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Abstract

Background: The arrival of RNA-seq as a high-throughput method competitive to the established microarray
technologies has necessarily driven a need for comparative evaluation. To date, cross-platform comparisons of
these technologies have been relatively few in number of platforms analyzed and were typically gene name
annotation oriented. Here, we present a more extensive and yet precise assessment to elucidate differences and
similarities in performance of numerous aspects including dynamic range, fidelity of raw signal and fold-change
with sample titration, and concordance with gRT-PCR (TagMan). To ensure that these results were not confounded
by incompatible comparisons, we introduce the concept of probe mapping directed “transcript pattern”. A
transcript pattern identifies probe(set)s across platforms that target a common set of transcripts for a specific gene.
Thus, three levels of data were examined: entire data sets, data derived from a subset of 15,442 RefSeq genes
common across platforms, and data derived from the transcript pattern defined subset of 7,034 RefSeq genes.

Results: In general, there were substantial core similarities between all 6 platforms evaluated; but, to varying
degrees, the two RNA-seq protocols outperformed three of the four microarray platforms in most categories.
Notably, a fourth microarray platform, Agilent with a modified protocol, was comparable, or marginally superior, to
the RNA-seq protocols within these same assessments, especially in regards to fold-change evaluation. Furthermore,
these 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80 % fold-change concordance with the
gold standard gRT-PCR (TagMan).

Conclusions: This study suggests that microarrays can perform on nearly equal footing with RNA-seq, in certain key
features, specifically when the dynamic range is comparable. Furthermore, the concept of a transcript pattern has
been introduced that may minimize potential confounding factors of multi-platform comparison and may be useful
for similar evaluations.
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Background

Gene expression microarrays have provided an efficient and
cost effective means for estimating RNA levels and differ-
ences on a transcriptome scale for nearly two decades.
Since their arrival, millions of biological samples have been
processed and analyzed utilizing this workhorse technology
providing a window to the inner workings of cells, tissues,
and organisms. For many years microarrays remained the
primary source of knowledge pertaining to large scale gene
expression. However, within the last few years RNA-seq has
arisen as a competitive technology [1, 2] that many believe
has already displaced microarrays as the definitive source of
high-throughput gene expression data.

While microarrays have performed admirably through
their tenure, they do suffer from some inherit limitations
[3, 4]. Primarily, a microarray is a closed system that re-
quires prior knowledge of the RNA species to be mea-
sured. In short, you can only measure what you spot for,
and you can only spot for what you know. Conversely,
RNA-seq is an open system that can, in theory, measure
any RNA species present within the system without
prior knowledge of the transcriptome content. Further-
more, given that the sensitivity and dynamic range of
RNA-seq are only limited by the depth to which an in-
vestigator is willing to sequence, it stands to reason that
this RNA-seq technology would be superior in multiple
ways. Based on the stated advantages it would seem
there would be little reason for investigators to continue
with the use of microarrays. In practice, however, the
comparison of differences between the technologies
turns out to be a bit more complex.

A number of publications have produced fundamental
comparisons between RNA-seq and microarrays in an ef-
fort to illuminate the differences and similarities [5—11].
While these studies demonstrated substantial correlations
between RNA-seq and microarray, they highlighted a num-
ber of advantages of RNA-seq over microarrays in the de-
tection of differentially expressed genes. This seems to be
particularly true for genes with low expression levels. How-
ever, many of these investigations were limited in the num-
ber of evaluated microarray platforms and/or the degree of
bioinformatic comparison, likely due to the somewhat com-
plicated nature of the bioinformatic appraisal. In addition,
we have noted several large scale comparison studies, such
as the MAQC-III multi-community efforts [12], the ABRF
next-generation sequencing study [13], and Wang et al.
study [14], but these have been primarily focused on the ac-
curacy and reproducibility of multiple RNA-seq systems,
protocols, and data processing pipelines. As a result, we
sought to expand on the foundations laid by the prior
work above, and a study was completed with the follow-
ing elements. First, we compared four microarray plat-
forms (1 Agilent (symbolized as AGLN), 2 Affymetrix
(Genel.0 and HTA2.0), and 1 Illumina (ILMN)) and two
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RNA-seq library preparation protocols (poly-A selection
based Clontech (ClonTech) and rRNA depletion based
Ribo-Zero (RiboZero) approaches). Second, we sought to
perform the analysis of expression data in an apples-to-
apples fashion by ensuring that entities being compared
represented common transcript sets, or “transcript pat-
terns”, for a given gene. As defined in the Method sec-
tion, the transcript pattern was referred as to a subset
of probe(set)s of specific genes that targeted a common
set of transcripts across all microarray platforms. With
these elements in hand, our primary goal was to deter-
mine if any particular performance advantages/defi-
ciencies exist within a given platform or technology as
a whole. Our secondary goal was to evaluate the utility
of the transcript pattern approach for cross-platform
and cross-technology comparisons. To reach these goals,
we analyzed the data at multiple levels, particularly a re-
fined level of transcript pattern data, and presented results
in numerous aspects, including dynamic range, signal to
background ratio, fidelity of raw signal and fold-change
with sample titration at and across platforms, and valid-
ation with fold-change concordance of RNA-seq/micro-
array to the gold standard qRT-PCR (TagMan).

Results

Multiple levels of gene and transcript data sets

Utilizing the approach described within the materials
and methods, three different levels of gene/transcript
data sets were defined and employed for the compari-
sons of differential expression across platforms (Table 1).
The first level of analysis was performed on the complete
data sets of each platform with no direct gene level com-
parison, and, as such, the number of data points measured
varies. The second level of analysis was completed utilizing
a subset of data comprising 15,442 RefSeq genes whose
Entrez Gene ID were common across platforms. Finally,
the most focused analysis was performed on a subset of
data derived only from those microarray probe(set)s and
RNA-seq exons that were mapped to identical transcript
patterns for their given genes. A total of 7,043 transcript
patterns representing 7,034 RefSeq genes were identified
across the 6 platforms and protocols that met the defined
criteria (Fig. 1). This subset of 7,034 RefSeq gene data was
summarized from transcript pattern mapped probe(set)s
and RNA-seq exons using the Tukey’s Bi-weight algorithm.

