exonic reference sequences. We use BWA-MEM (ver-
sion 0.7.10) [20] with the -a option to output all found
alignments. Then, each mapped read is filtered based on
whether or not it is likely to be produced by the target
HLA gene. This filtering is performed according to the
HR score si,j for the ith read xi and the jth HLA type tj,
which is similar to the filtering procedure used in HLAfor-
est [11]. If xi is not aligned to tj, si,j is −∞. Otherwise, let
(x̃i,j, t̃i,j) be the alignment of xi and tj, which might include
some gaps. x̃i,j,n and t̃i,j,n are defined as the nth bases or
gaps of x̃i,j and t̃i,j, respectively, and b̃i,j,n is defined as the
base quality of x̃i,j,n. We suppose that p̃i,j,n is the proba-
bility of a mismatch between x̃i,j,n and t̃i,j,n, which can be
calculated by

p̃i,j,n = 10− b̃i,j,n
10 .

Then, the HR score si,j is given by

si,j =
∑

n

(
α̃i,j,n + β̃i,j,n

)
,

where

α̃i,j,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log( p̃i,j,n3 ) (if x̃i,j,n, t̃i,j,n ∈ B and x̃i,j,n �= t̃i,j,n)
αd,o (if x̃i,j,n = - and x̃i,j,n−1 �= -)
αd,e (if x̃i,j,n = - and x̃i,j,n−1 = -)
αi,o (if t̃i,j,n = - and t̃i,j,n−1 �= -)
αi,e (if t̃i,j,n = - and t̃i,j,n−1 = -)

αN

(
if x̃i,j,n = N and t̃i,j,n ∈ BN

or x̃i,j,n ∈ BN and t̃i,j,n = N

)

0 (otherwise)

,

β̃i,j,n =
{

β (if x̃i,j,n ∈ BN)
0 (otherwise)

.

Here, B = {A,C,G,T} and BN = {A,C,G,T,N}. The param-
eters αd,o, αd,e, αi,o, αi,e, and αN take negative values
as penalties for opening a deletion, extending a deletion,
opening an insertion, extending an insertion, and N in the
read or the HLA type, respectively. β is a positive constant
reward for read length, which prefers longer reads. Then,
the score of xi for the target HLA gene s∗i , and the score of
xi for the non-target HLA genes s̄∗i are defined by

s∗i = max
tj∈T

si,j, s̄∗i = max
tj /∈T

si,j,

where T is the set of HLA types in the target HLA gene. s∗i
and s̄∗i indicate how likely xi is to be produced by the target
HLA gene and the non-target HLA genes, respectively.
Thus, when xi is an unpaired read, it is used for HLA

genotyping if

s∗i > θu,m, s∗i − s̄∗i > θu,d ,

where θu,m and θu,d are constant thresholds. When xi and
xi′ are paired, they are used for HLA genotyping if

s∗i + s∗i′ > θp,m,
(
s∗i + s∗i′

) − (
s̄∗i + s̄∗i′

)
> θp,d ,

where θp,m and θp,d are constant thresholds. Paired reads
are generally more effective than unpaired reads; hence,
θp,m and θp,d should be less than θu,m and θu,d, respec-
tively.
In the next step, all of the collected reads are realigned

as follows. First, tj∗ is defined as the best type for xi in the
target gene, which is obtained by

j∗ = argmax
j:tj∈T

si,j.

Then, xi is realigned to be consistent with the alignment(
x̃i,j∗ , t̃i,j∗

)
and the integratedMSA of the target HLA gene.

Bayesian model for analyzing HLA genes
Analysis of the target HLA gene by ALPHLARD is per-
formed using the collected and realigned reads. Let x̂i be
the ith paired (or unpaired) read(s) collected and realigned
with the previous procedure, x̂i,n be the nth base or gap of
x̂i, and b̂i,n be the base quality of x̂i,n. Note that, hereafter,



Hayashi et al. BMC Genomics          (2018) 19:790 Page 4 of 11

we regard paired reads as one sequence. The probability
of mismatch p̂i,n can be calculated by

p̂i,n = 10− b̂i,n
10 .

