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Background. During resuscitation of cardiac arrest victims a variety of information in electronic format is recorded as part
of the documentation of the patient care contact and in order to be provided for case review for quality improvement. Such
review requires considerable effort and resources. There is also the problem of interobserver effects. Objective. We show that it
is possible to efficiently analyze resuscitation episodes automatically using a minimal set of the available information. Methods
and Results. A minimal set of variables is defined which describe therapeutic events (compression sequences and defibrillations)
and corresponding patient response events (annotated rhythm transitions). From this a state sequence representation of the
resuscitation episode is constructed and an algorithm is developed for reasoning with this representation and extract review
variables automatically. As a case study, the method is applied to the data abstraction process used in the King County EMS.
The automatically generated variables are compared to the original ones with accuracies ≥ 90% for 18 variables and ≥ 85% for
the remaining four variables. Conclusions. It is possible to use the information present in the CPR process data recorded by the
AED along with rhythm and chest compression annotations to automate the episode review.

1. Introduction

During resuscitation of cardiac arrest victims automated
external defibrillators (AEDs) record a variety of information
in electronic format. In many emergency medical service
(EMS) systems this electronic information is downloaded
to a computer system as part of the documentation of the
patient care contact and in order to be provided for review
of the case for quality improvement activities. The electronic
information will then be available as digital files which
include physiological signals and also operational data related
to the defibrillator (energy delivered, mode: automatic or
manual, impedance, time of each event, etc.) logged from the
defibrillator. Data related to operation of the defibrillator we
denote as “CPR process data.”This datamay be organized and
stored in a registry of the cardiac arrest cases. This registry
may then serve as a database that may be used in studies
of resuscitation strategies directed at improving survival

from cardiac arrest. The collected physiological data includes
the electrocardiogram recording the cardiac activity of the
patient and depending on the recording features of the device,
the impedance between electrodes, the acceleration and force
of chest compressions, end tidal CO

2
, blood pressure, and

possibly other biometric measures. The CPR process data
defined above also carries essential information about critical
time points such as the exact time the device is turned on, the
results of each shock advisory analysis, and the precise time
of defibrillation shocks. In addition to the CPR process data
that the devicemay produce, there are various written or elec-
tronically generated reports documenting the resuscitation
episode along with clinical and demographic information.
These reports are filed by dispatching centers and by the EMS
responders during and following the resuscitation. In many
systems an audio recording is made allowing a listener to
review the course of resuscitation to supplement the ECG
presentation and written reports.
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It is our belief that the integration of CPR process data
combined with an automatic analysis of the physiologic
signals would make it possible to objectively and efficiently
analyze resuscitation episodes in an objective reproducible
format. Such analysis is important as it provides the means
for analyzing and archiving parameters describing the quality
of cardiopulmonary resuscitation (CPR). A simple example
is the ratio of hands off intervals (HOI) during therapy.
In several studies both ECG and chest compression trac-
ings have been reviewed to accurately identify all such
HOI. These studies have shown that, despite the subjective
impression by rescuers that CPR delivery was adequate, in
fact the HOI duration exceeded the recommendations given
in the resuscitation guidelines [1, 2]. These findings had a
significant impact on the 2005 guidelines revision [3]. As
a result, an increased focus and attention to continuous
uninterrupted chest compressions has had a positive effect
on survival rates as reported in several studies [4–7]. For
these studies to give significant results, quite a large number
of resuscitation episodes were collected and reviewed. This
involved considerable effort for the reviewers and careful
definitions of the parameters to be recorded in order to make
the resulting analysis objective and relevant. Interobserver
variation is a significant confounding factor in these studies.
The interpretation often involves determining the cardiac
rhythm and the transitions between rhythms both with and
without the presence of chest compressions. These rhythm
and chest compression annotations involve interpretation of
the ECG for rhythm assessment and of the compression
signals for identifying chest compression sequences.

The present study is undertaken in order to determine
whether it is feasible to automate the process of data analysis
and extraction of the clinically relevant features. In particular
we seek to demonstrate that information which is currently
collected by manual review of cases of ventricular fibrilla-
tion cardiac arrest involving many hours of review can be
replicated using an automated extraction technique.This will
be done through the following three steps: (1) The concept
of a minimal information set defined by important events
during the resuscitation is proposed. (2) From the minimal
information set a state sequence model is constructed. (3)
Algorithms are designed to reason over the state sequence
model to automatically replicate the manual interpretation of
CPR process data.

2. Methods

There are several layers of information involved in the
interpretation of a resuscitation episode. Some of the clinical
variables are derived directly from the CPR process data
and annotations of rhythm and therapeutic events and
are therefore fundamental or primary. Other variables, the
secondary variables, can be inferred or calculated from the
primary variables. From these primary information variables
we furthermore propose a state sequencemodel fromwhich it
will be possible to design algorithms to perform the reasoning
to infer the secondary variables.

2.1. Defining the Primary Information Objects. In developing
the automation of such a process it was necessary to consider
the type of information to be retrieved. Some objects of
information are more fundamental than others. One may
distinguish a hierarchy of these objects as primary and
secondary in the sense that the secondary objects may be
determined from the information present in the primary
objects. Our hypothesis is that the secondary objects of
information can be derived automatically from the primary
objects by designing an algorithm that reasons on the primary
objects to produce the secondary objects. It is our hypothesis
that these primary objects include a subset of the elements
in the AED event record and of the annotations of rhythm
transitions and of the start and stop times of the chest
compression sequences.

To formalise this concept, we associate these primary
information objects to categories of important events dur-
ing a resuscitation episode. A resuscitation episode can be
described as an episode starting at time 𝑡

𝑠
and ending at

𝑡
𝑒
. Throughout the episode, there are important events 𝑒

𝑖

that can be associated with a given time 𝑡
𝑖
. In our model of

resuscitation, we define two important categories of events:
therapeutic and rhythmic events. (We will also refer to
rhythmic events and states as response events and states.)The
therapeutic events are limited to the set 𝑇

𝑒
= {c1, c2, d1, d2}

marking the start and end of a compression sequence (c1 and
c2) and start and end of a defibrillation (d1 and d2).

The rhythmic events represent rhythm transitions which
we limit to the set 𝑅

𝑒
= {vf, vt, as, pe, pr}marking transitions

into ventricular fibrillation (vf), ventricular tachycardia (vt),
asystole (as), pulseless electrical activity (pe), and pulse giving
rhythm (pr).

Examples of both types of annotations are shown at the
top and bottom inside each plot window of the tracings of
the AED signals in Figure 1 where CPR process data and
annotations are shown for three different types of AEDs.

The first step in the automated review process will be to
collect these events or primary information objects which we
denote as PIOs from the manually recorded data and from
the defibrillator. These PIOs will be processed to construct
the state sequence which we denote as the “Representation of
the Resuscitation Event” (RORE).The RORE (to be discussed
inmore detail below) is then input to the reasoning algorithm
which produces the secondary information objects (denoted
as SIO). The derived database can then be compared to the
original database to determine the accuracy and validity
of using only the PIOs to determine and define all of the
information present in the database. This serves the twofold
purpose of defining the minimal dataset (PIOs) which needs
to be collected by an automatic algorithm designed for this
purpose and also tests the ability of the RORE created only
from the PIO to serve as the sole source for an accurate
clinical database to be used in resuscitation research and
quality improvement activities.

2.2. Using Primary Information Objects to Create Representa-
tions of Resuscitation Episodes. In a previous article Eftestøl
et al. presented a conceptual framework for representing the
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data from resuscitation episodes [8]. This representation is
essentially a standardized data format developed to describe
a resuscitation episode. Briefly, the RORE involves two
aspects that are separately modeled, the therapy domain
state sequence and the response (or rhythmic) domain state
sequence. Generally, we denote a resuscitation episode as a
sequence of changing states.The individual states are defined
initially within either the therapy or the response domain and
these two aspects are put together in a combined sequence
to concisely describe the resuscitation. A change in either
domain constitutes a change in the state of the combined
episode representation. The transitions between the states
in each domain are represented as delimited time intervals,
where the start and end time for each interval is given for
that state. The start and end times therefore indicate the time
of transition into and out of the represented state. The time
of transition out of a specific state corresponds to the time of
transition into the next state. For the response domain, the
states are the various cardiac rhythms that occur throughout
a resuscitation episode. In the therapy domain, the states
are the interventional treatments given to the patient: in this
study these were the chest compression sequences, hands off
intervals, and defibrillation shocks. These two sequences or
representations and the combination of these two domains
constitutes the RORE.

A Formalised Description of the Concept in the Context of
the PIO Events. To be able to design algorithms that can
reason on the information we need a model that captures the
relationship between the elements both in terms of the course
of time and type of event.

To each type of event 𝑒
𝑖
, there is the time point 𝑡

𝑖

describing the transition or onset time. One can say that the
event marks a change of state, the state 𝐸

𝑖
determined by the

type of event at time 𝑡
𝑖
. The state is unchanged until the next

event 𝑒
𝑖+1

marks the transition into the next state 𝐸
𝑖+1

.
To each state, we define the corresponding time interval,
𝑇
𝑖
= [𝑡
𝑖
, 𝑡
𝑖+1

].Thus, the course of events during a resuscitation
episode will be defined as a continuous sequence of states 𝑆 =
{(𝑇
1
, 𝐸
1
), (𝑇
2
, 𝐸
2
), . . . , (𝑇

𝑁
, 𝐸
𝑁
)} where the time intervals are

ordered according to time since start of episode, 𝑡
𝑠
.

