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INTRODUCTION

Plasmodium vivax is the most widely distributed species of 
Plasmodium causing malaria in humans and responsible for 
about 80 million clinical cases annually [1]. It remains the 
most widespread malaria parasite in areas outside of Africa 
[1,2]. In spite of very little mortality in comparison with Plas-

modium falciparum, P. vivax accounts for considerable morbidity 
and economic loss in endemic countries [3]. Nowadays, due to 
the development of resistance against antimalarial drugs as a 
major concern to fight against malaria in most parts of the 
world and worldwide spread of chloroquine resistance, the 
drug combination of sulfadoxine–pyrimethamine (SP) be-
comes the first line therapy for complicated P. falciparum ma-
laria in many endemic areas [4].

Sulphadoxine and pyrimethamine (SP) resistant P. falci-

parum has been reported from many malarious areas of the 
world, while it has been observed sporadically for P. vivax [2,5]. 
SP, commonly used for P. falciparum malaria treatment, inter-
fere with the enzymes involved in the folate biosynthesis path-
way of the parasite [6,7] and reduces the affinity of the enzyme 
for the drug [8-12]. The molecular mechanisms involved in 
the development of SP resistance in the P. falciparum and P. 

vivax are most likely similar to one another [13,14]. In P. falci-

parum, pyrimethamine and sulphadoxine resistance are pro-
vided by single nucleotide polymorphisms (SNPs) in codons 
51, 59, and 108 of the P. vivax dihydrofolate reductase (Pvdhfr) 
gene and in codons 437 and 540 of the P. falciparum dihydrop-
teroate synthetase (Pfdhps) gene, respectively, and these combi-
nations of SNPs result in a high risk of SP treatment failure in 
vivo [2,15].

The use of SP for treatment of vivax malaria is unommon in 
most of malarious areas, but P. vivax isolates are exposed to SP 
because of mixed infections [12,13,16]. There is a relationship 
between the use of SP against malaria and frequency of mu-
tant alleles of P. vivax, as wild type P. vivax has been found 
more commonly in areas with limited use of SP [12,17-20]. 
Pyrimethamine resistance in P. vivax possibly involves several 
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SNPs [21,2], but it is associated with 2 key dhfr mutations, 
S58R and S117N, which are equivalent to the C59R and 
S108N mutations of the Pfdhfr [19]. In addition, other muta-
tions (I13L, P33L, F57L/I, T61M, S117T, I172V, and I173L) in 
Pvdhfr have also been reported [4,7,13,14,18,19,21-26]. 

Correlation between the quadruple mutant haplotype 
(57L+58R+61M+117T) and in vivo SP treatment failure has 
been shown previously [11], so that it increases P. vivax resis-
tance to pyrimethamine by more than 500 times [14,19]. In 
vitro and in vivo data on Pvdhfr mutations have now clearly 
established the association between pyrimethamine resistance 
and these mutations [7,14,18,20,21,27,28].

Malaria is endemic in south-east of Iran, including Sistan and 
Baluchestan (bordering with Afghanistan and Pakistan), Hor-
mozgan, Kerman, and Boushehr provinces, and P. vivax is the 
dominant causative agent [29] that is responsible for about 
90% of the cases [30,31]. Although chloroquine (CQ) remains 
the first choice of drug for treatment of P. vivax mono-infections, 
but because of mixed infections and misdiagnosis in blood 
smears in field laboratories, it may often be treated with SP. 
Based on the necessity of detection of new mutations in P. vivax 
wild isolates for monitoring and evaluation of malaria control 
program, the present study was designed and carried out. 

MATERIALS AND METHODS

Blood samples were collected from a total of 50 symptomat-
ic patients who suffered from P. vivax infection in 4 separated 
geographical regions, Sistan and Baluchestan, Hormozgan, 
Kerman, and Bushehr provinces between 2007 and 2008. 
Sample collection was approved by the ethical committee of 
Tabriz University of Medical Sciences and performed after ob-
taining informed consent from each study subject. Approxi-
mately 1,000 μl of venous blood was collected in EDTA, stored 
at -20˚C and then transported to the main laboratory in Tabriz. 
Blood films, that were prepared in field laboratories, were re-
checked by experienced microscopists. 

DNA extraction and PCR amplification
DNA was extracted by Q1Amp® DNA blood mini kit 50 

(Qiagen, City Name, Germany) according to the instructions. 
All samples were rechecked by nested PCR using Plasmodium 
genus, P. vivax, and P. falciparum species-specific primers [32]. 
For detection of point mutations at residues 57, 58, 61, and 
117, previously described PCR-RFLP protocols were used with 

some modifications [18,19].