Assessment of signal and dynamic range

The expression data generated on all platforms were
using the same 5 RNA samples (an Agilent Universal
Human Reference RNA (labeled as AGQO), a normal
pooled bone marrow RNA (labeled as BMO), and 3 of
AGO/BMO mixed samples at a ratio of 1:4, 1:16, and
1:64 (labeled as AG1BM4, AG1BM16, and AG1BM64)
(Table 2). These 5 RNA samples formed a titration in
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Table 1 Number of features analyzed in comparisons for all 6 platforms/protocols

Platforms # Features # Non-control # Features # Genes in # Detected # Genes & # Probe(set)s & exons # Probe(set)s & exons

/Protocols  at features at at gene & RefSeq & genes & transcript clusters  for transcript pattern  for transcript pattern
probe(set) probe(set) &  transcript Ensembl transcript for 15442 restricted 7034 not restricted 7034
& exon exon level cluster level gene clusters * common RefSeq  RefSeq genes RefSeq genes
level database genes

AGLN 43,376 41,000 29,066 24,961 22,056 15,442 8,668 11,453

Genel0 257430 253,002 28,869 20,796 28,105 16,516 11,449 84,196

HTA2.0 914,585 573,909 67,526 25,195 67,309 16,400 14,908 138,484

ILMN 47,306 47,214 34,589 31,320 23,377 15,442 8539 11414

ClonTech 1,298,791 1,298,791 62,893 49,085 43,266 15,594 16,470 334318

RiboZero 1,298,791 1,298,791 62,893 52,865 48,378 15,594 16,470 334,318

Notes:

1. AGLN: 41,000 probes represent 29,066 genes by GeneSymbol & SystematicName; 29,066 “genes” are composed of 24,961 entries with symbols and 4,105 with
Agilent probe_ids only

2. Gene1.0: 253,002 probesets represent 28,869 genes by Affymetrix “transcript_cluster_id” (TC); 28,869 TCs are composed of 20,796 genes with symbols and 6,209
without symbols (NetAffx na33.2)

3. HTA2.0: 573,909 probesets represent 67,526 genes by Affymetrix “transcript_cluster_id” (TC); 67,526 TCs are composed of 25,195 genes with symbols and 40,696
without symbols (NetAffx na33)

4. ILMN: 47,214 probese represent 34,589 lllumina named “genes”, of which 31,320 have official gene symbols and 3,269 labeled with Unigene_ids (Hs.xxxxxx)

5. ClonTech: 1,298,791 exons represent 62,893 ensembl genes (ENSGs) in R72 database; 62,893 down to 49,085 ENSGs with at least 1 read in any of 5 samples

6. RiboZero: 1,298,791 exons represent 62,893 ensembl genes (ENSGs) in R72 database; 62,893 down to 52,865 ENSGs with at least 1 read in any of 5 samples

*A “detected” call for AGLN at gene level and for Gene1.0 and HTA2.0 at transcript cluster level was made if any probe(set) was “detected” in any sample by

p <0.05 (AGLN) or p < 0.01 (Gene1.0 & HTA2.0); and for RNA-seq data the detection calls were made if any samples had a cpm >0.25. ILMN data have “detected”
calls by p < 0.05 at both probe and gene levels
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Fig. 1 Diagram of transcript patterns defined in the current study. A transcript pattern select region covers a set of transcripts that share a certain
exon or exon region recognized by a probe. The model gene in this diagram is TBP (exon/intron size modified for illustration purpose). If we
consider, for example, Affymetrix probe a, which targets transcript pattern selection region #1 that covers a set of transcripts 001 and 003-005
but transcript 002 is excluded, defines the transcript pattern A. Thus, signals from Affymetrix HTA2.0 probes b, d, and e, from Gene1.0 probes ¢
and d, from Agilent probes a, and from lllumina probes a and b will be used to summarize the expression level of the common transcript pattern
B within a platform. Further, because the transcript patterns B and E are common across all microarray platforms they are kept in the transcript
pattern derived subset data as two separate data points although they represent the expression level of the same specific gene (TBP)
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terms of the amount of pure AGO or BMO in each sam-
ple. The percentage of bone marrow RNA contained in
the samples AGO, AG1BM4, AG1BM16, AG1BM64,
and BMO was 0 %, 75 %, 93.75 %, 98.4375 %, and 100 %,
respectively. The two original non-mixed RNA samples
(AGO and BMO) are expected to have the greatest di-
versity in gene expression levels. As such, these samples
were selected to calculate minimum, maximum, median,
25 percentile, and 75 percentile of non-normalized raw
signal values for a visual inspection of the overall signal
distribution across platforms. These data are intended to
provide a raw estimation as to the dynamic range differ-
ences of the platforms, and as such, are not normalized.
The resulting data describe the basic signal range of each
platform (Fig. 2a). Additionally, we computed the aver-
age 99™ percentile signal value of all 5 RNA samples
along with the mean background value to calculate the
signal-to-background ratio for all platforms (Fig. 2b). For
RNA-seq data, non-normalized raw count data were
used in the calculation of signal range. Technically,
RNA-seq data have no background. However, it was
noted that a number of genes demonstrated a non-zero
count in the 3 mixed RNA samples (AG1BM4,
AG1BM16, and AG1BM64) but had no counts at all in
their parent RNA samples (AGO and BMO), indicating
some degree of noise in the RNA-seq data. We have
noted that several studies have proposed the methods
for calculation of a quasi-background for RNA-seq data
[15, 16], but they utilized either reads in intergenic re-
gions or technical replicates, which are not available in
our data. Thus, we sought to utilize those particular
“noise” genes for calculation of a quasi-background value
for our RNA-seq data. These RNA-seq genes accounted
for less than 5 % of all genes and had a sequence read
count ranged from 1 to 12 that represents a common
observation of the lower end read count variation, par-
ticularly with common read depths such as those used
here. With this subset of data, the quasi-background value
for each RNA-seq protocol as a whole was represented by
the median of 99th percentiles of raw counts in the 3 RNA
samples. While it could be argued this is a somewhat artifi-
cial construct for background in RNA-seq data, the result-
ing signal-to-background ratios in the present study were
quite indicative of platform performance: the larger the

Table 2 Samples used in the study
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signal-to-background ratio, the better the concordance with
the measures of titration response and TagMan validation
(see following result sections). Amongst the microarray
platforms, Agilent demonstrated the largest signal range
and signal-to-background ratio and Illumina had the least
values of these metrics, as seen in Fig. 2a-b. Within the
RNA-seq protocols, ClonTech appeared to produce signal
ranges and “quasi-signal-to-background” ratios that were
better than RiboZero.