We define three sets of states.The first two sets are related
to the therapeutic and rhythmic events. The therapeutic
states are limited to the set 𝑆

𝑒
= {C,H,D} marking the

compression sequences (C), the hands-off intervals (H), and
the defibrillations (D). The rhythmic states are limited to
the set 𝑆

𝑟
= {VF,VT,AS,PE,PR} which represents ongoing

rhythms the start and end of which are defined by the
corresponding transition events. VF is the state ongoing in
the time interval the start of which ismarked by the transition
event vf and ended by one of the other transition events in𝑅

𝑒
.

The relationship between the other rhythmic events as, vt, pe,
and pr and states AS, VT, PE, and PR is similar. The third set
is constructed from the combination of the therapeutic and
rhythmic states in the time interval where the two types of
states are unchanged. If the rhythmic state sequence is

𝑆
𝑅
= {([𝑡

0
, 𝑡
3
] , 𝐸
𝑅1
) , ([𝑡
3
, 𝑡
4
] , 𝐸
𝑅2
)} (1)

890 900 910 920 930 940 950 960 970

Re
su

m
e

an
al

yz
e

Sh
oc

k
ad

vi
se

d
Sh

oc
k

de
liv

er
ed

Pads off

c2 d1

pe

d2 c1

vf

nb

(a)

Sh
oc

k
ad

vi
se

d

Sh
oc

k
de

liv
er

ed

500 510 520 530 540 550 560 570 580

A
na

ly
sis

sta
rt

ed

c1 c2 d1d2

as

c1 c2 c1 c2 c1 c2

(b)

Shock
advised

150 160 170 180 190 200 210 220 230 240
c2 d1 d2

as

c1 c2c1 c2 c1

Shock 1,200 J

(c)

Figure 1: Signals and data recorded by three different automated
external defibrillators: (a) Philips Forerunner 2, (b) Philips MRx,
and (c) Physiocontrol Lifepak 12.The blue and red tracings show the
electrocardiogram and thoracic impedance, respectively. Examples
of information recorded in the defibrillator’s electronic log are
shown above each plot window. Annotations of rhythm transitions
and therapeutic events are shown at the top and bottom inside each
plot window.

and the corresponding therapeutic state sequence is

𝑆
𝑇
= {([𝑡

0
, 𝑡
1
] , 𝐸
𝑇1
) , ([𝑡
1
, 𝑡
2
] , 𝐸
𝑇2
) ,

([𝑡
2
, 𝑡
4
] , 𝐸
𝑇3
)} ,

(2)

the combined state sequence will be

𝑆
𝐶
= {([𝑡

0
, 𝑡
1
] , 𝐸
𝑇1
𝐸
𝑅1
) , ([𝑡
1
, 𝑡
2
] , 𝐸
𝑇2
𝐸
𝑅1
) ,

([𝑡
2
, 𝑡
3
] , 𝐸
𝑇3
𝐸
𝑅1
) , ([𝑡
3
, 𝑡
4
] , 𝐸
𝑇3
𝐸
𝑅2
)} .

(3)

Note how the state labels from SR and SC are concatenated.
For the tracing in Figure 1(a), the three state sequences

representing the part of the resuscitation episode that is
shown will be as follows:
𝑆
𝑇
= {([740.8, 805.2] ,H) , ([805.2, 887.2] ,C) ,

([887.2, 903.3] ,H) , ([903.3, 908.3] ,D) ,

([908.3, 938.8] ,H) , ([938.8, 1062.0] ,C)} ,

𝑆
𝑅
= {([793.6, 908.3] ,VF) , ([908.3, 944.0] ,PE) ,

([944.0, 1062.0] ,VF) } ,

(4)
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and the combined sequence will be

𝑆
𝐶
= {([793.6, 805.2] ,HVF) , ([805.2, 887.2] ,CVF) ,

([887.2, 903.3] ,HVF) , ([903.3, 908.3] ,DVF) ,

([908.3, 938.8] ,HPE) ,

([938.8, 944.0] ,CPE) , ([944.0, 1062.0] ,CVF)} .
(5)

2.3. Designing Algorithms Reasoning on the RORE. The
RORE is well suited for designing reasoning algorithms
which aims to mimic the interpretation a clinician will do.
The basic principle is that the algorithms can identify time
intervals in the state sequences fulfilling criteria expressed
by the state sequence labels. For example, in the current
study, the RORE was implemented in MATLAB where the
state sequences can be realised as a list with the sequence
labels. The time intervals are placed in corresponding lists
so that, if a specific state symbol is found in position 𝑖 in the
list of state sequence labels, the corresponding time interval
can be found in position 𝑖 in the list of state sequence time
intervals. The complete episode from which the tracing in
Figure 1(a) originates is represented by the therapy sequence
𝑆
𝑇
= {H,D,H,C,H,D,H,C,H,C,H,C,H,C,H,C}, the

rhythm sequence 𝑆
𝑅
= {VF,PE,VF,PE,VF,PE,VT,VF,PE,

VF,UN}, and the combined sequence 𝑆
𝐶
= {HVF,DVF,

HPE,CPE,CVF,HVF,DVF,HPE,CPE,CVF,CPE,HPE,CPE,
HPE,HVT, HVF,CVF,HVF,CVF,HPE,CPE,CVF, CUN}.
(Notice the use of UN for unknown state.) The framework
is quite flexible where the RORE serves as the vocabulary
on which it is possible to reason to derive the SIOs. For
example, the initial rhythm can be determined by retrieving
the first element from SR. The time of the defibrillations can
be determined by searching ST for occurrences of D and
retrieving the corresponding time intervals.

As we will see later, the review will be focused on the
pre- and postshock periods of each shock. This can be
done by repeating the analysis for each shock, wherein the
state sequences between the current and previous shock (or
beginning of episode) are extracted to represent the preshock
period.The states between the current and next shock (or end
of episode) are extracted to represent the postshock period.
Subsequently, the start of the first compression sequence and
the end of the last compression sequence can be found by
searching the preshock therapy sequence for the first and last
occurrences of C. The duration of the preshock compression
sequence can furthermore be by subtracting the start time for
the time interval of the first C from the end time of the last C.

We will use this kind of reasoning to illustrate how this
methodology can be used in the following case study.

3. A Case Study

The extraction from the King County database utilized in the
current study will act as a model for the design of automatic
data collection algorithms which is the goal of this study. By
using thismanually acquired data, a particular representation
of the cardiac arrest for each subject will be developed which

will contain the candidate set of variables to exactly describe
and document the resuscitation episode.These automatically
derived variables will be a replica of the original variables and
the two data sets will be compared for evaluation.

3.1. Current State of the Art. The EMS division of King
County has registered all sudden cardiac arrests treated in a
large metropolitan area surrounding Seattle, WA, since 1976
[6, 9, 10].This database has been used in several retrospective
studies, where the study objectives have been diverse. Specific
examples include the recording of Utstein elements to inves-
tigate long term survival among resuscitated patients [9], the
effect of time to EMS arrival on survival [10], and the effect
of resuscitation algorithm changes on survival [11], and the
application of public access defibrillation affects EMS therapy
[12]. In the scope of the present investigation, studies using
the information derived from interpretation of the CPR in
association with the analysis of the physiologic signal are of
particular relevance. For example, in one study the effect of a
change in the cardiac arrest protocol introduced to decrease
the hands off interval (HOI) associated with shock delivery
was assessed [6]. The effect of the protocol change was
evaluated by analyzing time intervals before and after shocks.
In another study designed to develop a method to predict
the outcome of defibrillation, ECG waveforms prior to the
first shock were extracted for analysis along with information
regarding whether ROSC occurred following the defibrilla-
tory shock [13]. For all of these studies, the abstraction of
information was carried out by following a carefully scripted
case review routine. This abstraction process includes review
of the EMS medical incident report forms using specif-
ically designed forms based on Utstein variables, review
of electronic recordings from the AEDs, again using well-
defined criteria, and using predefined time points for rhythm
assessment. In addition there was direct audio review of
dispatch recordings for each case.These records are reviewed
to determine various aspects of therapy, such as duration
and frequency of chest compressions, number and timing
of defibrillations, response to shocks, and the presence and
duration of HOI. In King County the review process is clearly
defined in a data dictionary where each variable generated
from the review is listed with an explanatory description and
the possible values it can have. After the review, the variables
are stored in an Access database (Microsoft Corporation).
The review itself is conducted by dedicated staff members
who receive extensive training in abstraction techniques prior
to performing independent reviews. All cases are abstracted
by a minimum of two reviewers. All cases with conflicts
are adjudicated by a supervising physician expert in ECG
analysis.