PCR amplification of Pvdhfr for positions 57 and117
In the first stage, 611 bp of Pvdhfr gene (711 bp) was ampli-

fied by primers VDT-OF: 5-ATGGAGGACCTTTCAGATGTATTT-
GACATT-3 and VDT NR: 5-TCACACGGGTAGGCGCCGTT-
GATCCTCGTG-3 [18]. The cycling conditions for the first stage 
reaction were as follows: 94 cycles of 66˚C for 7 min, 35 cycles 
of 66˚C for 50 sec, 72˚C for 65 sec, and a final extension at 
72˚C for 7 min.

RFLP for positions 57 and117
To detect mutations at position F57, 10 μl of the PCR prod-

ucts (611 bp) were digested with 10 U Xmn I enzyme (Fermen-
tase) for 15 hr at 37˚C in a total volume of 20 μl (611 bp=445 
bp+166 bp). For mutations at residue S117N/T, 10 μl of the 
PCR products (611 bp) were digested with 10 U Pvu II enzyme 
(Fermentase) (S117=350 bp+261 bp) for 5 hr at 37˚C and Bsr 
I (Fermentase) (117N=290 bp+253 bp+68 bp) for 15 hr at 
65˚C in a total volume of 20 μl.

PCR amplification of Pvdhfr for position 58
In this stage, 238 bp of Pvdhfr gene was amplified by primers 

VDT-OF and VDF-NR58: GGTACCTCTCCCTCTTCCACTT-
TAGCTTCT [18,19]. The cycling conditions for this stage were 
as follows: 94 cycles of 66˚C for 7 min, 35 cycles of 66˚C for 
50 sec, 72˚C for 65 sec, and a final extension at 72˚C for 7 min.

RFLP for position 58
To detect mutations at position S58R, 10 μl of the PCR 

products (238 bp) were digested with 10 U Alu I enzyme (Fer-
mentase) for 15 hr at 37˚C in a total volume of 20 μl 
(58R=213 bp+25 bp and S58 =173 bp+40 bp+25 bp).

PCR amplification of Pvdhfr for position 61
For position 61, 232 bp of Pvdhfr gene was amplified by 

primers VDF13NF (5-GACCTTTCAGATGTATTTGACATTTAC-
GGC-3 and VDF-NR58 (19). The cycling conditions for this 
stage were as follows: 94 cycles of 66˚C for 7min, 35 cycles of 
66˚C for 50 sec, 72˚C for 65 sec, and final extension at 72˚C 
for 7 min.

RFLP for position 61
To detect mutations at position T61M, 10 μl of the PCR 

products (232 bp) were digested with 10 U Tsp 451 enzyme 
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(Fermentase) for 16 hr at 37˚C in a total volume of 20 μl 
(T61=171 bp+61 bp). The DNA fragments obtained through 
PCR amplification or RFLP processes were electrophoresed on 
a 1.5% (Fermentase) agarose gel. 

RESULTS

Mutation frequencies of Pvdhfr gene
All the 50 isolates from south-east of Iran were analyzed for 

SNP/haplotype and presence of mutation in codons 57, 58, 
61, and 117 of the Pvdhfr gene using the PCR-RFLP method 
[18,19] (Fig. 1).

In total, 12% of PCR products were digested to 2 bands (in-
cluding 207 bp band) by Alu I enzyme indicating S58R muta-

tion. In products with mutation at codon 117, which are not 
digested with Pvu II enzyme, digestion with Bsr I enzyme oc-
curred in 34% of cases which indicates S117N mutation, and 
in 2% of these products digestion did not occur demonstrat-
ing S117T mutation. All the products were digested at codons 
61 and 57 with Tsp 451 and Xmn I enzymes, respectively, dem-
onstrating that mutations did not occur at these 2 codons (Ta-
bles 1, 2). 

In spite of small differences from a previous study [12], the 
produced bands by related enzymes, totally, are compatible 
with locations of digestion of the enzymes at the gene 
(X98123) [18,19]. The small differences may be due to SNPs 
of isolates of the gene.