Suppose that Rr
1 and R

r
2 are the HLA types of the sample,

and that Sr1 and S
r
2 are the true HLA sequences of the sam-

ple, which are introduced because the HLA sequences of
the sample might not be registered in the reference (IPD-
IMGT/HLA) database. Let Rd

1 ,R
d
2 , ..., be decoy HLA types

and Sd1 , S
d
2 , ..., be decoy HLA sequences. These param-

eters could make this HLA analysis robust when reads
from non-target homologous regions are misclassified
into the target HLA gene at the previous filtering step. We
will sometimes use R1,R2,R3,R4, ..., and S1, S2, S3, S4, ...,
instead of Rr

1,R
r
2,R

d
1 ,R

d
2 , ..., and Sr1, S

r
2, S

d
1 , S

d
2 , ..., for con-

venience. Ii is defined as a parameter to indicate which
sequence produced the read x̂i; that is, Ii = k means that
x̂i was generated from Sk . Then, the posterior probability
of the parameters p(R,S , I|X̂) is given by

p
(
R,S , I|X̂

)
∝ p

(
X̂|S ,I

)
p (R,S) p (I) ,

where X̂ = {
x̂1, x̂2, ...

}
, R = {R1,R2, ..., }, S = {S1, S2, ..., },

and I = {I1, I2, ...}.
The likelihood function p

(
X̂|S , I

)
is defined by

p
(
X̂|S ,I

)
=

∏

i
p

(
x̂i|SIi

)
.

The likelihood of each read p(x̂i|Sk) is given by

p
(
x̂i|Sk

) =
∏

n
p

(
x̂i,n|Sk,n

)
,

where Sk,n is the nth base or gap of Sk . The likelihood of
each base p

(
x̂i,n|Sk,n

)
is calculated by

p(x̂i,n|Sk,n∈B)

=

⎧
⎪⎪⎨

⎪⎪⎩

(1−γ d)(1−γ N)(1−p̂i,n) (if x̂i,n=Sk,n)
(1−γ d)(1−γ N)

p̂i,n
3 (if x̂i,n∈B and x̂i,n �=Sk,n)

(1−γ d)γ N (if x̂i,n=N)
γ d (if x̂i,n=-)

,

p(x̂i,n|Sk,n=N)

=
⎧
⎨

⎩

(1−γ d)(1−γ N) 14 (if x̂i,n∈B)
(1−γ d)γ N (if x̂i,n=N)
γ d (if x̂i,n=-)

,

p(x̂i,n|Sk,n=-)

=
⎧
⎨

⎩

γ i(1−γ N) 14 (if x̂i,n∈B)
γ iγ N (if x̂i,n=N)
1−γ i (if x̂i,n=-)

.

Here, γ d, γ i, and γ N are the probabilities of a deletion
error, an insertion error, and N, respectively.

The prior probability of the HLA types and the HLA
sequences p(R,S) is defined by

p (R,S) =
∏

k
p (Rk) p (Sk|Rk) .

Here, p(Rr
k) is the prior probability of the HLA type, which

is calculated using The Allele Frequency Net Database
[21]. On the other hand, p(Rd

k ) is the prior probability of
the decoy HLA type, which we assume as constant. The
prior probability of the HLA sequence p(Sk|Rk) is given by

p (Sk|Rk) =
∏

n
p

(
Sk,n|Rk,n

)
,

where and Rk,n is the nth base or gap of Rk in the integrated
MSA. The probability of a germline variant p(Sk,n|Rk,n) is
calculated by

p(Sk,n|Rk,n∈B)

=

⎧
⎪⎪⎨

⎪⎪⎩

(1−δd)(1−δN)(1−δs) (if Sk,n=Rk,n)
(1−δd)(1−δN) δs

3 (if Sk,n∈B and Sk,n �=Rk,n)
(1−δd)δN (if Sk,n=N)
δd (if Sk,n=-)

,

p(Sk,n|Rk,n=N)

=
⎧
⎨

⎩

(1−δd)(1−δN) 14 (if Sk,n∈B)
(1−δd)δN (if Sk,n=N)
δd (if Sk,n=-)

,

p(Sk,n|Rk,n=-)

=
⎧
⎨

⎩

δi(1−δN) 14 (if Sk,n∈B)
δiδN (if Sk,n=N)
1−δi (if Sk,n=-)

.

Here, δs, δd, δi, and δN are the probabilities of a true
substitution, a true deletion, a true insertion, and a true N,
respectively. Also, different values are used as these hyper-
parameters depending on whether Rk,n was imputed from
the most similar reference base, which reduces the influ-
ence of misimputations. Sk,n tends to become N when it is
ambiguous.
The prior probability of the indicator variables p(I) is

defined by

p(I) =
∏

i
p(Ii)

Here, p(Ii) is the prior probability of the indicator variable,
which is calculated by

p(Ii) ∝
{
1 (if Ii = 1 or Ii = 2)
ε (otherwise)

.