3.2. Overview of Data Collection. The total data set consisted
of a convenience sample of 75 cardiac arrests from the
King County registry which were completely deidentified
using custom software written for this purpose. The study
was approved by the IRB of the University of Washington.
The study was divided into two phases. In the development
phase, 20 cases were randomly selected and used to create
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the algorithm which utilized the two sources of clinical
information available. The algorithm used both the raw
data from the original database which had been placed in
Excel formatted files and the CPR process data (from the
defibrillator downloads of the defibrillator data files) to create
the summary of the case termed the “Representation Of
the Resuscitation Episode” (RORE). Then this process was
reversed so that the RORE was used to recreate a second
database whose purpose was to determine if the original data
could be accurately abstracted from the RORE to recreate
the clinical record in an automatic algorithmically driven
manner. After the method had been adjusted to perform well
on the development set data, its accuracy was then tested on
a validation set of the remaining 55 cases from the database
(Figure 2).

3.3. Overview of the Variables to be Replicated. To begin the
process, data fields of interest were extracted from storage
in the King County EMS repository which is an Access
database by being exported to an Excel spreadsheet. The
patient population was restricted to those treated with MRx
AED devices (Philips Inc.) which uses a small “puck” placed
under the rescuers hands during chest compressions to
very accurately record the force and acceleration used in
chest compressions. The CPR process data consisted of the
electronic files stored by the MRx during each resuscitation
episode. The electronic data were downloaded to computer
archives immediately after the episode. The written report of
the patient care encounter as filed by the EMS crew following
the resuscitation was also used in the manual abstraction
process.

There are several types of variables in the database.
Variables describing the defibrillation shocks, chest compres-
sions, and patient response were included. Each of these
general categories of variables contain subsections which
detail the time of each event, the operation of the device (i.e.,
Joules delivered with each shock, impedance at each shock,
etc.), and variables describing transitions in rhythm related to
the patient’s response after each shock. Each row in the Excel
spreadsheet stores the variables related to one specific shock
and includes the following.
(1) Time Events. Each time event is given by three variables,
hour, minute, and second of the day. For example, “ECG start
time” corresponding to the AED power on time is registered

in the three variables: ecghr, ecgmn, and ecgsc. Each of
these is coded numerically: 0–23 for hour, 0–59 for minutes
and seconds. We will refer to these collectively as ecgtime
(hr:mn:sc) denoted by the variable name “ecgtm.” The other
time data points reported for a shock include the events
describing therapy prior to and including the shock: “First
compression time,” “Last compression time,” and “Shock
time” (variable names “fctm,” “lctm,” and “shktm”). The time
events following a shock describe the patient’s response and
give the time points for transitions to specific rhythms after
each shock is given: “VF onset time” and “ROSC time” (return
of spontaneous circulation) (variable names “vfonsettm” and
“rsctm”). Table 1 shows amore detailed view of the time event
variables.
(2) Device Operation andTherapy. “Shock number,” “Number
of shock sequences recorded,” and “Number of shocks in
sequence” record the shock sequence number, the number of
electrical shocks delivered to the patient, and the number of
“stacked” shocks without intervening CPR (variable names
“shkn,” “ssrecord,” and “shks”). The AED operating mode,
either “manual” or “advisory,” was coded in the variable
“mode.” EMS provision of CPR was coded in the variable
“CPR.” The energy and impedance of the shock are given by
the variables “enrgy” and “imp,” respectively. Table 2 shows
a more detailed view of the device operation and therapy
variables.

(3) Patient’s Response Following a Shock. For the initial
rhythm, the variable “init rhy” describing the rhythm at the
start of the ECG recording was captured. The rhythms at
10, 30, 60, and 120 seconds after the shock were recorded
in the variables “r10,” “r30,” “r60,” and “r120.” These time
points were originally developed in an effort to determine the
outcome of the defibrillatory shock as precisely as possible.
It was felt that the first 2 minutes after shock were most
important in determining if a shock had been successful
in producing an organized and possibly perfusing rhythm
and that, by using discrete, well-defined points, the rhythm
changes could be determined in a time window of relevance
to evaluating the effect of resuscitation therapies. In addition,
the variable “orgpr” is used to describe whether there was an
organized rhythm at any time during the interval before the
next shock (or the endof the recording if nomore shockswere
given). In a similar manner “vfpr” indicates whether there is
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Table 1: The time variables with descriptive names, variable names, coding, and explanation of each variable.

Variable
in Access
database

Possible values Description

ECG start time ecghr (0–23, 99)
99 = unknown The hour of actual start time of the ECG

ECG start time ecgmn (0–59, 99)
99 = unknown The minute of the actual start time of the ECG

ECG start time ecgsc (0–59, 99)
99 = unknown The second of the actual start time of the ECG

First compression time fchr
(0–23, 88, 99)
88 = no CPR administered,
99 = unknown

Hour of first compression, prior to shock. Record only if
first compression on record is actually the first
compression given

First compression time fcmn
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Minute of first compression, prior to shock. Record only
if first compression on record is actually the first
compression given

First compression time fcsc
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Second of first compression, prior to shock. Record only
if first compression on record is actually the first
compression given

Last compression time lchr
(0–23, 88, 99)
88 = no CPR administered,
99 = unknown

Hour of last compression before shock

Last compression time lcmn
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Minute of last compression before shock

Last compression time lcsc
(0–59, 88, 99)
88 = no CPR administered,
99 = unknown

Second of last compression before shock

Shock time shkhr (0–23, 99)
99 = unknown Actual hour of shock delivery

Shock time shkmn (0–59, 99)
99 = unknown Actual minute of shock delivery

Shock time shksc (0–59, 99)
99 = unknown Actual second of shock delivery

VF onset time vfonsethr
(0–23, 99)
99 = no onset, patient remained in VF
blank indicates no vf

Hour of VF onset, best estimate when underneath CPR
artifact

VF onset time vfonsetmm
(0–59, 99)
99 = no onset, patient remained in VF
blank indicates no vf

Minute of VF onset, best estimate when underneath
CPR artifact

VF onset time vfonsetss
(0–59, 99)
99 = no onset, patient remained in VF
blank indicates no vf

Second of VF onset, best estimate when underneath
CPR artifact
Therefore a 99 : 99 : 99 indicates an unsuccessful
defibrillation

ROSC time rschr (0–23, 99) 99 = unknown Actual hour of ROSC
ROSC time rscmn (0–59, 99) 99 = unknown Actual minute of ROSC
ROSC time rscsc (0–59, 99) 99 = unknown Actual second of ROSC

a recurrence of VF prior to the next shock. Table 3 shows a
more detailed view of the patient’s response variables.

Primary and Secondary Information Objects. Table 4 provides
an overview of the primary information objects that we use
to construct the RORE. Considering the variables registered
during the manual review, some of these basically reflect the
same information as the primary information objects, while
the remaining variables correspond to secondary information
objects. Table 5 provides an overview of all the variables

handled in this study. Variables are categorized as describing
time events, patient response, and device operations and
therapy and primary and secondary information objects are
indicated by the acronyms PIO and SIO, respectively.

3.4. Generating the Representations. To generate the RORE,
the information recorded by the defibrillator and contained
in the CPR process data on the device is used directly for the
time and shock data: that is, the time the device is turned
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Table 2: The variables describing device operation and therapy with descriptive names, variable names, coding, and explanation of each
variable.

Variable
in Access
database

Possible values Description

Shock number shkn ≥0 and <21 Shock sequence number.

Number of shock
sequences recorded ssrecord (>0 and <31) or 99

99 = unknown

This describes the number of electrical shocks delivered
to the patient as recorded on the AED total shocks
received by the patient.

Number of shocks in
sequence shks 1–31

The number of shocks without intervening CPR. For
example, 1 = no stacked shocks while > 1 = stacked
shocks. After 2005 no case should have stacked shock.

Mode mode
1 = manual
2 = semiautomatic & advisory
9 = unknown

This is the mode of the AED at the time of the shock

EMS CPR prior to shock? cpr
1 = yes
2 = no
9 = unknown

Description of if EMS CPR was administered to patient
before shock was delivered.

Impedance at 1st shock imp Measured in Ohms Impedence at time of first shock sequence (50–200,
999) 999 = unknown.

Energy of 1st shock enrgy Measured in Joules Energy of first shock in sequence.

on, the exact time of each shock, number of joules delivered,
impedance at time of shock, and so forth are obtained directly
from the device event files. In addition, the information
for rhythms and chest compressions extracted by manual
review of the ECG using Event Review 3.1 is then recorded in
the ACCESS database and subsequently placed in the Excel
spreadsheet (Figure 2). Several PIOs are extracted from both
the written EMS reports and from the manual review. We
have observed and wish to stress that, in order to accurately
describe the rhythm data, the only data points required are
the times of rhythm transitions between different rhythm
types.This decreases the amount of information stored in the
RORE substantially.This is clearly illustrated in the following
example (see Figure 3).