Fidelity of signal with sample titration and signal
similarity across platforms

A linear regression analysis was performed between the
sample titration and the signal or read count for each
feature (probe, probeset, exon, or gene) within each plat-
form. The overall distribution of the coefficient of cor-
relation can be seen in Fig. 2c where Genel.0 and ILMN
data showed the least amount of features with a coeffi-
cient of correlation greater than absolute 0.8 and more
features with the coefficient of correlation between -0.4
to +0.4. To set a single comparison point, a correlation
coefficient of absolute 0.5 was defined to indicate a
qualitative fit to the titration series above and the per-
cent of features exceeding this level was calculated.
Based on this assessment the relative fidelity level of
each platform can be seen in the bar chart of Fig. 2c.
Furthermore, a Spearman rank correlation analysis was
conducted across all 6 platforms using gene symbol
aligned 15442 RefSeq genes as well as 7034 transcript
pattern defined genes. As shown in Fig. 2d, a higher
overall similarity was seen in AGO than that in BMO,
and so was in the 15442 set than that in the 7034 set.
Platform-wise, data between two RNA-seq protocols and
between two Affymetrix platforms were quite similar. As
expected, data between RNA-seq and microarrays were
less similar than microarray-to-microarray, likely due to
their distinct data distribution (Poisson vs. Gaussian).

Fidelity of fold-change with sample titration at and across
platforms

An assessment of overall fold-change magnitude was
completed at sample titrations and at platforms as a
whole, utilizing both the entire data sets and the tran-
script pattern restricted subsets. The average absolute

Sample Ratio of % BMO Replicate

Name AGOBMO AGLN Genel 0 HTA20 ILMN ClonTech RiboZero TagMan
AGO 10 0 1 2 2 2 1 1 6
AGTBM4 14 75 2 2 2 3 1 1 6
AGIBMI6 1116 9375 2 2 2 2 1 1 6
AG1BM64 1:64 984375 2 2 2 2 1 ! 6

BMO 01 100 i 2 2 3 1 1 6
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Fig. 2 (a) raw signal range of two pure RNA samples (AGO and BMO) with the entire data set, represented by Box-Whisker plot (max, 75 %,

0.4

Spearman Rank Correlation Coefficient

median, 25 % and min); (b) signal-to-background ratio, indicated by 99 percentile of mean signal and background values determined with entire
set of raw data in all 5 RNA samples; (c) fidelity of signal to sample titration by correlation, showing full distribution of coefficient of correlation

between signal and titration across the 5 RNA samples in the entire set of raw data, with the emphasis on the percent of features (probes/probesets
for microarray, genes for RNA-seq) with a correlation coefficient greater than absolute 0.5; (d) signal similarity matrix of AGO and BMO samples across all 6

defined 7034 genes

platforms were generated with Spearman rank correlation using signal/count data of RefSeq gene symbol aligned 15442 genes and transcript pattern

fold-change was calculated at each of the four sample ti-
trations with all of the above data sets for each platform
(Fig. 3a-b), and these values at each of the sample titra-
tions were further averaged to represent the overall
fold-change of a platform (Fig. 3c-d). The variability of
fold-change data was assessed as well and is provided
in Additional file 1: Figure S1. Technical replicates
were employed for most of the microarray data; how-
ever, as average fold-change and overall fold-change
data were utilized for cross-platform comparison, indi-
vidual sample variation within the RNA-Seq data
should have minimal impact on the overall results. In
order to gauge the platform difference in the fidelity of
fold-change with sample titration, we made a Pearson
correlation test on the absolute fold-change values
along the 4 titrations. The percent of genes that had r

value greater than positive 0.5 was calculated for each
platform in each of the 2 data sets (Fig. 3a-b). In
Fig. 3a-b, a clear ascending trend across the 4 sample
titrations towards the pure sample comparison of
BMO vs. AGO can be seen for the majority of the plat-
forms, and the percent of genes following the titrations
was comparable across most of platforms (40-85 % in
the entire sets and 54-73 % in the 7,034 subsets). A
number of observations are worthy of note here. First,
the AGLN microarray and ClonTech RNA-seq proto-
col appear to produce differentials of substantially
greater magnitude than the other platforms in both the
entire set and subset comparisons. Second, while both
Affymetrix platforms trend appropriately, there is a
clear degree of compression by comparison, ie. a
smaller fold-change that was observed in Affymetrix
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Fig. 3 Bar charts for platform comparisons on magnitude of differential expressions determined by average absolute fold-change. Average
absolute fold-change was analyzed for each titration across all 6 platforms in entire data set (a) as well as in transcript pattern (TP) restricted
7,034 subset (b). To ascertain the magnitude of differential expression for a platform as a whole, the 4 average absolute fold-changes of the full titrations
were averaged in both entire genes and detectable genes in the entire data set (c), as well as in TP non-restricted and restricted 7,034 RefSeq genes
subsets (d). To gauge platform fidelity level in fold-change along sample titrations, percent of genes with a Pearson correlation > +0.5 was
indicated in the panels (a) and (b). In addition, the fold-change enhancement was indicated with dotted lines in green in panels (c) and (d) that was
determined as the difference in average absolute fold-change between the bar elements from left to right for each platform. Moreover, the statistics were
placed in the panels (c) and (d) for the difference in average fold-change from AGLN to the other platforms for the entire set of data and for
the TP-defined subset of data. When compared to AGLN, the average absolute fold-change was significantly lower in all platforms (p < 0.01-0.001) in
the data set for entire genes, and such difference was statistically significant to 3 microarray platforms (p < 0.01) but not to the RNA-seq protocols (p > 0.05)