ε reflects how likely the reads are to be produced by non-
target homologous regions.
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Efficient sampling with elaborate MCMC schemes
The parameters of the model above are sampled using
two Markov chain Monte Carlo (MCMC) schemes, Gibbs
sampling and the Metropolis-Hastings algorithm, with
parallel tempering to make the parameter sampling effi-
cient. Gibbs sampling is mainly used for local search,
andMetropolis-Hastings sampling is periodically used for
more global search. For the Metropolis-Hastings algo-
rithm, we constructed two novel proposal distributions
that enable the parameters to jump from mode to mode
and lead more efficient sampling.
One of the proposal distributions is focused on positions

not covered with any read. First, SNk is defined as a mod-
ified HLA sequence whose bases are replaced with Ns at
positions not covered with any read produced by Sk , which
is given by

SNk,n =
{
Sk,n (if ∃i; Ii = k and x̂i covers the nth base of Sk)
N (otherwise) .

A candidate HLA type and a candidate HLA sequence are
then sampled based on

R∗
k ∼ p

(
R∗
k |SNk

)
,

S∗
k ∼ p

(
S∗
k |R∗

k , I , X̂
)
.

Then, the acceptance rate r can be calculated based on the
Metropolis-Hastings algorithm, which is given by

r = min
(
1, r∗

)
,

r∗ =
p

(
R∗
k , S

∗
k |I , X̂

)
p

(
R∗
k , S

∗
k → Rk , Sk|I , X̂

)

p
(
Rk , Sk|I , X̂

)
p

(
Rk , Sk → R∗

k , S
∗
k |I , X̂

)

=
p

(
SNk |Rk

) ∑
S p

(
X̂|S,I

)
p

(
S|R∗

k
)

p
(
SNk |R∗

k
) ∑

S p
(
X̂|S,I

)
p (S|Rk)

.

This proposal distribution makes the sampling more effi-
cient when there is ambiguity in the HLA types attributed
to some uncovered positions. For example, let tj and tj′
be HLA types that only differ with one mismatch at the
nth position. If a sample has tj as an HLA type but there
are no reads from tj covering the nth position, we can-
not determine whether the HLA type is tj or tj′ . However,
once Rk becomes tj′ , Sk,n becomes the nth base of tj′ with
high probability. Then, Rk becomes tj′ with high probabil-
ity, and this process is repeated. This is because Rk and Sk
are separately sampled in the Gibbs sampling in spite of
their high correlation. Thus, the proposal distribution pre-
vents the parameters from getting stuck by sampling them
simultaneously.
The other proposal distribution swaps non-decoy and

decoy parameters. In this proposal distribution, indices
for non-decoy and decoy parameters are uniformly sam-
pled, and the HLA types and the HLA sequences at the

indices are swapped. After swapping, candidate indicator
variables are sampled based on the conditional distribu-
tion given the swapped parameters. Suppose that R∗ and
S∗ are HLA types andHLA sequences after swapping, and
that I∗ is a set of candidate indicator variables. Then, the
acceptance rate r can be calculated by

r = min
(
1, r∗

)
,

r∗ =
p

(
R∗,S∗, I∗|X̂

)
p

(
R∗,S∗, I∗ → R,S , I|X̂

)

p
(
R,S , I|X̂

)
p

(
R,S , I → R∗,S∗,I∗|X̂

)

=
p (R∗)

∑
I p

(
X̂|S∗, I

)
p (I)

p (R)
∑

I p
(
X̂|S , I

)
p (I)

.

This proposal distribution enables quickly distinguishing
reads from the target HLA gene and non-target homolo-
gous regions.
Some procedures are used in the burn-in period to avoid

getting stuck in local optima. At the beginning of sam-
pling, a multi-start strategy is used to reduce the influence
of initial parameters. Specifically, some MCMC runs are
carried out, and initial parameters are sampled from the
last parameters of the MCMC runs. In addition, reference
sequences are periodically copied to HLA sequences in
the burn-in period. This works well to get better param-
eters because there are many local optima where the
parameters of the HLA sequences are twisted as if some
crossovers occurred. Although these two approaches do
not satisfy the detailed balance condition, since they are
carried out only in the burn-in period, sampled parame-
ters correctly reflect the posterior distribution.
After sampling the parameters, HLA genotyping can

be performed by counting Rr
1 and Rr

2. We used the most
sampled HLA genotype in the MCMC process as the
candidate. The HLA sequences of a sample can be also
inferred by counting Sr1 and Sr2. Even though misimputa-
tions in HLA reference sequences can cause mistyping,
the HLA sequence can still be determined correctly, and
the misimputations and the mistyping can be corrected.