In this resuscitation we are viewing the ECG (blue) and
the thoracic impedance (red).TheECG represents the cardiac
activity while the impedance indicates the chest compres-
sions.The time interval shownhere is from 180 seconds to 330
seconds.This shows a section of VF beginning at 180 seconds
with no CPR being performed and during which analysis of
the ECG has recommended a shock. The shock is delivered
at 198 seconds (d1) and CPR begins at 201 seconds. The CPR
artifact shows a possible QRS complex at 204 seconds and
a definite QRS at 221 seconds and again at 229 seconds. In
the database used for this study the rhythm was recorded at
predetermined time points (10, 30, 60, and 120 seconds). An
organized rhythm was defined as being at least 2 beats within
the 5 seconds before and after the time point. Since the 30-
second time point is 228 seconds this does not qualify as an
organized rhythm yet. At 60 seconds (258 sec.) an organized
rhythm is present without a pulse being detected. VF then
recurs at 282 seconds and persists with CPR artifact until the
end of the trace.One can easily appreciate that the description
of this 150-second period of resuscitation is complete but
quite lengthy. To condense the description for the KCEMS

database we attempted to reduce the record by focusing
on specific time points immediately after the shock. This is
recorded in the database as described above with the rhythm
at each time point recorded. Because discrete predetermined
time points are used there is an inherent inaccuracy in the
record. The rhythm transition points are only estimated by
the time points used and then only if the transition occurs
within the first two minutes after shock. In contrast, for the
PIO based data recorded in the response domain, only the
transitions in rhythm are recorded and these would ideally
be recorded at the precise time of occurrence. The episode
in the lengthy description above is shown in RORE format
in Figure 4. For the 180 to 330 time interval there are 5 lines
of notation in the therapy domain, 4 lines in the response
domain, and 8 lines in the overall episode representation
(Figure 4 outlined portion). Ideally, the rhythm transitions
would be determined exactly by direct manual review or
by an automatic computer algorithm with an overread by a
reviewer. This would provide the exact times of transition.
In this study, to determine “proof of concept,” the KCEMS
database was used to derive the time points of transitions,
while recognizing that they would be only estimates of these
transitions. Using the KCEMS database the response domain
is formed as follows. The events in the database are recorded
in seconds so that the initial rhythm of VF is noted to begin
at 46 seconds after the defibrillator is turned on at which
time the leads are connected. The next rhythm transition is
to asystole at 208 seconds (r10, 10 seconds after the shock)
followed by transition to an organized rhythmwithout a pulse
at 258 seconds (r60, 60 seconds after the shock) and a return
to VF at 283 seconds. Note that the reoccurrence of VF was
identified as accurately as possible by the reviewers while the
organized rhythms were recorded only at the 4 time points.
The response domain for these events is shown in seconds
as “46–208: VF” and then “208–258: AS” to indicate asystole
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Table 3: The response variables with descriptive names, variable names, coding, and explanation of each variable.

Variable
in Access
database

Possible values Description

Initial rhythm init rhy

1 = asystole,
2 = VF,
3 = pulseless VT,
4 = organized,
5 = indeterminate (VF/organized),
6 = indeterminate (VF/asystole),
7 = indeterminate (brady),
8 = indeterminate,
9 = unknown

Description of what the initial rhythm recorded was as
determined from the AED. Codes in parenthesis refer to
indeterminate between the two stated rhythms.
If initial rhythm NOT VF and patient subsequently fibrillates,
record original VF onset time, for substudy of secondary VF.

Preshock rhythm rhyb4

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what the preshock rhythm recorded was.
Codes in parenthesis refer to indeterminate between the two
stated rhythms.

Rhythm 10 secs after
the last shock r10

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 10 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms.
Use discretion to take the rhythm ±5 seconds from 10
seconds after shock.

Rhythm 30 secs after
the last shock r30

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 30 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms.
Use discretion to take the rhythm ±5 seconds from 30
seconds after shock.

Rhythm 60 secs after
the last shock r60

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 60 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms
Use discretion to take the rhythm ±5 seconds from 60
seconds after shock.

Rhythm 120 sec after
the last shock r120

1 = asystole,
2 = vf,
3 = vt,
4 = org,
5 = indeterm-(vf/org),
6 = indeterm-(vf/asys),
7 = indeterm-brady,
8 = indeterm,
9 = unknown

Description of what rhythm recorded 120 seconds after the
shock was. Codes in parenthesis refer to indeterminate
between the two stated rhythms.
Use discretion to take the rhythm ±5 seconds from 120
seconds after shock.

VF prior to next
shock? vfpr 1 = yes, 2 = no, and 9 = unknown

Description of whether or not there was VF between shocks,
or between the last shock and the end of this recording as
determined from audio or the MRIF. Not to capture VF at
any time after device turned off.
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Table 3: Continued.

Variable
in Access
database

Possible values Description

Organized rhythm
prior to next shock? orgpr 1 = yes, 2 = no, and 9 = unknown

Description of whether or not there was an organized rhythm
between shocks, or between the last shock and the end of the
recording.
Best organized rhythm (wide/narrow, and rate) will be taken
within 3 minutes of the final shock on recording.

ROSC rosc 1 = yes, 2 = no, and 9 = unknown Description of whether return of spontaneous circulation
occurred.

Table 4: The primary information objects (PIO). These variables constitute the primary information objects (PIO) and are used to model
the entire resuscitation episode.The therapy and response domains are described independently. For each domain the entire time span of the
episode is described as a sequence of interchanging states. For each state change, the corresponding transition times are given which specify
the times entering and leaving the state.The entering time of a state corresponds to the leaving time of the prior state unless it is the beginning
of the episode. The leaving time of a state corresponds to the entering time for the next state unless it is the end of the episode.

Variable domain

Transition time Patient’s response Therapy
State Code State Code

Seconds Ventricular fibrillation VF Chest compressions C
Seconds Ventricular tachycardia VT Hands off interval H
Seconds Asystole AS Defibrillation D
Seconds Pulseless electrical activity PE Unknown U
Seconds Pulse generating rhythm PR
Seconds Unknown UN

as the rhythm at 10 seconds after the shock. Then there is a
transition to an organized rhythm without a pulse: “258–283:
PE” and another transition when VF recurs: “283–343: VF.”
This method produces a succinct record of rhythms as shown
in Figure 4.

The therapy domain states are presented in a similar
manner. The chest compression times are read directly from
the variables for first and last compression times prior to the
each of the shocks present in the ACCESS database. All other
information is read from the CPR process data as recorded in
the MRX defibrillator. For example, in the defibrillator event
log all events are listed along with the time in milliseconds.
The time for each shock can be found by doing a search of
the MRx recorded data for the text string “shock delivered”
indicating the shock events. Once found, the corresponding
time is given in milliseconds and is converted to seconds.
This is illustrated in Figure 3 in which the defibrillator log
events such as “shock delivered” can be seen outside the
trace boxes. In this figure the rhythms noted in the KCEMS
database have been inserted as rhythm annotations such as
“vf ” and “as” and are seen in the upper portion just inside
the boxes. The therapy related annotations shown at the
bottom inside of the boxes (“c1”/“c2” and “d1”/“d2”) are the
start and end of compression sequences and defibrillation
events respectively). The therapy domain representation was
created from the KCEMS database in a manner similar
to that described above for the response domain. For the
180–330-second period shown in Figure 3 there is a hands

off interval from the start at 180 seconds to the time of
the shock at 196 seconds. After the shock follows a brief
hands off interval continuing until compressions start at 200
seconds which continues with brief pauses for ventilations
until chest compressions are halted at 322 seconds. Lines
3–7 in the therapy domain (Figure 4) represent this period
of the resuscitation. The RORE is easily constructed by
combining the therapy and response representations and
gives a comprehensive picture of the relationship between the
provided therapy and the patient response to the treatment.
In the following, the therapy domain, response domain, and
the RORE make up the completed representation using the
PIOs as described above.

3.5. Reasoning from the Representation Back to Create the
Derived Data. The working principles of the reasoning
algorithms are described in the following. For increased
readability a prose form has been chosen rather than using
a pseudocode description. All the algorithms have been
implemented and run in MATLAB.

Before beginning to work back from the representations
to the database it is necessary to establish the precise absolute
time for the resuscitation. The KCEMS database uses the
absolute times at the data points as extracted by manual
review of the record.The times in the defibrillator log file and
subsequently the representation are relative or elapsed times.
In order to be able to calculate back to the absolute time used
in the manual registration it was necessary to use the time as
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Table 5:The variables in the original database which will be automatically replicated.The table is organized in columns to highlight the type
of information the variables provide: time events, patient’s response, and device operation and therapy. Each variable is labeled according to
it being a primary information object (PIO) or secondary information object (SIO). All the variables labeled as PIO can also be found in the
table listing the PIO variables (Table 4). The remaining variables labeled as SIO can be automatically derived from the PIO variables (listed
in table PIO) by designing proper reasoning algorithms.