B: Codon 58
Alu I

213 bp
173 bp
200 bp
250 bp

Arg Ser

C: Codon 61
Tsp 451

171 bp

232 bp
200 bp
250 bp

Thr Thr

A: Codon 57
Xmn I

611 bp

166 bp

445 bp
600 bp

Phe

A: Codon 117

611 bp

600 bp

350 bp
261 bp

Pvu II

Ser

600 bp

290 bp
253 bp

Bsr I

Asn Thr

Fig. 1. RFLP patterns of the dhfr gene for detection of mutation in codons 117, 57, 58, and 61 among the isolates from south-east 
of Iran. (A) Products obtained with primers VDT OF and VDF NR. In mutant products at codon 117, which were not digested with the 
PvuII enzyme, digestion with BsrI enzyme means S117N mutation, but S117T mutant products were not digested. Products at co-
don 57 were digested with XmnI enzyme. (B) Products obtained with primers VDF OF and VDF NR58. S58R mutant products were 
digested to 2 bands, including a 207 bp band, by AluI enzyme. C) Products obtained with primersVDFNF13 and VDF NR58. The 
products were digested at codon 61 with Tsp 451 enzyme. 
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Distribution of Pvdhfr haplotypes
Five distinct haplotypes of the Pvdhfr gene were demonstrat-

ed in this study. The 2 most prevalent haplotypes were 
F57S58T61S117 (62%) and F57S58T61N117 (24%). Each of 
these 2 other haplotypes with 1 point mutation at positions 
F57R58T61S117 and F57S58T61T117 were observed in 2% of 
the isolates. Haplotypes with 2 mutations at positions 
F57R58T61N117 were found in the 10% of the isolates (Table 
2). This double mutant haplotype was the most frequent mu-
tated haplotype observed among Iranian samples. In our 
study, haplotypes with 3 and 4 point mutations were not 
found. 

DISCUSSION 

In recent years, the economy of 4 malaria endemic provinc-
es in Iran (Sistan and Bkuchestan, Hormozgan, Kerman, and 
Bushehr) has sustained a considerable loss during malaria epi-
demics, and malaria control activities impose a grave disburse-
ment to the socio-economic developmental programs [29]. 
Therefore, more investigations on any aspects of the parasite, 
especially recognition of drug resistance, seem to be necessary. 
Since 2005, based on the national drug policy, the antimalarial 
treatment in Iran has changed, and the SP became the first 
choice of drug for treatment of falciparum malaria. With more 
availability of SP and propagation of coinfection with P. vivax 
and P. falciparum in malaria-endemic areas, there is risk of 
changing patterns of resistance of P. falciparum and P. vivax to 
SP [33]. Therefore, due to the lack of effective methods for in 
vitro and in vivo evaluations of P. vivax drug resistance, the 
need for other methods, such as measuring single-nucleotide 
polymorphisms to evaluate drug resistance in P. vivax, is in-
creasing [22].

 In our study, we used a sensitive PCR–RFLP method to ana-
lyze the frequency of mutations in defined residues of the Pvd-

hfr gene related to pyrimethamine resistance in 50 P. vivax iso-

Table 1. Distribution of mutations in the dhfr gene in Plasmodi-
um vivax isolates from south-east Iran

Residue at codona

Isolates Origin 57 58 61 117

  1 Sistan and Baluchestan F R T N
  2 Sistan and Baluchestan F S T S
  3 Sistan and Baluchestan F S T N
  4 Sistan and Baluchestan F S T N
  5 Sistan and Baluchestan F S T S
  6 Sistan and Baluchestan F S T N
  7 Sistan and Baluchestan F S T S
  8 Sistan and Baluchestan F S T T
  9 Sistan and Baluchestan F S T N
10 Sistan and Baluchestan F R T N
11 Sistan and Baluchestan F S T S
12 Sistan and Baluchestan F S T S
13 Sistan and Baluchestan F S T S
14 Hormozgan F S T S
15 Hormozgan F S T S
16 Hormozgan F S T S
17 Hormozgan F S T S
18 Hormozgan F S T S
19 Hormozgan F S T S
20 Hormozgan F S T N
21 Hormozgan F S T S
22 Hormozgan F S T S
23 Hormozgan F S T S
24 Hormozgan F S T S
25 Hormozgan F S T S
26 Hormozgan F S T S
27 Bushehr F S T S
28 Bushehr F S T S
29 Bushehr F S T S
30 Bushehr F S T N
31 Bushehr F S T N
32 Bushehr F S T S
33 Bushehr F S T S
34 Bushehr F S T S
35 Bushehr F R T N
36 Bushehr F S T S
37 Bushehr F S T N
38 Bushehr F S T N
39 Bushehr F S T S
40 Kerman F R T S
41 Kerman F S T S
42 Kerman F S T S
43 Kerman F S T N
44 Kerman F S T S
45 Kerman F S T N
46 Kerman F S T S
47 Kerman F R T N
48 Kerman F S T N
49 Kerman F R T N
50 Kerman F S T S

ªResidues which differ from the wild-type are indicated in boldface.