Results
WES andWGS datasets
To evaluate the capability of our method, we obtained 253
WES data with the HLA genotypes from the International
HapMap Project [22] that had been used by Szolek et al.
[13] and Shukla et al. [15]. We further downsampled these
data to 1/2, 1/4, 1/8, and 1/16 to simulate low-coverage
data.
We also used paired normal and tumor WGS data of

25 Japanese cancer patients, including 20 liver cancer
and 5microsatellite-unstable colon cancer samples. These
data were obtained from an Illumina HiSeq system with
a 101-bp pair-end read length. The sequence data were
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deposited into the International Cancer Genome Consor-
tium (ICGC) database (https://dcc.icgc.org/).
The sequencing-based typing (SBT) approach, which is

guaranteed to be accurate at 2nd field resolution, was used
for validation of the 20 liver cancer samples. Additional
HLA genotyping using the TruSight HLA Sequencing
Panels, which are theoretically guaranteed to be accurate
at full (4th field) resolution, was performed for 7 out of
the above 20 liver cancer samples to reduce ambiguity of
the SBT genotyping. The 5 microsatellite-unstable sam-
ples were genotyped using the TruSight HLA Sequencing
Panels, in order to verify not only the HLA genotypes
but also the presence of somatic mutations. We regarded
the results of the SBT approach and/or the TruSight
HLA Sequencing Panels as the correct information. If the
results differed between the two methods, we assumed
that the result of the TruSight HLA Sequencing Panel was
correct.

WES- andWGS-based HLA genotyping
For performance comparison, we used three existing
methods, OptiType [13], PHLAT [12], and HLA-VBSeq
[14] because it has been reported that they achieve the
highest accuracy for WES- and WGS-based HLA geno-
typing [16]. First, we applied ALPHLARD and the existing
methods to the original and the downsampled WES data
(Additional file 1: Tables S1-S5). Because the gold stan-
dard HLA genotypes were determined from exon 2 and
3, we used only the exons as the reference sequences
in ALPHLARD. Figure 2 shows the performance of the

methods. ALPHLARD kept higher accuracy compared
with the other methods even when the downsampling
ratio was low. The accuracy of the existing methods was
consistent with the preceding paper [16].
We also applied the methods to the normal WGS data

and compared the determined HLA genotypes with those
obtained by the SBT approach and the TruSight HLA
Sequencing Panel (Additional file 2: Tables S6-S13). The
performance of the four methods is shown in Table 1 and
Additional file 3: Table S14. ALPHLARD clearly achieved
a higher accuracy rate than the other methods. More-
over, the HLA-B genotype of one sample was inferred
differently between the SBT approach and the TruSight
HLA Sequencing Panel, and the result of ALPHLARD for
this sample was identical to that of the TruSight HLA
Sequencing Panel. This suggests that ALPHLARD could
be potentially superior to the SBT approach in some cases.
HLA-VBSeq achieved higher accuracy from the WGS
data than from the WES data. This would be because
HLA-VBSeq uses non-coding information such as the
introns and the untranslated regions. The accuracy of
the existing methods was consistent with the preceding
paper [16].

Detection of somatic mutations
Next, we searched for somatic pointmutations in the HLA
genes. They were detected by comparing the inferred
HLA sequences between paired normal and tumor sam-
ples of each patient. We detected three somatic point
mutations in the microsatellite-unstable samples: two

Fig. 2WES-based HLA genotyping of ALPHLARD, OptiType, PHLAT, and HLA-VBSeq. Each WES data was downsampled to 1/2, 1/4, 1/8, and 1/16,
and the four methods were applied to all of the original and the downsampled WES data

https://dcc.icgc.org/
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Table 1 WGS-based HLA genotyping accuracy that indicates how many HLA types were correctly determined with ALPHLARD,
OptiType, PHLAT, and HLA-VBSeq

ALPHLARD OptiType PHLAT HLA-VBSeq

HLA-A 1st 100% (50/50) 100% (50/50) 76.0% (38/50) 96.0% (48/50)

2nd 98.0% (49/50) 98.0% (49/50) 60.0% (30/50) 82.0% (41/50)