Variable domain
Time events Patient’s response Device operation and therapy

First compression time PIO Initial rhythm SIO Shock number SIO
Last compression time PIO Preshock rhythm SIO Number of shock seq. recorded SIO
VF onset time PIO Rhythm 10 sec after last shock SIO Number of shocks in sequence SIO
ROSC time PIO Rhythm 30 sec after last shock SIO Mode SIO
Shock time PIO Rhythm 60 sec after last shock SIO EMS CPR prior to shock? SIO

Rhythm 120 sec after last shock SIO Impedance at 1st shock SIO
ECG start time SIO VF prior to next shock? SIO Energy of 1st shock SIO

Org. rhythm prior to next shock? SIO
ROSC SIO

recorded in the stored defibrillator files at the time the device
was turned on as the reference time for all events. Doing
this involved calculations to convert the start time from the
conventional time in year/month/day/hour/minute/second
format to a “serial date number” time (the number of days
from January 1, 0000) used by the algorithm.These times are
then converted to elapsed times for the representations. The
elapsed times are then converted back to absolute times via
the “serial date number” time for comparison to the original
times in the database. The comparison of the times from
the representations to the database can therefore be viewed
as a comparison of the accuracy of the manual method of
extraction by the reviewer to the automated method based
on the defibrillator’s internal files. In the automated method
the exact time the defibrillator is turned on is used as the
basis for developing the times of shocks and other events.The
assumption is made that the defibrillator has been correctly
synchronized with the local regional time. (See Appendix A.1
for details.)

The first primary information objects to be established
and compared are the defibrillation shocks. Using the therapy
domain representation, each shock in the therapy domain
is identified and its position noted; the absolute time is
calculated. Then the preshock and postshock periods can
be identified for each shock. A preshock period is the time
interval between the current shock and the previous shock
and the postshock period the interval between the current
shock and the next shock. If the current shock is the first
shock the previous shock is replaced by the beginning of
episode (BOE) marker. Likewise if it is the last shock of
the recording the “next shock” is replaced by the end of
episode (EOE) marker in the therapy domain. To determine
the “First compression time,” the preshock period of the
current shock as recorded in the therapy domain is used
as the time interval within which to search for the first
occurrence of the symbol used to identify compressions, “C.”
Likewise, “Last compression time” is determined by searching
the recorded preshock interval for the last occurrence of “H”
which signifies a change in state fromCPR to “hands off time”

prior to the defibrillatory shock “D.”The times for these PIOs
are then converted to absolute times.

The PIOs for the rhythm domain are handled in a
similar manner. Here the PIOs represent the rhythm domain
states and are VF (ventricular fibrillation), AS (asystole),
PE (pulseless electrical activity), PR (pulsatile rhythm), and
UN (unknown). These states are represented in the RORE.
Custom software was programmed to identify the preshock
and postshock periods of each shock in the RORE and then
to search these intervals for the first occurrence of the PIO of
interest (VF onset or ROSC onset). The time associated with
this event is then converted as noted above from seconds to a
computer time stamp known as SDN time (see Appendix A.1
for details) to hr:mn:sc format and is then compared to the
original KCEMS database.

The next step in the conversion process from the RORE
to the derived database is to derive the secondary information
objects (SIOs; Table 5) from the PIOs. Determination of the
Ecg start time and other time variables has been described
with the time conversion process. The rhythm variables are
handled by assuming that once a rhythm is present that it
remains in that state until the notation in the RORE indicates
a change in the rhythm state. The algorithm recreates the
rhythm at a specific time point simply by identifying the
time interval in the RORE containing this time point and
noting the corresponding rhythm symbol in the RORE
occurring immediately before this (for detail: Appendix A.2).
To determine if there are occurrences of VF or organized
rhythms before the next shock, the postshock interval is
searched for occurrences of the types of rhythms in question
and the results allocated to the variables “vfpr” and “orgpr.”

The device operation variables are also directly related to
the defibrillatory shocks. The number of each shock, “shkn,”
is determined by sorting the shocks in ascending order
according to the sample numbers and assigning to each shock
the number corresponding to its position in the ordered
sequence. The number of shocks without intervening CPR is
determined by initializing a counter to one. For each shock,
the preshock interval is searched for compression events. If
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Figure 3: Case recording from MRX defibrillator. The blue tracing
is the ECG. Impedance tracing is shown in red. The defibrillator log
events (shock advised, charge, shock delivered, analysis started, and
artifact detected), the rhythm transitions (vf: ventricular fibrillation,
as: asystole, and pe: pulseless electrical activity), and annotations
for start and end of compressions (c1 and c2) and defibrillations (d1
and d2) are shown. Refer to Figure 4 for the corresponding RORE
representation.

none are found, the counter is incremented. The counter
value is recorded in the variable “shks.” The variable, “ssrec,”
which gives the number of recorded shocks is determined as
the length of the ordered sequence of shocks. In the database,
the “mode” variable indicatingmanual or AEDmode is based
on the clinical impression of the reviewer rather than on
the CPR process data from the defibrillator log files. In the
algorithm implementation the “modeSwitchMonitor” and
“modeSwitchAED” in the defibrillator log file is used directly.
Once identified for each shock the mode is compared to the
database in accordance with the latest such entry prior to
the time of shock. The energy and impedance variables are
also manually estimated in the database by the reviewer. In
contrast, in the algorithm these were read directly from the

180 196 H
196 198 D
198 200 H
200 319 C
319 331 H

Therapy
domain

180 208 VF
208 258 AS
258 283 PE
283 331 VF

Response
domain

180 196 HVF
196 198 DVF
198 200 HVF
200 208 CVF
208 258 CAS
258 283 CPE
283 319 CVF
319 331 HVF

Representation
of

resuscitation
episode

Figure 4: The representation of the resuscitation episode (RORE)
including the therapy domain representation, the response domain
representation, and the episode representation (for detailed expla-
nation see Appendix C). UN = unknown, C = compressions, H =
hands off chest, D = shock, CVF = compressions during VF, CAS =
compressions during asystole, DVF = defibrillation for VF, PE =
pulseless electrical activity, and PR = pulsatile rhythm.

defibrillator log file in the information provided with each
shock. These values are then compared.

3.6. Comparing the Original and Replicated Databases. For
result evaluation, each of the automatically generated SIO
variable values based on the RORE representation are com-
pared to the corresponding manually registered values read
into MATLAB from the Excel spreadsheet. These compar-
isons were coded according to being correct, wrong, or
missing. These three categories are given the numeric codes
1, 2, and 3, respectively. The comparisons involve computing
the value difference and comparing this to the specified value
ranges for each of the three categories. As all values are
integers, the deviations will also be integers.The value ranges
are provided in the next section.

When comparing recorded event times, a deviation of
1 second or less was defined as correct, those larger than
this were defined as wrong, and deviations due to the codes
for persistent VF, no CPR data, and no data available were
defined as “missing”(see Appendices B.1 and B.2 for details).

After tuning the system on the first twenty, it was run on
the 55 episodes that had not been interpreted by the system
previously. One episode was excluded as the registration
was incomplete (shocks 2 and 3 missing). Error rates and a
detailed analysis of the etiology of each error were performed.

4. Results

Error rates are shown in Figure 5. Rhythm annotations (a)
were accurately reproduced in over 90% of cases. Discrep-
ancies were due primarily to inconsistencies in the original
database. The therapy variables showed the largest error
rates in mode (15%), impedance (12%), and energy (14%)
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Figure 5: Summary of the match rates comparing the manually and automatically derived variable values. (a) shows match rates for rhythms
at the preselected times from the database. (b) shows data regarding the defibrillator logs of shock data. (c) shows the times for ECG start,
shock times, first compression and last compression times, VF onset times, and time of return of spontaneous circulation. All results are given
in percentages of the ratio: correct/(correct + error). For the time variables, the lower row shows the ratio of automatically generated codes
for missing values matching the manually given missing codes (gray bars).

annotations (b). Defibrillator generated data for these vari-
ables differed from estimates by the reviewers taken directly
from defibrillator screen. Time variable (c) demonstrated a
large number of unknown values. For those values that were
present, the correlation of time values between the original
database and the values recreated by the algorithm was over
90%. The missing values accounted for a large portion of
values related to ECG start, first compression time, VF onset
time, and time of return of spontaneous circulation. These
are areas which require a judgment by the reviewer and
therefore have a subjective component or may be obscured
by CPR artifact or difficulty in ascertaining whether a pulse
or blood pressure was present due to lack of documentation.
The errors are divided between flaws in the algorithm and
inconsistencies in the manual annotations.

In the following a detailed discussion is given on the
various types of errors which occur.

4.1. Evaluation of the Replication of the Time Variables. The
time variable results are shown in Figure 5 (for additional
detail see Table 6).

For ECG start there are four errors. Three of these
correspond to deviations of 4, 66, and 69 seconds and might
be explained by special circumstances in the operation of the
AED (see Appendix B.3 for details). One error corresponds
to a deviation of more than 4 hours which we do not
have an explanation for. Two of these deviations seem to
propagate and might very well be the cause of corresponding
deviations and reported errors for time of shock and time
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Table 6: Results for the comparison betweenmanual and automatic recording of time event variables.The table counts the number of correct,
wrong, and missing values. An automatic recording is considered correct if the deviation from the manual recording is less than or equal to
one second. Otherwise the recording is considered wrong. A recording is considered missing if the code 66 : 66 : 66, 88 : 88 : 88, 99 : 99 : 99 is
used for either of the recordings or the manual recording was changed to 00 : 00 : 00 or 12 : 00 : 00.