Table 2. Frequency of Pvdhfr alleles based on variations in co-
dons 117, 57, 58, and 61 among the isolates from south-east 
Iran

F57L S58R T61M S117N/T (n=50) (%)

F S T S 31 (62)
F S T N 12 (24)
F R T N 5 (10)
F S T T        1   (2)
F R T S        1   (2)
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lates from malarious areas of Iran. In these areas, introduction 
of SP as the first line anti-malarial therapy for falciparum ma-
laria makes P. vivax under a drug pressure [18,19,24]. Al-
though, in the south of Iran, P. vivax is still sensitive to chloro-
quine, researches performed since 2001 have shown that the 
sensitivity of the parasite against the drug is decreasing and 
parasite clearance time has increased [12]. Therefore, effective 
alternative drugs against resistant parasites should be needed.

 In our study, 5 distinct haplotypes of Pvdhfr were detected 
among the isolates. The double mutant F57R58T61N117 was 
the third frequent haplotype in examined isolates. Demon-
strated by molecular studies and clinical observations on vivax 
malaria, the specific mutations in the dhfr gene confer antifo-
late resistance [14,18,24]. In addition, mutations in the dhfr 
gene occur in various combinations. Each haplotype creates a 
certain level of resistance. Correlation between an increase in 
the number of mutations and reduction in susceptibility to 
pyrimethamine has been demonstrated through studies which 
involved yeast lines expressing each mutant allele. Pyrimeth-
amine resistance is increased as the number of mutations in-
creases (wild-type< single mutant<double mutant< triple 
mutant<quadruple mutant) [14,24]. In other words, multiple 
mutations in dhfr can accelerate the treatment failure [34]. It is 
documented that 4 mutations at codons 57, 58, 61, and 117, 
can be involved in the pyrimethamine resistance [14,18, 
24,27]. It has been shown that mutations in Pvdhfr, including 
58R and 117N, are implicated in vivo pyrimethamine resis-
tance and seem to arise first under a drug pressure [12]. We 
observed the mutation of 58R in 12% of isolates alone, that is 
less than a previous report (21/7% in the south of Iran) [12], 
and in 10% in combination with 117N, that is almost equal to 
that reported previously [12]. We observed single and double 
mutant haplotypes of Pvdhfr in endemic south-east regions. 
Therefore, malaria endemicity in the south of Iran and rela-
tively long time use of SP as the first-line treatment for P. falci-

parum infection [12] could provide conditions for emergence 
of resistance. 

 In our study, the most common haplotype of Pvdhfr was 
the wild type (62%). We could not find any triple and quadru-
ple mutants. We observed 12% and 36% mutations in codons 
58 and 117, respectively, and mutation of 117T was the first 
time in the rate of 2% in Iran. The frequency of mutant haplo-
types of FSTN in our study (24%) was higher than a previous 
one (18/2%) [16]. However, we found a decrease in the fre-
quency of haplotypes FRTN (10% vs. 11.9%) and FRTS (2% vs. 

9.1%) in comparison with a previous study [12]. 
We encountered a decline in the frequency of double muta-

tions 58R/117N in comparison with a previous study [12]. 
However, the frequency of mutations in codon 117N/T in-
creased, and it has an important role in the development of 
resistance against antifolates. The mutation in codon 117T 
plays a more important role than 117N in development of re-
sistance to antifolates, and the mutation in codon 58R also in-
creases the level of pyrimetamine resistance [3]. 

After determining the SP as first line treatment of falciparum 
malaria in 2001 in Iran [12], it was expected that the trends of 
reducing sensitivity of P. vivax to the drug will be intensified, 
like what had happened in Thailand. Analyses of field isolates 
from Thailand, where SP has been extensively used in the past, 
revealed the predominance (100%) of parasites harboring 3 
Pvdhfr mutant alleles; S58R and S117N; F57L, S58R, T61M and 
S117T; and F57I, S58R, T61M, and S117T [22]. Moreover, other 
antifolates, such as cotrimoxazole that are routinely used 
against urinary tract infections and chronic bronchitis, can also 
increase the drug pressure on the parasite in malarious areas 
[3,8,12]. 

In conclusion, our study showed that although chloroquine 
is still the main drug used for treatment of vivax malaria in 
Iran, but due to some reasons, such as probability of misdiag-
nosis in field laboratories, mixed infection, and considerable 
rate of imported malaria cases from Afghanistan and Pakistan, 
the parasite is under the pressure of SP and the sensitivity level 
of the parasite to SP is diminishing. This fact must be consid-
ered in the development of malaria control program in Iran.
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