3rd 98.0% (49/50) N/A 46.0% (23/50) 82.0% (41/50)

HLA-B 1st 100% (48/48) 87.5% (42/48) 72.9% (35/48) 89.6% (43/48)

2nd 100% (48/48) 85.4% (41/48) 56.3% (27/48) 75.0% (36/48)

3rd 95.8% (46/48) N/A 39.6% (19/48) 72.9% (35/48)

HLA-C 1st 100% (50/50) 100% (50/50) 78.0% (39/50) 96.0% (48/50)

2nd 98.0% (49/50) 94.0% (47/50) 56.0% (28/50) 66.0% (33/50)

3rd 98.0% (49/50) N/A 44.0% (22/50) 66.0% (33/50)

HLA-DPA1 1st 100% (24/24) N/A N/A 87.5% (21/24)

2nd 100% (24/24) N/A N/A 87.5% (21/24)

3rd 100% (24/24) N/A N/A 87.5% (21/24)

HLA-DPB1 1st 100% (22/22) N/A N/A 86.4% (19/22)

2nd 100% (22/22) N/A N/A 86.4% (19/22)

3rd 100% (22/22) N/A N/A 86.4% (19/22)

HLA-DQA1 1st 100% (24/24) N/A 70.8% (17/24) 100% (24/24)

2nd 95.8% (23/24) N/A 62.5% (15/24) 95.8% (23/24)

3rd 95.8% (23/24) N/A 62.5% (15/24) 95.8% (23/24)

HLA-DQB1 1st 100% (18/18) N/A 77.8% (14/18) 100% (18/18)

2nd 94.4% (17/18) N/A 61.1% (11/18) 88.9% (16/18)

3rd 94.4% (17/18) N/A 38.9% (7/18) 88.9% (16/18)

HLA-DRB1 1st 100% (24/24) N/A 70.8% (17/24) 95.8% (23/24)

2nd 100% (24/24) N/A 50.0% (12/24) 58.3% (14/24)

3rd 100% (24/24) N/A 45.8% (11/24) 58.3% (14/24)

Total 1st 100% (260/260) 95.9% (142/148) 74.8% (160/214) 93.8% (244/260)

2nd 98.5% (256/260) 92.6% (137/148) 57.5% (123/214) 78.1% (203/260)

3rd 97.7% (254/260) N/A 45.3% (97/214) 77.7% (202/260)

N/A indicates that the method does not support the HLA gene or the resolution

single-base deletions and one single-base insertion (Fig. 3
and Additional file 4: Figures S1 and S2). One of the dele-
tions occurred in a homopolymeric region in exon 1 of the
HLA-A gene, and the other occurred in a homopolymeric
region in exon 1 of the HLA-B gene. Both of these muta-
tions caused a frameshift, leading to an early stop codon
and ultimate loss of function of the HLA allele. It is known
that the HLA-A and HLA-B genes are homologous, and
we found that the two deletions occurred at homologously
the same position. Moreover, one of the HLA-A types
(A*68:11N) has a single-base deletion at exactly the same
homopolymeric position. These observations suggest that
the homopolymeric regions are deletion hotspots. The
insertion occurred in a homopolymeric region at the
beginning of exon 4 of the HLA-A gene, which changed

the HLA-A allele from A*31:01:02 to A*31:14N. This
region is known as an insertion hotspot in some HLA
types such as A*01:04N and B*51:11N, and the insertion
causes no expression of the allele [23–26]. The three indels
identified were validated by the TruSight HLA Sequencing
Panels and the Sanger sequencing.
We further sought cases of LOH in the HLA genes

as follows. First, we focused on two types of patients:
(i) those for which HLA genotypes were uniquely
determined for the normal sample but not for the tumor
sample, and (ii) those for which HLA genotypes of both
the normal and the tumor samples were uniquely but not
identically determined. Then, we checked whether the
collected reads of the tumor sample supported the HLA
genotype inferred for the normal sample.