in the TP restricted 7,034 subset

platforms than those in Agilent and RNA-seq methods.
To improve fold-change issues in HTA2.0 signal data,
Affymetrix recently released a new algorithm called
“Signal Space Transformation” (SST) [17]. The SST did
increase the overall absolute fold-changes of HTA2.0
arrays to a level that was quite comparable to Agilent
and RNA-seq methods (Additional file 2: Figure S2).
Third, the Illumina microarray platform, strikingly, did
not trend well with the sample titration as the absolute
fold-change values that followed the sample titrations
were observed in only 5-7 % of genes. This observation
was lower than that for Agilent arrays (67-73 %). Finally,
when comparing the 7,034 gene transcript pattern

restricted sets, a high degree of similarity in average abso-
lute fold-change was seen apparently between AGLN and
ClonTech (Fig. 3b). To remove any potential bias of un-
detected genes/transcripts on the fold-change assessment,
the comparison for the entire data sets was done with un-
detected genes removed from the analysis (Fig. 3c). While
the average absolute fold-change increased to certain de-
gree for most of platforms, the relative differences between
platforms were highly conserved. Similarly, the fold-change
assessment for the transcript pattern restricted subset was
repeated utilizing all platform-designated probe(set)s for
the 7,034 genes to determine if the similarity is simply an
artifact of the gene subset measured. In this case, it can be
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seen that the close alignment of overall fold-change be-
tween AGLN and ClonTech was the most highly preserved
(Fig. 3d). In order to quantify the impact of both detection
call and transcript pattern, the enhancement in fold-change
magnitude was calculated. For the entire data set, the calcu-
lation was completed using data from all genes and from
only detectable genes. For the transcript pattern defined
subset, the calculation was done using data from all
probe(set)s on arrays and all exons in RNA-seq for the
7,034 genes and from only those probe(set)s and exons
mapped to identical transcript patterns for the same
7,034 genes (i.e. transcript pattern restricted). As such,
the fold-change enhancement by the detection call
ranged from 0 —-25 % (10 % on average); and it was
2 —-45 % (23 % on average) by the transcript pattern
(Fig. 3c-d). These results implicated the usefulness of
detection call and particularly the transcript pattern
approach in eliminating confounding factors when
making cross-platform comparisons.

Assessment of cross-platform fold-change correlation

A complete log2 AGO/BMO ratio set was generated for
each platform/protocol. This particular comparison was
employed as it produced the greatest overall range of
differentials. As the AGLN platform appeared to demon-
strate both the largest absolute fold-changes and main-
tained strong fidelity with the sample titration, it was
utilized as the standard to investigate the degree of
cross-platform correlation. Scatter plots were generated
for all platforms/protocols comparisons in the log2 ratio
space (Fig. 4 for comparisons to AGLN, and Additional
file 3: Figure S3 for all other comparisons). Furthermore,
based on the linear fit, the slope and correlation coeffi-
cients (R?) were also calculated. While the R* provides a
basic estimate for the overall correlation, the slope pre-
sents a rough indication as to the degree of compression
observed within each platform as compared to AGLN.
Based on the measured slope (Fig. 4), we observed a
27 =69 % (50 % on average) fold-change compression in
the entire dataset, and a 22 —63 % (46 % on average) fold-
change compression in the transcript pattern defined subset
data (calculated using formula: (1-slope)*100). Generally
speaking, the AGLN and RNA-seq platforms clearly dem-
onstrated a substantially greater range of log2 ratios regard-
less of the comparative gene set examined. Furthermore, a
somewhat improved fit between AGLN and RNA-seq,
ClonTech in particular, was observed with the transcript
pattern restricted 7,034 gene subset, similar to the observa-
tion in Fig. 3a-b.

TagMan gRT-PCR assessment of fold-change accuracy

The 48 genes were previously profiled with TagMan as-
says in the pure BMO and AGO samples as part of an
unrelated project. The BMO/AGO fold-change of these
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48 genes ranged from 0-167 folds. The data for these 48
genes were utilized as a gold standard qRT-PCT com-
parator as they provided a diverse data set of both chan-
ging and unchanging genes. Of these 48 genes, 35 were
in the 15,442 RefSeq gene set and had reliable Ct values
for comparison in all 5 RNA samples in the current
study. GUSB was utilized as a housekeeping gene for
normalization and the PCR amplicon locations for the
remaining 34 comparator genes were then investigated
for overlap with regions that were restricted by the tran-
script patterns. As 6 of the 34 genes assayed had PCR
probe targets that overlapped with the common tran-
script patterns from the other platforms, their data were
analyzed across the full titration as seen in Fig. 5a-f.
Mean fold-changes of the 6 genes and of the 4 titrations
are summarized in Fig. 5g-h, respectively. While large
fold-change variations across platforms, particularly in 3
of the 6 genes (HES1, IGFBP4, LAMBI), were detected
when the pure bone marrow was compared to pure Agi-
lent Human Universal Reference RNA (i.e. BMO vs.
AGO), the AGLN platform appeared to produce the
highest degree of fidelity overall across the titration
series. The overall fold-change concordance, as defined
in the methods section, among the 34 genes ranged from
24 to 88 % between TagMan and microarray/RNA-seq
assays (Fig. 5i). Agilent microarray as well as the two
RNA-seq protocols demonstrated the highest degree of
concordance (80 % or higher); whereas Illumina and
HTA2.0 microarrays showed the lowest similarity (40 %
or lower).