Time variables
Time point ECG start Defib shock First compression Last compression VF onset ROSC pulse
Abbreviated ecgtm shktm fctm lctm vfonsettm rsctm
Correct 33 138 90 108 45 15
Wrong 4 2 0 1 5 0
Missing 17 0 50 31 90 125

of first and last compression. Missing values were noted
in 17 cases due to lack of a recorded value in the manual
database.The automatic procedure used the date stamp found
in the defibrillators files composing the CPR process data and
therefore was always available.

For the time of shock (shktm), there are two errors
propagated from deviations in ECG start time.

For the time of first compression (fctm) there are 50
deviations categorized as missing. In six of these cases
the manual registration has provided a time for start of
chest compressions corresponding to ECG start time. The
algorithm has been designed to interpret this situation as
“ongoing chest compressions” at the start of recording (see
Appendix B.4 for details). One case is propagated from the
large deviation in ECG start time (ectm). In the remaining 43
cases the algorithm produces the same missing codes as were
used in the manual registration.

For the time of last compression (lctm) there is one error
corresponding to a deviation of two seconds which we do
not consider to be unacceptable. There are 31 cases coded
as “missing.” There is one “missing” case where fc is given a
time and lc is coded as unknown in the manual registration.
The algorithm was designed to handle several variations of
special coding of lc/fc and this is the only case not handled
(see Appendix B.5 for details). One case corresponds to the
deviation propagated from ecg start time. In the remaining
29 cases the algorithm produces the same missing codes as
were used in the manual registration.

For the time of VF onset (vfonsettm) there are five devia-
tions considered as errors. Four of these errors are deviations
in the range 21-22 seconds. In the manual registration vfonset
is set at 11-12 seconds after start of shock. In these cases VF
is also annotated as reappearing 30 seconds after shock (r30).
The algorithm makes the determination of VF onset at r30
and produces this offset in time compared to the manually
derived reading by the reviewer. This discrepancy between
the manual review time and the automatically derived algo-
rithmic time appears to be explained by inaccuracies in
determining the time point for the end of the shock. When
the manual review noted the time at 10 seconds to be asystole
and also recorded the vfonset to be in the 11–15-second range,
the algorithm would define VF onset at the next rhythm time
check at r30. (See Appendix B.6 for details.)There is one case
where the deviation is one hour and the manual registration
obviously is wrong as the time given precedes the start of
episode. There are also six cases considered as “missing”

where the manual registration has provided a proper time
which the algorithm has interpreted as persistent VF. In all
these cases the manual rhythm annotations prior to and after
shock (rhyb4, r10, r30, and r60) indicate VF. The algorithm
is designed to recognize these cases as persistent VF (in
38 cases the algorithm and manual registration coincide).
There are two cases considered as missing where the manual
interpretation indicates persistent VFwhile the algorithmhas
yielded a proper time. In the first case the manual rhythm
annotations at 10 and 30 seconds after shock indicate asystole
and VF, respectively (r10 = 1 and r30 = 2). This is interpreted
by the algorithm as VF reappearing at 30 seconds. In the
second case shocks 2 and 3 are not registered. The study is
designed on the assumption that the episode registrations
are complete. In this case, the rhythm annotations will not
be correct as two shock registrations are missing. There is
one case where the manual interpretation has used the code
for persistent VF while the algorithm has used the “missing”
code 88 : 88 : 88. In this case the preshock rhythm is VF and
the rhythm at ten seconds is “unknown.” The algorithm has
not been designed to recognize this as persistent VF (in 43
cases the algorithm and manual registration coincide). So in
81 out of the 90 cases categorized as missing, the algorithm
produced the samemissing codes as were used in the manual
registration.

For time of ROSC (rsctm) there are 15 correct registra-
tions and 125 considered as missing. The only differences are
discrepancies in the use of codes for “unknown” 99 : 99 : 99
and 88 : 88 : 88 which the algorithm is not able to distinguish
and therefore uses the “unknown” code consistently.

4.2. Evaluation of the Replication of the Patient Response Vari-
ables. The patient response variables are coded as correct if
the manual and automatically generated values are identical.
Otherwise the automatically generated variable is considered
wrong. The patient response variables are shown in Figure 5
(for additional detail see Table 7). For the initial rhythm
(init rhy) there are no errors.

For the preshock rhythm (rhyb4), there are four errors.
In three of these cases the last rhythm registration prior to
the previous shock deviates from what has been manually
determined as the preshock rhythm. The algorithm deter-
mines rhyb4 from the last registration prior to the current
shock (r120, vfonsettm, or rosconsettm). The fourth error
corresponds to the case of two missing shock registrations
which corrupts the generation of RORE.
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Table 7: Results for the comparison between manual and automatic recording of patient response variables. The table counts the number
of correct and wrong values. An automatic recording is considered correct if the automatic recording is identical to the manual recording.
Otherwise the recording is considered wrong.

Response variables

Variable
name

Initial
rhythm

Preshock
rhythm

Rhythm
10 secs after
the last shock

Rhythm
30 secs after
the last shock

Rhythm
60 secs after
the last shock

Rhythm
120 secs after
the last shock

VF prior to
next shock?

Organized
rhythm prior
to next shock

ROSC

Abbreviated init rhy rhyb4 r10 r30 r60 r120 vfpr orgpr rosc
Correct 140 136 135 136 137 134 138 133 127
Wrong 0 4 5 4 3 6 2 7 3

There are five errors for the rhythm at 10 seconds after
shock (r10). For four of these cases, the manual registration
indicates a non-VF rhythm. At the same time, the manual
registrations of the time for VF onset (vfonsettm) are 13–16
seconds after shock. This will be reflected in the generation
of RORE and the algorithm will look for rhythm transitions
in a time window of five seconds that are present ten seconds
after end of shock (end of shock is set to three seconds after
shock is delivered). Thus, the algorithm will find a rhythm
transition to VF corresponding to the registered time of VF
onset. The fifth error corresponds to the case of two missing
shock registrations which corrupts the generation of RORE.

There are four errors for the registration of the rhythm
at 30 seconds after shock (r30). All of these are cases where
the algorithm indicates VF corresponding to a VF onset time
set at 30–35 seconds after shock rather than the manually
registered non-VF rhythm.The explanation for this is similar
to the one given for r10 above.

For the rhythm at 60 seconds after shock (r60) there
is one case corresponding to the problem with VF onset
and one corresponding to the 2 missing shock registrations
both described above. The third error corresponds to a case
where the manual registration has provided an unknown
rhythm. In RORE, the transition to unknown rhythm will
occur at 60 seconds. In the case of transition to unknown
rhythms around the time point under consideration the
algorithm is designed to choose the last known rhythm as
long as it is present within the time window. This special
handling was designed to handle transitions to unknown
rhythms generically but does not work well when the time
of rhythm transitions are not accurately represented. For
the rhythm at 120 seconds after shock (r120) there are six
errors. There are two cases corresponding to the problem
with VF onset and one corresponding to the 2 missing
shock registrations both described above. In another case,
the manual registration indicates a proper rhythm while the
algorithm has determined the rhythm as “unknown.” Here
the ECG recording ends at 111 seconds after shock. This is
represented in RORE as unknown rhythm (UN) and the
algorithm consequently sets the rhythm at 120 seconds as
“unknown.” There is also one case where the time of ROSC
onset is 100 seconds after shock and the manual registration
at 120 seconds indicates a transition to “unknown rhythm.”
In this case, the algorithmwill indicate the last known proper

rhythmas described above.There is also a casewithmismatch
between “undetermined” and “unknown” rhythm.

For the indication of whether VF occurs prior to the next
shock (vfpr), there are 2 errors. In both cases there is no
evidence of VF in the interval in question. In one of the cases
the algorithm states that there is no VF, contradicting the
manual registration of “yes.” In the other case, the algorithm
indicates “unknown” in contrast to the manually registered
“no” because the rhythm annotations indicate “unknown” or
“indeterminate” rhythm.

For the indication ofwhether an organized rhythmoccurs
prior to the next shock (orgpr), there are 7 errors. One
error corresponds to the last error described above where
there is no evidence of organized rhythm in the interval in
question. The algorithm indicates “unknown” in contrast to
the manually registered “no” because the rhythm annotations
indicate “unknown” or “indeterminate” rhythm. One of the
other errors is due to the problemwith the twomissing shocks
described above. In the five remaining cases, the rhythm
annotations indicate an organized rhythm in the interval
in question which the algorithm recognizes and determines
“yes” in contrast to the manual registration of “no.”

For the indication of presence of ROSC (rosc) there are
13 errors. In eight cases, the ROSC time is “no” and the
manual indication of ROSC is “yes.” The algorithm does
not interpret this correctly as it bases its interpretation
from RORE which does not carry information about any
occurrence of ROSC. In the five remaining cases the ROSC
time is “indeterminate” and the algorithm indicates “no”
ROSC as there is no evidence of ROSC in RORE while the
manual registration says “unknown.”

4.3. Evaluation of the Replication of the Therapy and Device
Operation Variables. The results for the therapy and device
operation variables are shown in Figure 5 (for additional
detail see Table 8). The variables are considered correct if
the manually registered and corresponding automatically
generated variables are identical.