Hayashi et al. BMC Genomics          (2018) 19:790 Page 8 of 11

a

b

Fig. 3 A single-base deletion in exon 1 of the HLA-B gene of patient RK363. IGV screenshots were taken at the position for a the WGS data and b the
TruSight HLA Sequencing Panel data. In each of the screenshots, the upper and lower tracks correspond to the normal and tumor samples,
respectively

We next checked the influence of misimputations in
HLA reference sequences. The HLA types of the used
samples had complete genomic references, and hence had

no imputed bases. Therefore, in each sample, we made
artificial misimputations to the reference sequences of the
true HLA types by replacing one base at a SNP position
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with another variant of a similar HLA reference sequence.
This replacement possibly has a large effect to HLA geno-
typing.We applied ALPHLARD to theWES and theWGS
data using the misimputed references. The accuracy was
85.3% for the WES data and 80.4% for the WGS data
at 2nd field resolution, which implies ALPHLARD has
the capability of accurate HLA genotyping even if there

occurred misimputations in HLA reference sequences.
We note that this problem could be solved as the HLA
reference database becomes complete.
We were able to detect one likely case of LOH in the

tumor sample of a patient, RK069. At each heterozygous
single nucleotide polymorphism (SNP) position in each
HLA locus, the log odds ratio was calculated for the WGS

a

b

Fig. 4 The log odds ratios of the depths at heterozygous SNP positions in the HLA-A gene of patient RK069. The log odds ratios were calculated for
a the WGS data and b the TruSight HLA Sequencing Panel data. These log odds ratios correspond to the relative quantities of observed A*26:01:01
SNPs in the tumor sample compared with the normal sample. The red dots indicate the mean values of the log odds ratios, and the vertical lines
indicate the 95% confidence intervals
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data and the Trusight HLA Sequencing Panels based on
the number of reads that supported the SNP (Fig. 4 and
Additional file 5: Figures S3-S7). These figures suggest
that A*26:01:01, B*35:01:01, C*03:03:01, DPA1*01:03:01,
DQA1*03:02, and DRB1*12:01:01 might be lost in the
tumor sample of RK069.

Discussion
In this paper, we presented a new Bayesian method,
ALPHLARD, which performs not only HLA genotyping
but also infer the HLA sequences of a sample. The results
showed that our method ALPHLARD achieved higher
accuracy for HLA genotyping from both WES and WGS
data than existing methods. We presume that the high
performance of ALPHLARDoriginates from the following
reasons. First, the search space of ALPHLARD is all pos-
sible HLA allele pairs. Some methods treat an HLA allele
pair as two independent HLA alleles; that is they give a
score to each HLA allele and output the most and the sec-
ond most probable HLA alleles without directly consid-
ering the combinations. This approximation reduces the
computation time but works well only when the coverage
of the sequence data is sufficient. Therefore, such meth-
ods would not achieve high accuracy for HLA genotyping
from WGS data. Second, ALPHLARD takes into account
whether or not bases and gaps are observed at each
position by inserting the parameters for HLA sequences
between the parameters for HLA genotypes and collected
reads. Most of read count-based HLA genotyping algo-
rithms consider only the number of reads mapped to each
HLA allele. However, even if a lot of reads are mapped to
an HLA allele, it does not seem to be the true HLA type
if there are several regions not covered by any read. We
believe that what is really important is not the number
of reads but the range covered by sufficient reads. Third,
ALPHLARD uses some decoy parameters in addition to
non-decoy ones. This is why ALPHLARD can robustly
and accurately perform HLA genotyping even if there
exist some reads from non-target homologous regions
that are similar to the target HLA gene.
Besides HLA genotypes, ALPHLARD gives us beneficial

information that cannot be obtained from other meth-
ods. First, somatic mutations such as point mutations
and LOHs can be detected by comparing the sampled
HLA sequences of paired normal and tumor samples. We
detected three indels and one case of LOH, which lead to
loss of function of the HLA alleles. These mutations are
biologically important because they weaken the immune
function and would be related to tumor progression. Sec-
ond, novel HLA types not registered in HLA databases
can be identified by comparing the inferred HLA geno-
type and HLA sequences. Unfortunately, no novel HLA
type was observed in our analysis. However, ALPHLARD
would be flexible enough to detect the difference between

novel HLA types and known ones because the process of
novel HLA type identification is theoretically the same as
that of HLA somatic mutation detection.
Although ALPHLARD performed better HLA genotyp-

ing than other existingmethods, its accuracy would not be
sufficient for clinical applications including hematopoietic
stem cell transplantation. However, ALPHLARD could be
a effective tool in combination with other methods such
as SBT since the sample might have a novel HLA type.

Conclusion
Our new Bayesian-based HLA analysis method,
ALPHLARD, showed good performance for HLA geno-
typing. It also has a potential to detect rare germline
variants and somatic mutations in HLA genes. A large
amount of WGS data has been recently produced by
big projects such as the ICGC. Applying our method to
such big data would help to fill in the current gaps in
HLA reference databases and unveil the immunological
significance of somatic mutations identified in HLA
genes.