Discussion

The current study has assessed the differences and simi-
larities in performance between 2 RNA-seq and 4 micro-
array protocols/platforms and further compared these to
TagMan qRT-PCR assay. Before delving into a discus-
sion of the comparative results, a number of items
should be addressed as to how the platforms were tested.
The sequencing for the RNA-seq protocols targeted a
read depth of 25-30 million reads per sample. While
this is not a particularly deep level of sequencing, we felt
it was appropriate for the purpose of comparison, as re-
ported in Zhao et al. study [10] that determined that a
minimal 14 million of reads will be able to achieve the
same gene detection levels as a standard microarray. An-
other note with regards to RNA-seq is that the riboso-
mal depletion method used was EpiCenter’s Ribo-Zero
kit. This study was completed prior to the release of
their RiboGold kit that has replaced Ribo-Zero within
our lab. However, the level of ribosomal contamination
in the samples from RiboZero protocol was low and, as
such, likely had little impact on the final results. In
contrast to the fairly standard approaches used to gen-
erate RNA-seq data, there were significant alterations
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(See figure on previous page.)

Fig. 5 TagMan gRT-PCR validation. (a-f) fold-change data derived from titrated samples. 6 genes were selected because the TagMan probes targeted the
same transcript pattern as did the microarray probe(set)s; (g) mean fold-change of the 6 genes across platforms; extreme values in (a-d) and (g) were
indicated with broken y-axis and actual data; (h) mean fold-change of the 4 titrations across platforms; (I) Concordance of fold-change between TagMan
gPCR (X) and microarrays/RNA-seq protocols (Y), 4 different calls were made: compress, opposite, overestimate, and concordant. When two compared
fold-changes are in the same direction but the ratio of X/Y greater than or equal to 2, a value of “compressed” is assigned. Similarly, if the fold-change ratio
of X/Y is less than or equal to 0.5 the comparison is deemed “overestimate”. Fold-change ratios between these values are deemed “concordant”. When
two fold-changes are not in the same direction and either of them is greater than 2 or less than 0.5, the comparison is determined to be “opposite”.
Concordance rates were calculated by number of genes with “concordant” and “overestimate” calls divided by the total genes analyzed

to multiple microarray protocols. This is particularly
true for the Agilent array platform that performed so
well across each of the comparator categories. While
the microarrays and scanner are off-the-shelf issue, the
labeling protocol used for the Agilent arrays was cus-
tom, utilizing an adaptation of the Kreatech ULS la-
beling kit. This kit has demonstrated more efficient
label incorporation than the standard Agilent protocol
based on numerous prior comparisons completed in
our lab, and as such, it was utilized as the protocol for
this study. The improved efficiency, combined with the
Agilent scanner’s greater dynamic range yields a full
log unit increase in sensitivity as compared to other
array platforms (Fig. 2). This enhancement in range
and sensitivity yields results comparable to RNA-seq at
the sequencing depth used for this study. Another de-
viation from standard protocol was the substitution
with NuGEN Ovation PicoSL WTA V2 kit for Genel.0
arrays which was originally adapted in the lab for cost
considerations and was subsequently expanded to ap-
plications with partially degraded RNAs and/or low
mass. In our hands the NuGEN kit is quite comparable
to Affymetrix standard WT-plus RNA amplification re-
agents (a Life Technologies Ambion product).

A number of studies [5-10, 14] have explored the
similarities and differences in raw signal intensity and
the overlap of differentially expressed genes identified
between RNA-seq and microarrays. Both of these com-
ponents are quite relevant for any analytical comparison
of the given technologies. However, given the substantial
number of TagMan assessments combined with the
RNA titration data available, we also sought to investi-
gate the performance of the platforms in accurately
assessing fold-change estimates. Furthermore, the cross-
platform comparisons in all prior studies have been cen-
tered on gene name annotation, i.e. matching entities in
comparison by gene symbol, Entrez Gene ID, or other
gene identifiers. In fact, there are numerous factors to
consider when determining how to compare gene ex-
pression data across different technological platforms.
First, not all genes or transcript species will be captured
by all platforms. For example, ribosomal depletion
methods for RNA-seq will measure SNO and micro-
RNAs that would be lost using a poly-A enrichment

approach. Thus, a simple one-to-one mapping of all
transcripts across all platforms is not possible. Second,
the genomic location of microarray probes from differ-
ent platforms may measure signal from different sets of
transcripts for a given gene. Therefore, matched signal
comparison by common RefSeq annotation at the gene
level may not be entirely accurate. However, it is possible
to directly map microarray probe(set)s based on genome
coordinates to refine a subset of probe(set)s that target
common sets of transcripts for specific genes. Therefore,
we introduced the concept of “transcript pattern” in the
cross-platform comparison evaluation to remove poten-
tial confounding factors. The collection of a common set
of transcripts at probe/exon level was referred to as a
transcript pattern. When cross-platform differences are
observed without this level of stringent comparison, it is
unknown whether said differences are at the platform
level, or simply because different transcripts are being
measured. Use of the transcript pattern enables more of
an “apples-to-apples” comparison and reduces potential
transcript signal bias as a confounding factor to the ana-
lysis and interpretation.

With this multi-faceted and bioinformatically rigor-
ous approach, the data presented here both confirmed
and expanded upon prior studies. A number of these
studies illustrated superior performance of RNA-seq
over microarrays in dynamic range and number of dif-
ferential genes with a comparator of Affymetrix micro-
arrays [5, 7-9]. Our data confirmed the prior findings
and demonstrated similar findings for the Illumina
array platform as well. However, there was a notable
exception to this trend. The Agilent platform modified
with Kreatech labeling performed quite comparably to
both RNA-seq protocols, as tested, in most categories
and was marginally superior in some cases, especially
in the overall assessment of fold-change. Furthermore,
the evaluation of fold-change accuracy showed that 4
platforms (Agilent, Genel.0, and 2 RNA-seq methods)
had over 60-80 % concordance, as measured, with the
gold standard TagMan assays (Fig. 5k). In general, our
results demonstrated a fair degree of overall correl-
ation between all platforms and yet revealed that, to
varying degrees, three platforms, both RNA-seq proto-
cols and the Agilent microarray, outperformed the
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remaining three microarray platforms in most categor-
ies of comparisons.