There are no errors for the variables indicating shock
number (shkn), number of shock sequences (ssrecord), and
number of shocks in sequence (shks).

For the variable indicating the mode of the AED at the
time of shock (mode) there are 21 errors which all correspond
to the algorithm providing “yes” rather than “no” for manual
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Table 8: Results for the comparison between manual and automatic recording of device operation and therapy variables for the data set. The
table counts the number of correct and wrong values. For all variables except imp and enrgy an automatic recording is considered correct if
the automatic recording is identical to the manual recording. Otherwise the recording is considered wrong. For imp and enrgy the numeric
deviations between the manual and automatic recordings are considered. A deviation of zero is considered correct, and larger deviations are
counted as errors.

Therapy variables

Variable
name

Shock
number

Number of shock
sequences recorded

Number of
shocks in
sequence

Mode
EMS CPR
prior to
shock?

Impedance at
1st shock

Energy of 1st
shock

Abbreviated shkn ssrecord shks mode cpr imp enrgy
Correct 140 140 140 119 137 123 120
Wrong 0 0 0 21 3 17 20

mode. These are a result of the manual reviewer incorrectly
assuming the mode was for automatic mode when in fact the
device was in manual mode as indicated by the defibrillator
process files.

For the variable indicating if there was EMS CPR prior to
shock or not there are three errors. For two of the cases both
start and end times of compressions prior to shock are set
to “unknown.” The algorithm consistently interprets this as
CPR being present (reducing error rates in tuning phase).The
third error is due to the problemwith the four-hourmismatch
in the ECG start time variable.

For the variable indicating the impedance at first shock
(imp) there are 17 errors.

For the variable indicating the energy of the first shock
there are 20 errors.

The algorithm registers the impedance and energy for
each individual shock. For these variables (except cpr) the
automatically derived information is read directly from the
log data file and is therefore exact. It is therefore an error
caused by the person performing the manual extraction
estimating the value and is not due to errors in the reasoning
process of the algorithm.

5. Discussion

We have presented a method for replicating the manually
annotated variables in an EMS registry database.Themethod
was developed according to the principles presented by
Eftestøl et al. [8] and implemented in MATLAB. To our
knowledge, this is the first time automated review has been
performed on resuscitation data.

In addition, the times, impedances, and defibrillation
energies were obtained directly from the device logs andwere
inherently more accurate than visual estimates by reviewers.
One of the main objectives of this study was to verify how
closely the automated review can approximate the original
data when one has access to the true annotations. These
annotations are also the key information components used in
the construction of the response and therapy representations
that is fundamental to this method. As we discussed in the
methods section, we used these representations to identify
the shocks and determine the pre- and postshock events for
each of these.

For the time variables, deviations larger than 1 second
were categorized as errors. 5 seconds seemsmore appropriate
as 1 second is very restrictive and identifies differences that
are too small to be clinically significant. We suggest using a
5-second threshold in future studies. In the test data, there
were only two errors in the 2–5-second range.

In the evaluation of the results, we have used the terms
correct and wrong, but it is important to consider that we
are really considering deviations between the manual and
automatic registrations.The detailed review of the deviations
showed that some of these were caused by errors in the
manual registrations and others by errors in the automatic
registrations. For the time variables, determining the vfonset
was one such example where the problem was identified
to be associated with the fact that manual interpretation of
persistent VF is done in a time interval after shock and that
the endpoint of a shock is not clearly defined for manual
interpretation which it has to be for automatic interpretation.
Otherwise, it seems that the algorithm greatly improves the
accuracy over the human reviewer and is much more accu-
rate. The machine is accurate to the millisecond providing
that it has been properly synchronized to a “GMT” time and
that relative times are clearly accurate to amillisecond barring
machinemalfunction.Human reviewers can only be accurate
to about 1 to 2 seconds as we have shown in this work. As for
the patient response variables, errors in the evaluation 10 sec-
onds after shock can largely be associated with the nonprecise
definition of the end of shock time. There are also errors
that are caused by inconsistencies in the manual annotations.
Generally speaking, the manual interpretation might cause
errors in the sense that two different variables express the
same information, like, for example, last rhythmchange in the
postshock period which is the same as the preshock rhythm
in the next preshock sequence. The automatic annotations
base its interpretation on considering the rhythms between
uniquely defined rhythm transition times and thus avoids
these kinds of inconsistencies. As for the interpretation of
ROSC the algorithm does not interpret this correctly as it
bases its interpretation from RORE which does not carry
information about any occurrence of ROSC. For this case, the
rhythm interpretation should distinguish between pulseless
and pulse giving organised rhythms. For the therapy and
device operation variables, the errors will mostly reflect
errors in the manual registration as the algorithm reads this
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information directly from the electronic log files which will
be reliable as long as the correct information is read. We have
shown that we can replicate the review process of a given EMS
system fairly accurately. To further develop this system and to
handle the errors in the algorithms one would need to adjust
the manual review process so that the critical time points are
more clearly defined, make a dedicated study, and compare
automatic and manual registrations again to see if errors are
reduced. In an implementation, the automatic registrations
should be checked and overread by a clinician.

The comparison shown above (Figure 5) demonstrates
the inherent variability of a human reviewer in interpreting
the data from the arrest and indicates several areas in which
improvement can be made using an automated reasoning
algorithm. One clear necessity is that all of the definitions
must be made explicit so that a rule can be applied that will
in every case provide the same result. This would allow the
coding of computer algorithms to follow these definitions. In
several cases (i.e., if VF that recurs after a shock is “persistent”
or “recurrent” may depend on the duration of the period of
asystole occurring after the shock). This study also clearly
demonstrates that computer logs and times should be used
in all cases as being more reliable than estimates and error
pronemanual data entry by reviewers. In this study themode
of defibrillator operation was incorrectly inferred by the
reviewers in a high proportion of cases when the defibrillator
log was able to provide this information accurately from the
digitized files. In addition, a large number of errors which
are “propagated” because the initial time point is unknown
or recorded incorrectly can be reduced by improvements in
using the time stamps from the defibrillator logs directly.
These are examples of systematic deviations that further
work with automatic methods of analysis can readily be
programmed to reduce and eliminate.

The next step in developing this system will be to develop
algorithms for automated rhythm annotations and chest
compression detections. Our approach to do that will be to
extract rhythm segments from the ECG tracings and catego-
rize them according to the annotations used in the registry.
The start and end points for each of these segments can be
determined by using the same representations constructed
in the present study. For example, all ECG tracings of VF
segments without CPR artifacts can be found by searching
the combined representation for each patient episode for
the string “VF.” For all matches the VF segments can then
be extracted from the ECG tracing as specified by the
interval start and end sample given in the representation.
Furthermore, signal processing algorithms for discriminating
between the different rhythm categories will be developed.
The discriminative power of these algorithms can be eval-
uated against the categorized collection of labeled rhythm
segments. Correspondingly, methods for detecting chest
compressions will be developed, applying the same principles
for collecting segments with ongoing compressions from the
signals carrying information about the presence of chest
compressions. In this way, an EMS specific annotator can
be made. This rhythm detector will replicate annotations as
verified by blinded review by experts. Once rhythm and chest
compression annotations are automated, the same algorithms

used in this study for the construction of the representations
from the manually extracted data can be applied. To evaluate
the system, the performance of the fully automated system
can be compared to the performance of the semiautomated
and “expert reviewed” system which can be regarded as the
gold standard.

In the current study, the presence of chest compres-
sions was evaluated based on the compression depth signal
derived from the acceleration measurements from the chest
compression puck placed on the victim’s chest. In the case
where such information is not available, one might consider
using the impedance data to follow respirations and one of
our group is looking at how reliable this might be and also
into adding the ETCO2 to the detail when it is available.
The use of impedance for determining presence of CPR has
been found to be reliable in a study by Stecher et al. [14].
This will allow the automatic reading using impedance in
machines from other manufacturers who do not have the
“puck” and in instances where the puck is not used even
though it is at the scene. The impedance can also be used to
automatically determine the presence of ventilations [15] and
circulation [16] which has been demonstrated by Risdal et al.
A future RORE can be extended to include information about
ventilations, circulation, and possibly drug administration.

One method to validate the automatic analysis of the
rhythm states would be for three expert reviewers to inde-
pendently review the rhythm transitions and classifications
as performed by the algorithm and to indicate errors or
disagreements. One might then classify an “error” as any
indication of disagreement with the algorithm that is noted
by at least 2 of the 3 reviewers. Consideration of when the
automatic method is accurate enough to be used without
expert “overreading” would be based on a low error rate,
perhaps less than 1%.

Of course, there are variables in the registry database
that require manual interpretation. For example, there are
variables describing the cause of CPR interruptions related
to each shock and other variables for describing use of
medications. The registration of these variables will still
require manual interpretation.