Additional files

Additional file 1: Tables S1-S5. The validated HLA genotypes and the
results of ALPHLARD, OptiType, and PHLAT from 253 HapMap WES data.
(XLSX 218 kb)

Additional file 2: Tables S6-S13. The validated HLA genotypes and the
results of ALPHLARD, OptiType, and PHLAT from 25 WGS data. (XLSX 31 kb)

Additional file 3: Table S14.WGS-based HLA genotyping accuracy that
indicates how many samples were fully correctly genotyped with
ALPHLARD, OptiType, PHLAT, and HLA-VBSeq. (PDF 11 kb)

Additional file 4: Figures S1 and S2. Somatic point mutations in
microsatellite-unstable colon cancer samples. (PDF 291 kb)

Additional file 5: Figures S3-S7. Log odds ratios of the depths of
heterozygous HLA SNPs in a liver cancer sample. (PDF 104 kb)

Abbreviations
HLA: Human leukocyte antigen; LOH: Loss of heterozygosity; MCMC: Markov
chain Monte Carlo; MSA: Multiple sequence alignment; SBT:
Sequencing-based typing; SNP: Single nucleotide polymorphism; WES: Whole
exome sequencing; WGS: Whole genome sequencing

Acknowledgements
The super-computing resource was provided by Human Genome Center, the
Institute of Medical Science, the University of Tokyo.

Funding
This work was supported by Japan Society for the Promotion of Science
(15H02775 and 15H05912).

Availability of data andmaterials
The WGS data were deposited into the ICGC database (https://dcc.icgc.org/).

Authors’ contributions
SH, RY, SMiy, and SI designed the research. SH developed the method. SH and
MK benchmarked the method. SMiz performed SBT genotyping to the
samples. HN provided the whole genome and the amplicon sequencing data
of the samples. SH and SI wrote the manuscript. All authors read and
approved the final manuscript.

https://doi.org/10.1186/s12864-018-5169-9
https://doi.org/10.1186/s12864-018-5169-9
https://doi.org/10.1186/s12864-018-5169-9
https://doi.org/10.1186/s12864-018-5169-9
https://doi.org/10.1186/s12864-018-5169-9
https://dcc.icgc.org/


Hayashi et al. BMC Genomics          (2018) 19:790 Page 11 of 11

Ethics approval and consent to participate
All of the human subjects agreed with informed consent to participate in the
study following ICGC guidelines [27]. IRBs at RIKEN and the associated
hospitals participating in this study approved this work.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Human Genome Center, The Institute of Medical Science, The University of
Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639 Tokyo, Japan. 2Center for
Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku,
812-8582 Fukuoka, Japan. 3Health Intelligence Center, The Institute of Medical
Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639
Tokyo, Japan. 4RIKEN Center for Integrative Medical Sciences, 4-6-1
Shirokanedai, Minato-ku, 108-8639 Tokyo, Japan.

Received: 17 May 2018 Accepted: 15 October 2018

References
1. Schlosstein L, Terasaki PI, Bluestone R, Pearson CM. High association of

an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med.
1973;288(14):704–6.

2. Ohno S, Ohguchi M, Hirose S, Matsuda H, Wakisaka A, Aizawa M. Close
association of HLA-Bw51 with Behçet’s disease. Arch Ophthalmol.
1982;100(9):1455–8.

3. Prieto-Pérez R, Cabaleiro T, Daudén E, Abad-Santos F. Gene
polymorphisms that can predict response to anti-TNF therapy in patients
with psoriasis and related autoimmune diseases. Pharmacogenomics J.
2013;13(4):297–305.

4. Mignot E. Genetics of narcolepsy and other sleep disorders. Am J Hum
Genet. 1997;60(6):1289–302.

5. Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and
disease: a structural perspective. Nat Rev Immunol. 2006;6(4):271–82.

6. Erlich RL, Jia X, Anderson S, Banks E, Gao X, Carrington M, Gupta N,
DePristo MA, Henn MR, Lennon NJ, et al. Next-generation sequencing
for HLA typing of class I loci. BMC Genomics. 2011;12:42.

7. Hosomichi K, Jinam TA, Mitsunaga S, Nakaoka H, Inoue I. Phase-defined
complete sequencing of the HLA genes by next-generation sequencing.
BMC Genomics. 2013;14:355.

8. Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, Holt
RA. Derivation of HLA types from shotgun sequence datasets. Genome
Med. 2012;4:95.

9. Boegel S, Löwer M, Schäfer M, Bukur T, De Graaf J, Boisguérin V, Türeci
Ö, Diken M, Castle JC, Sahin U. HLA typing from RNA-Seq sequence
reads. Genome Med. 2012;4:102.

10. Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, Pfeifer JD.
ATHLATES: accurate typing of human leukocyte antigen through exome
sequencing. Nucleic Acids Res. 2013;41(14):142.

11. Kim HJ, Pourmand N. HLA haplotyping from RNA-seq data using
hierarchical read weighting. PLoS ONE. 2013;8(6):67885.

12. Bai Y, Ni M, Cooper B, Wei Y, Fury W. Inference of high resolution HLA
types using genome-wide RNA or DNA sequencing reads. BMC
genomics. 2014;15:325.

13. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O.
OptiType: precision HLA typing from next-generation sequencing data.
Bioinformatics. 2014;30(23):3310–6.

14. Nariai N, Kojima K, Saito S, Mimori T, Sato Y, Kawai Y, Yamaguchi-Kabata
Y, Yasuda J, Nagasaki M. HLA-VBSeq: accurate HLA typing at full resolution
from whole-genome sequencing data. BMC genomics. 2015;16(2):7.

15. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS,
Stevens J, Lane WJ, Dellagatta JL, Steelman S, et al. Comprehensive

analysis of cancer-associated somatic mutations in class I HLA genes. Nat
Biotechnol. 2015;33(11):1152–8.

16. Bauer DC, Zadoorian A, Wilson LOW, Melbourne Genomics Health
Alliance, Thorne NP. Evaluation of computational programs to predict
HLA genotypes from genomic sequencing data. Brief Bioinform.
2016;19(2):179–187.

17. Weimer ET, Montgomery M, Petraroia R, Crawford J, Schmitz JL.
Performance Characteristics and Validation of Next-Generation
Sequencing for Human Leucocyte Antigen Typing. J Mol Diagn.
2016;18(5):668–75.

18. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SGE.
The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids
Res. 2015;43(D1):423–31.

19. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon
K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of
the human genome. Nature. 2001;409(6822):860–921.

20. Li H, Durbin R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

21. González-Galarza FF, Takeshita LYC, Santos EJM, Kempson F, Maia MHT,
da Silva ALS, e Silva ALT, Ghattaoraya GS, Alfirevic A, Jones AR, et al.
Allele frequency net 2015 update: new features for HLA epitopes, KIR and
disease and HLA adverse drug reaction associations. Nucleic Acids Res.
2015;43(D1):784–8.

22. Consortium TIH. A haplotype map of the human genome. Nature.
2005;437(7063):1299.

23. Laforet M, Froelich N, Parissiadis A, Pfeiffer B, Schell A, Faller B,
Woehl-Jaegle ML, Cazenave JP, Tongio MM. A nucleotide insertion in
exon 4 is responsible for the absence of expression of an HLA-A*01 allele.
Tissue Antigens. 1997;50(4):347–50.

24. Magor KE, Taylor EJ, Shen SY, Martinez-Naves E, Valiante NM, Wells RS,
Gumperz JE, Adams EJ, Little A-M, Williams F, et al. Natural inactivation
of a common HLA allele (A*2402) has occurred on at least three separate
occasions. J Immunol. 1997;158(11):5242–50.

25. Smith DM, Gardner WB, Baker JE, Cox ST, Kresie LA. A new HLA-A*31
null allele, A*3114N. Tissue Antigens. 2006;68(6):526–7.

26. Elsner HA, Drábek J, Rebmann V, Ambruzova Z, Grosse-Wilde H,
Blasczyk R. Non-expression of HLA-B*5111N is caused by an insertion into
the cytosine island at exon 4 creating a frameshift stop codon. Tissue
Antigens. 2001;57(4):369–72.

27. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, Bhan
MK, Calvo F, Eerola I, Gerhard DS, et al. International network of cancer
genome projects. Nature. 2010;464(7291):993–8.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Overview of our pipeline
	HLA reference data
	Collection and realignment of reads
	Bayesian model for analyzing HLA genes
	Efficient sampling with elaborate MCMC schemes

	Results
	WES and WGS datasets
	WES- and WGS-based HLA genotyping
	Detection of somatic mutations

	Discussion
	Conclusion
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