While we observed the overall differences in platform
performance, there were several platform-to-platform is-
sues that should be discussed further. First, we observed
a very low signal fidelity to sample titration in data gen-
erated by Illumina microarrays. When looking deeper
into this issue, we found that this happened just in the
subsets of low-mid expression genes. Illumina arrays
showed a 10-15 % of the low-mid expressers that had a
coefficient of correlation greater than absolute 0.5 in the
regression analysis between signal intensity and sample
titration but Agilent platform was at 20-36 %. Con-
versely, the two platforms were quite comparable for
high expressers (41.3 vs. 40.6 %). In terms of array de-
sign and scanner attributes, Illumina arrays appear to
have smaller spots and a smaller dynamic signal range
than other microarray platforms. If the error in signal
measurement does not compress with the overall signal,
it may lead to reduced array sensitivity and the ability to
capture subtle differences of transcript abundance in ti-
trated samples [18]. Somewhat expectedly, we also iden-
tified a correlation between overall fold-change
magnitude and broader observed signal/count ranges,
particularly the inter-quartile range (IQR), at the plat-
form level. Second, we noted 20 cases in which genes
showed a substantial overestimation of down-regulation
in terms of BMO/AGO fold-change by RNA-seq Ribo-
Zero as compared to TagMan. Third, the data illustrated
that ClonTech provided a 64 % increase in measured
fold-change magnitude compared to RiboZero (8.88 vs.
5.42 folds) in the refined 7034 subset data (Fig. 3d).
Though it has not been confirmed, we suspect that both of
the above issues may be due to a higher degree of read vari-
ation for low-abundance transcripts as measured by Ribo-
Zero. While, in theory, RiboZero reagents should remove
all ribosomal RNAs, in practice it is not always as efficient
as is desired [19]. Furthermore, there are more RNA species
captured, in abundance, by ribosomal depletion methods
and the combination of these events may lead to a dilution
of the sequenced reads across a greater total number of
RNAs resulting in the hypothesized increase of low-
abundance variation. Though it should be noted that this
reasoning is speculation on our part and has not been
confirmed.

Lastly, we have noted that Affymetrix whole-transcript
microarray platforms (Genel.0 and HTA2.0) yielded the
lowest magnitude of fold-change estimates while 3" biased
Agilent chips produced the highest fold-change magnitude,
although the same 3’ biased Illumina chips failed to gener-
ate comparably high fold-change estimates. This may lead
to a confusing concept that 3" biased arrays generally have
greater signal dynamic range than whole-transcript chips.
Actually it is not a 3" versus whole-transcript design issue,
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but a far more complex issue that involves varying RNA
amplification and/or probe hybridization efficiencies, differ-
ent sets of alternatively spliced transcripts in measurement,
and different infrastructures of microarrays (spot size, spot
distance, background composition, etc.) [20, 21]. As a result
of this high degree of complexity, we sought to introduce
the concept of “transcript pattern” to minimize other con-
founding factors in a multi-platform comparison such as
this and any other applicable validation experiments involv-
ing 2 or more platforms. With the use of transcript pattern
approach, therefore, the observed difference in fold-change
magnitude across platforms should largely be attributed to
the differences in array inherent characteristics.

Conclusions

Prior studies have made fundamental comparisons be-
tween RNA-seq and microarrays with focus on dynamic
range of raw signal/read values and overlap in observed
differentially expressed genes. The present study has ex-
panded the foundation laid in the prior studies by looking
at the correlations of multiple platforms with regard in
signal-to-background ratios, signal/read fidelity to sample
titration, and platform performance for providing accurate
fold-change estimates. Our results confirmed many of the
general findings of the prior studies. RNA-seq methods
tend to outperform microarray platforms in regards to
certain features such as dynamic range (signal). However,
we did observe that the custom protocol Agilent platform
performed quite comparably to RNA-Seq, at the given
read depth, in virtually all categories. This is presumably
due to the increased dynamic range of the platform, sug-
gesting that small improvements in this key feature may
put microarrays on a more even footing with RNA-Seq
overall. Furthermore, even in the presence of compressed
signal range and fold change estimates, the different Affy-
metrix platforms performed well in the categories of titra-
tion and TagMan fidelity, as compared to Agilent and the
RNA-Seq protocols. In addition, the concept of a “tran-
script pattern” was employed to better enable an “apples-
to-apples” comparison of all platforms. As may have been
anticipated, the most significant differences observed in
the use of common transcript pattern probes, when com-
pared to the larger RefSeq defined transcript set, was
noted in the assessment of fold changes and correlation.
This was particularly true for the Agilent microarrays and
CloneTech RNA-Seq. These data are suggestive that
utilization of transcript patterns may be useful for minim-
izing potential confounding factors in multi-platform
comparisons of this nature.

Methods

RNA samples

Two original total RNA samples were utilized in this
study: one was a pool of RNA isolations from 4 human
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bone marrow specimens (labeled as BMO) and the other
was a Universal Human Reference RNA from Agilent (la-
beled as AGO). The human bone marrow samples were
collected from normal donors with written consent form
for use in this study, and these individual RNA samples
showed very similar expression profiles in a prior unrelated
project. The AGO was made from multiple human cell
lines. Both samples had a RNA integrity number (RIN) over
9 assessed by Agilent Bioanalyzer 2100 (Santa Clara, CA).
In order to evaluate the ability of a specific platform to de-
tect subtle changes in gene signals and differentials, we gen-
erated 3 new samples from the original AGO and BMO
RNA samples by mixing the original pure BMO into AGO
at a ratio of 1:4, 1:16, and 1:64, and the 3 new RNA samples
were labeled as AG1BM4, AG1BM16, and AG1BM64, re-
spectively. These 5 samples were processed in 1-3 repli-
cates (duplicate on average) for microarrays and RNA-seq
analyses (Table 2). This study has been approved by the In-
stitutional Review Board of the Human Research Protection
Office at the Washington University.