Once a fully automated system is considered to perform
satisfactorily, it will not only increase the efficiency for data
interpretation at the EMS system from which it has been
developed. It will also be possible to apply the automated
review system to data from other EMS systems, thus enabling
efficient multicenter data analysis without the need for
centralized data storage. The results generated from data in
this fashion will in general be anonymous with respect to
issues of patient confidentiality. This method does access the
CPR process data directly in the format downloaded from
the AED device, thus making it independent from the local
database structure used by the EMS. Thus interfacing the
system directly to the raw data should make it easier to
adopt it at other EMS sites with different registry database
structures. Software interfaces will have to be adapted to
read clinical information and translate it into the appropriate
format.
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In the present study we only considered a population of
patients restricted to those treated with Philips AED device.
In the case that we want to study data from different EMS
services, the algorithms should also be able to handle data
from other types of AED devices. One of the important
aspects of this work is that as long as we are able to construct
the state sequence models, we can apply the algorithms. So as
long as the primary information objects are available through
interpretation of the CPR process data it will be possible to
apply the methods described here, independent of the type
of AED device. Another objective of the present study was to
demonstrate the applicability of the resuscitation data repre-
sentation scheme presented by Eftestøl et al. [8]. The scheme
was developed without knowledge of the data reviewmethod
used in the King County EMS system. As was stated in that
study, “We have discussed a methodology for representing
resuscitation data emphasizing that such a representation
scheme should offer a flexible format for efficient analysis of
a variety of resuscitation research objectives.” In the present
study we have demonstrated that the representation scheme
offers a flexible format for efficient analysis. By applying the
method to a research objective for which it was not originally
intended, the representations in the three domains have been
shown to be robust as well.

6. Conclusion

We have demonstrated that it is possible to use the infor-
mation present in the CPR process data recorded by the
AED during resuscitation along with rhythm and chest
compression annotations to automate the episode review.
This automated review is based on representing the resus-
citation episode with sufficient detail using a minimal but
sufficient set of transitions between rhythm states and therapy
states which can be combined into a representation of the
resuscitation episode which communicates the necessary
information in a brief and compact format. This method can
be automated to allow the development of a large database
of resuscitation data for use in clinical studies of care and
therapy for the cardiac arrest patient.

Appendices

A. Supplement—Reasoning from
the Representation Back to Create
the Derived Data

A.1. Time Data Conversions. The initial time event retrieved
from the defibrillator is the “powerCycleOn” which
corresponds to the time the ECG recording is started
(0 seconds). This date stamp gives the date and time
(“yyyy:mm:dd:hr:mn:sc”) at the start of the recording and
is used to determine “ecgtm.” The datestamp is converted
to a serial date number (“SDN time”) which gives the time
in number of days from January 1, 0000, and this is the
SDN time for the start of the recording. This initial event
is called “Start SDN.” The time as recorded in the RORE
for all subsequent events found in the representations can

then be converted to the SDN time by taking the time (in
seconds) recorded in the RORE for that event and convert
it to an SDN time which is in “Days Since 0000” as follows:
SDN time = Start SDN + (Event Seconds/60/60/24). The
second term converts the number of seconds elapsed to the
number of days elapsed as coded in SDN time. Thus, to
reason backwards, in order to determine the shock times in
SDN time from the RORE times recorded in seconds, the
representation is searched for the symbol used to identify
a shock, “D.” The time interval in seconds that coincides
with each match is then converted to the SDN format which
provides the elapsed time in days from Start SDN. When
this elapsed time is added to the Start SDN it gives the year,
date, and time accurately as encoded in the SDN format.This
format could be used by itself as a reliable and reproducible
time variable. In this study the data in the original ACCESS
database was in the hour:minute:second format. For this
reason we transformed the SDN format to hr:mn:sc format
so that the derived data could be compared with the original
data directly.

A.2. Determining the Postshock Rhythms at 10, 30, 60, and
120 Seconds. The postshock rhythms along with the start,
end time and duration of each rhythm are derived from
the postshock interval as it is displayed in the episode
representation. If the rhythm at 10 seconds after shock is
to be determined, the postshock rhythm with the transition
time closest to ten seconds bounded upwards to 15 seconds is
allocated to the variable “r10.”The same procedure is repeated
for the variables “r30,” “r60,” and “r120” (always looking 5
seconds beyond the time in question).

B. Supplement to the Results Section

B.1. Systematic Deviations in the ECG Start Time. When it
comes to deviations in ecgtm, the algorithm differs between
systematic and nonsystematic deviation. In the result evalua-
tion of the manual and the automatically generated variables
these two types of deviations were handled differently. When
the manual given time was 00:00:00 or 12:00:00, these are
considered systematic and are compensated for in the evalua-
tion of error so that a single early or initial deviation does not
propagate to the subsequent time variables. These deviations
are not considered as errors. For ecgtm the code “missing”
is used. The nonsystematic deviations are not compensated
for in the evaluation of the other variables and possible
systematic components in the deviations might propagate
and be counted as errors in the other time variables.

B.2. Use of Special Codes for “Missing” Information. In the
original database several codes were used to indicate persis-
tent VF recurring immediately after a defibrillation shock,
“no CPR data available” due to failure to use the puck or other
technical problem and “unknown” when no information
could be recorded because of severe artifact, failure to record,
and so forth.
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B.3. Nonsystematic Deviations in the ECG Start Time. A
possible explanation for these errors might be that defibril-
lator was turned on and the leads were not attached to the
patient for about 1 minute in two of these cases and that the
manual abstractor started the “ECG time” when the leads
were hooked up, but the “auto” reading from the CPR process
defibrillator data gives the time when the device was turned
on.This is an error of process in the manual part because the
reader interprets the start differently from the machine start.

B.4. Deviations Categorized as Missing for the Start of Com-
pression Times. These are all cases where fctm is manually
registered to be at the start of the ECG recording or previous
to this. The algorithm sets the state of therapy to “unknown”
in the period prior to the start of the ECG recording. The
corresponding therapy representation will then start with
the symbols U, C where the time for the transition to
compressions corresponds to the ECG start time. When the
algorithm interprets this symbol sequence, it determines fctm
as unknown. This was a way of handling the cases were the
manual registration of “fctm” was “unknown” (41 cases).

B.5. Deviations Categorized as Missing for the End of Com-
pression Times. In RORE this is coded with the end of
the compression sequence coinciding with the defibrillation.
In some cases where both fctm and/or lctm are coded as
“unknown,” the RORE will set fctm to correspond to the
start of ECG recording and lctm to correspond to the time
of defibrillation. This is unrealistic but was done so that
the algorithm could be designed to recognize the case of
both variables manually registered as “unknown.” This is the
sole case where only lctm is registered as “unknown” so the
algorithm was not designed to recognize this.

B.6. Deviations in VF Onset Time. The algorithm evaluates
rhythms with reference to end of the shock which is set
to 3 seconds after start of shock. In all these cases, the
variable indicating the rhythm prior to shock (rhyb4) has
been annotated as VF while the annotation for the rhythm
at ten seconds after the shock given as non-VF. In RORE,
the transition time to non-VF is set at ten seconds, and the
algorithm interprets this as a VF that persists for less than
10 seconds after shock which is not considered when looking
for vfonsettm. If it lasts longer it is considered persistent.
This is a problem that arises because there is no accurate
rhythm annotation immediately after shock.This error could
be eliminated by using the shock time as a rhythm transition
point. Essentially the rhythmwould be considered “unknown’
until the ECG voltage returned to baseline after the shock at
which time a determination could be made.

C. Detailed Explanation of
the RORE in Figure 4

The time shown corresponds to 0 to 1057 seconds. The
tracings shown in Figure 3 correspond only to the period
from 180 to 330 seconds. The left column is the therapy
representation, showing the therapeutic interventions. For

the first 46 seconds there is no ECG, so this is represented by
“UN” (unknown therapy). At 46 seconds recording of ECG
starts and compressions are observed on the compression
depth signal. At 180 seconds, the chest compressions are
interrupted and a hands off interval follows (represented
by an “H”) and lasts until a shock is given at 196 seconds
(represented by a “D”). The remainder of the case shows
similar sequences of hands off interval, chest compressions,
and defibrillations until no further annotations are given at
the end of the recording.

The patient response representation is shown in the
middle. It represents the same time span, showing the cardiac
rhythms presented by the ECG. As for the therapy repre-
sentation, the rhythm for the first 46 seconds is unknown
(“UN”). At 46 seconds, the initial rhythm was recorded as
“VF.” The next observation was made at 208 seconds (ten
seconds after shock) and asystole was recorded (“AS”). This
continued until 258 seconds where an organized rhythm was
observed (‘represented by “PE”). The remainder of the case
shows similar transitions between rhythms, first to “VF” and
then to “PE” again and finally ROSC at 469 seconds. The
documentation of rhythms ends at 856 seconds.

The episode representation combines the therapy and
response representations showing the interaction between
therapy and response. From 46 to 190 seconds, compressions
are provided during VF. Compressions are interrupted at 180
seconds, preparing for the shock given at 196 seconds. The
effect of the shock is observed at 208 seconds.This is an effect
of the extrapolation of the response representation from the
spreadsheet information. The true transition time should be
prior to this. Following this, the effect of the compressions
is evident through transitions from asystole to organized
rhythm and then to VF. Following this compressions are
interrupted and a new shock is given resulting in an organized
rhythm and finally ROSC before documentation ends.
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