Microarray platforms and assays

Four microarray platforms were evaluated, including (1)
Agilent Whole Human Genome Microarray 4x44K v1
(symbolized as AGLN hereinafter), (2) Illumina
HumanHT-12 v4 Expression BeadChip (ILMN), (3)
Affymetrix Human Gene 1.0 ST Array (Genel.0), and
(4) Affymetrix Human Transcript Array 2.0 (HTA2.0).
We followed vendors’ recommended standard proto-
cols to process the samples for HTA2.0 and ILMN ar-
rays but substituted RNA amplification system with
NuGEN kit for Genel.0 and cDNA labeling system
with Kreatech kit for AGLN arrays (see following). For
AGLN slides, 200 ng of starting RNAs were amplified with
MessageAmp™ II aRNA Amplification Kit (Ambion/Life
Technologies, Grand Island, NY), 3,000 ng of amplified
aRNA were labeled with Kreatech ULS™ Fluorescent
Labeling Kit (with Cy5) (Kreatech Biotechnology B.V.,
Amsterdam, Netherlands), and 2,055 ng of cy5-labeled
aRNA were hybridized. For ILMN BeadChips, 100 ng of
starting RNAs were amplified with the MessageAmp™
aRNA TotalPrep kit (Ambion/Life Technologies) and
750 ng of biotin-labeled cRNA were hybridized. For
Genel.0 chips, 50 ng of starting RNAs were amplified with
NuGEN Opvation PicoSL WTA V2 kit (NuGEN Technolo-
gies Inc., San Carlos, CA) and 2,500 ng of biotin-labeled
c¢DNAs were hybridized. For HTA2.0 chips, 100 ng of start-
ing RNAs were amplified with Ambion WT-plus amplifica-
tion kit (Ambion/Life Technologies) and 5,000 ng of biotin-
labeled cDNAs were hybridized.

Microarray data processing
We process the raw data with vendors’ default settings.
For AGLN, the Agilent Feature Extraction tool (v11.5.4)
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was used to generate raw data at probe level, rProcessed-
Signal was used in normalization and data analysis pro-
cesses, and rIsWellAboveBG parameter was used to
mark probes as “detected” or “un-detected”. For ILMN,
Illumina GenomeStudio software (v2011) was used to
export background-subtracted raw data and detection
p-values at both probe and gene levels, and a p < 0.05
was set to make “detected” calls. The AGLN and ILMN
probe- and gene-level raw data were normalized by
most commonly utilized “quantile” method. For
Genel.0 and HTA2.0, Affymetrix Expression Console
(v1.3) was used to generate default raw data at both
probeset and transcript cluster levels, and the raw data
were RMA background corrected, median polish sum-
marized and quantile normalized. Detection p-values
were calculated for all probesets on Genel.0 and
HTA2.0 chips, a p<0.01 was set to make “detected”
calls at the probeset level.

Mapping and re-annotation of microarray probes

In order to enable an exact comparison of transcript abun-
dance across platforms, we first re-annotated vendors’
probes (probesets for Affymetrix chips) to correct any out-
dated gene information and to minimize probe(set)s with
non-specific hybridization. Ensembl release version 72
(R72) of human reference transcriptome and genome data-
bases were used to make new probe(set) annotations. For
AGLN, ILMN and Genel.0, probe(set) sequences provided
by vendors were mapped onto Ensembl R72 genome
using novoalign tool (Novocraft Technologies, Selangor,
Malaysia) to define probe(set) coordinates. For HTA2.0,
probeset coordinates provided by the vendor were used
to retrieve probeset sequences from Human Genome
hg19 database. We then used the retrieved probeset se-
quences to map the probesets onto Ensembl R72 refer-
ence genome. Any probe(set)s with multiple alignments
or partial alignments to the genome were omitted in
downstream analysis. Finally, the uniquely aligned pro-
be(set)s derived from all platforms were intersected with
Ensembl R72 transcriptome using BEDtools [22] to ob-
tain Ensembl gene ID, transcript ID, exon ID, and corre-
sponding RefSeq gene names for each probe(set). With
this information, we were able to identify a subset of
probe(set)s of specific genes that targeted a common set
of transcripts across all 4 microarray platforms, which
we refer as to “transcript pattern” (Fig. 1). In the RNA-
seq, it was a subset of exons of specific genes that
shared a common set of transcripts and were targeted
by microarray probe(set)s.

RNA-seq assays

Two different library preparation protocols were tested:
oligo-d(T)-priming based Clontech SMARTer Ultra Low
RNA Kit (hereafter labeled as “ClonTech”) for Illumina®
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Sequencing from Clontech Laboratories (a Takara Bio
Company, Mountain View, CA), and random priming
based Ribo-Zero™ rRNA Removal Kits (labeled as
“RiboZero”) from EpiCentre (an Illumina company,
Madison, WI). A starting amount of 10 ng RNAs was
processed in ClonTech assays, and 1 ug were input
with RiboZero protocols. For ClonTech libraries, ampli-
fied cDNA was sheared using a Covaris E210 instrument.
RiboZero depleted RNA was chemically fragmented, then
made into cDNA with Superscript III (Life Technologies)
and random hexamers followed by a second strand reac-
tion. cDNA from both methods was then end repaired, A
tailed, and standard Illumina adapters were ligated on. Li-
braries were then amplified with primers to incorporate a
unique index to each sample. In pooling of multiple librar-
ies for running on a single lane, equal amount of library
mass was determined by Qubit reading and Bioanalyzer for
the 5 RNA libraries. Lastly, pooled libraries were amplified
with Illumina® TruSeq™ Cluster kits and sequenced with
[lumina® sequencing primers on Ilumina® HiSeq2500™
next-generation sequencing system as a high output single
read 50 cycle run (Illumina Inc., San Diego, CA).

Processing of RNA-seq reads

An average of 36.7 (range 18.1-53.0) and 27.9 (range
22.9-43.9) million 1x50 bps sequence reads were ob-
tained from the 5 RNA samples with ClonTech and
RiboZero protocols, respectively. Read sequences in
fastq files were aligned to Ensembl R72 whole-genome
with TopHat version 2.0.8 using Bowtie2 version 2.1.0
for quantification. Both exon- and gene-level count
data were generated using scripts “dexseq_count” and
“htseq-count”, respectively, in a Python package
“HTSeq” [23] for differential expression analysis. To
avoid a denominator being 0 in calculation of ratio
values, we added 1 count to every data point. Using an
R package “edgeR” from Bioconductor [24, 25], the raw
count data at exon- and gene-levels were normalized by li-
brary size, and values for the 4 ratios (AG1BM4 vs. AGO,
AG1BM16 vs. AGO, AG1BM64 vs. AGO, and BMO vs.
AGO) were calculated with normalized counts per million
(cpm) data. In platform comparisons, we retained those
genes with at least 1 count in any of the 5 samples, and de-
fined “detected” genes at a normalized counts per million
(cpm) > 0.25 in 1 of the 5 samples.

Evaluation of platform capability for providing differential
estimates

One primary goal of our study is to evaluate the plat-
form performance in magnitude of differential expres-
sion, i.e. fold-change. Therefore, ratios of AG1BM4 vs.
AGO, AG1BM16 vs. AGO, AGIBM64 vs. AGO, and
BMO vs. AGO were first calculated utilizing signal and
read count data. Furthermore, these were completed at
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the level of the entire data set as well as the transcript
pattern derived subset data for each platform. Ratios
were transformed to absolute fold-changes, i.e. ratios for
up-regulated genes remained the ratio per se, and any
ratios less than 1 for down-regulated genes were con-
verted to its reciprocal values (i.e. switching the nomin-
ator and denominator to make the ratio greater than 1).
Next, the absolute fold-change values in a data set were
averaged to reflect the platform capability for providing
differential expression estimates.

TagMan gRT-PCR

TagMan assays were run for 48 genes on each of the 5
RNA samples that were used in microarray and RNA-seq
assays. These 48 genes were profiled as part of an unrelated
project. The assays were carried out using microfluidic-
based digital PCR system with 48.48 Dynamic Arrays (Flui-
digm Corp. San Francisco, CA). In brief, 500 ng total RNAs
were subjected to specific target amplification (STA) using
High Capacity cDNA Reverse Transcription Kit and Tag-
Man PreAmp Mastermix (Applied Biosystems/Life Tech-
nologies, Foster City, CA), and then each ¢cDNA sample
was diluted 1part sample into 4 parts low ethylenediamine-
tetraacetic acid (EDTA) DNA suspension buffer. The qgPCR
reaction was prepared with diluted cDNA samples, 20X
Gene Expression Sample Loading Reagent (Fluidigm
Corp.), TagMan Universal PCR Master Mix (Applied Bio-
systems), and Dynamic Array Assay Loading Reagent that
contained 9 pM of each primer and 2 pM of the probe
(Fluidigm Corp). The qPCR program was as following:
50 °C for 2 min, 95 °C for 2 min, 40 cycles of 95 °C for
15 s and 60 °C for 1 min. Post-PCR analysis was per-
formed to mark failed samples with a Ct value greater
than 40 in over 50 % of replicates and to remove unreli-
able samples with coefficient of variance greater than 30 %
in Ct values across replicates. Relative gene expression
level was calculated by delta-delta Ct method [26].

Concordance in fold-change between TagMan and micro-
array/RNA-seq protocols

In determination of fold-change concordance between
TagMan (X) and microarrays/RNA-seq protocols (Y), 4
qualitative evaluations were assigned to each compari-
son: compressed, opposite, overestimate, and concord-
ant. When two compared fold-changes are in the same
direction but the ratio of X/Y greater than or equal to 2,
a value of “compressed” is assigned. Similarly, if the fold-
change ratio of X/Y is less than or equal to 0.5 the com-
parison is deemed “overestimate”. Fold-change ratios be-
tween these values are deemed “concordant”. When two
fold-changes are not in the same direction and either of
them is greater than 2 or less than 0.5, the comparison
is determined to be “opposite”. Concordance rates were
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calculated by number of genes with “concordant” and
“overestimate” calls divided by the total genes analyzed.

Data access

All microarray and RNA-seq data are accessible in the
GEO database, with accession number GSE66590 for
RNA-seq_RiboZero, GSE66592 for RNA-seq ClonTech,
GSE66614 for Illumina_HT12, GSE66626 for Agi-
lent_4x44K, GSE66628 for Affymetrix_Genel.0 and
GSE66648 for Affymetrix HTA2.0. A SuperSeries acces-
sion number GSE66649 is created for access to all these
data in the whole project.

Additional files

Additional file 1: Figure S1. Box-Whisker plot for illustration of fold-
change variability in each platform. (A) and (B) are for fold-change data in the
4 sample titrations in entire set and transcript pattern (TP) defined 7,034
RefSeq genes subset data, respectively; (C) and (D) are for fold-change data at
overall platform level in the entire set and TP-defiend subset data, respectively.
The frame boxes are the inter-quartile range (i.e. 25 % to 75 %). (TIFF 867 kb)

Additional file 2: Figure S2. Overall average absolute fold-change
comparisons across platforms with entire set and transcript pattern (TP)
defined subset data, with a focus on the effect of Affymetrix “Signal
Space Transformation” (SST) algorithm on the overall platform
fold-change magnitude. The SST, in conjunction with the regular
robust multiple-array average normalization method (SST-RMA, the
dark blue bars), was able to improve the fold-change in the HTA2.0
arrays, and provided a 2-5x greater fold-change estimates overall, as
compared to conventional data processing method (regular RMA, the
light blue bars). (TIFF 491 kb)

Additional file 3: Figure S3. Scatter plot of log2Ratio data between all
platforms (except for those compared to AGLN in Fig. 4): (A) 15,442
common RefSeq genes and (B) transcript pattern restricted 7,034 RefSeq
genes, each against AGLN. The dotted green lines are trend lines by
linear regression, and the red lines are diagonal lines of the frames. The
deviation of green lines from red lines indicates the degree of fold-
change compression that can be quantified by slope values in the
equations. (TIFF 1212 kb)
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