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Abstract

Determining vesicle localization and association in live microscopy may be challenging due to non-simultaneous imaging of
rapidly moving objects with two excitation channels. Besides errors due to movement of objects, imaging may also
introduce shifting between the image channels, and traditional colocalization methods cannot handle such situations. Our
approach to quantifying the association between tagged proteins is to use an object-based method where the exact match
of object locations is not assumed. Point-pattern matching provides a measure of correspondence between two point-sets
under various changes between the sets. Thus, it can be used for robust quantitative analysis of vesicle association between
image channels. Results for a large set of synthetic images shows that the novel association method based on point-pattern
matching demonstrates robust capability to detect association of closely located vesicles in live cell-microscopy where
traditional colocalization methods fail to produce results. In addition, the method outperforms compared Iterated Closest
Points registration method. Results for fixed and live experimental data shows the association method to perform
comparably to traditional methods in colocalization studies for fixed cells and to perform favorably in association studies for
live cells.
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Introduction

Live cell-imaging in subcellular scale has revolutionized the way

cells are studied in molecular cell biology. As microscopy and

imaging devices have enabled efficient and accurate live cell-

imaging in high resolution, the demand for automated image

analysis and interpretation has become obvious. For example,

tagging proteins with specific fluorescent stains enables studying

various cell functions through detection of protein-specific cell

organelles, provided that the fluorescence-signal captured in

digital images can be accurately analyzed. The spatial pattern

and location [1,2] of the detected signal may reveal the cell

function or role of proteins, and colocalization of tagged proteins is

in particular of interest [3]. In cell biology, close association of

cellular structures, such as vesicles, occurs, e.g., in situations when

vesicle pathways follow similar tracks or when close association is

meaningful and leads to possible fusion events. There are very few

tools available to study association. Instead, there are several tools

to study colocalization, represented by different-colored voxels

occupying the same spatial location. Association may be defined

by a chosen distance between the objects. If differently colored

objects are frequently associated they may be considered to keep

near each other over time and follow each other in the cell

cytoplasm. Analysis of closely associated objects in fixed cells

allows accurate analysis, without errors caused by the movement

of the objects between subsequent imaging of different channels –

provided that the channels are aligned. However, in a live-imaging

setup the quantification of sudden and transient events is

challenging [4], and live imaging is prone to such errors that

depend on the speed of the imaging setup.

Live imaging of cytoplasmic vesicles that are elicited from the

plasma membrane after e.g. growth-factor stimulation or integrin

activation reveals important aspects of the trafficking and fate of

these crucial cellular regulators. As the growth-factor receptors

and integrins use similar signaling pathways and show mutual

regulation of important cellular processes [5] it has become

important to follow their movement in live cells. The dynamic

nature and interaction of these pathways provides complexity and

makes reliable interpretation of the imaging results a very

challenging task.

Traditionally colocalization analysis has been a subjective

process, performed as a visual comparison of overlapping signal

in two channels. Recent increase of the amount of image data and

need for statistical analysis have shifted colocalization towards a

more quantitative analysis. In many cases, colocalization is only

partial leaving some voxels close by suggesting that fusion between
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the two colors has been meaningful but not complete. The partial

colocalization may also indicate compartmentalization inside the

structures. Therefore, instead of just colocalization, one could

measure association with both voxels in close proximity and, in live

images, voxels moving as one unit even if not entirely colocalizing.

One example case where determining true colocalization may be

ambiguous is given in Fig. 1 where a single structure or a pair of

vesicle-like structures in close association is shown, and in Fig. 2

where the same vesicle is shown in a larger context with several

similar structure pairs in two fluorescence channels.

One of the most straightforward quantitative methods include

the pixel or voxelwise analysis where intensity of each element in

an image channel is plotted against its counterpart in the other

channel. This method, accompanied with statistical analysis of the

significance of colocalization [3,6] remains as one of the most

common ways to estimate colocalization. Typically the studied

biological phenomenon is related to specific subcellular organelles

that have been labeled. Thus, instead of observing all the pixels or

voxels containing signal it may be of interest to concentrate on the

detected spots. Since the imaging resolution enables detection of

individual organelles, it is possible to determine a quantitative

estimate of colocalization objectwise [7–10]. Such approach makes

it possible to take into account small changes in image due to

imaging lag or other errors in the imaging phase. This can be

advantageous in live cell-microscopy, where particle trafficking

may be fast, compromising the accuracy of pixelwise colocalization

analysis.

In this article, we propose a new approach to quantification of

colocalizing or associating objects. The essential idea of the

proposed method is to determine the mapping between images

such that objects found in an image are paired with objects found

in the compared image. Such problem is commonly addressed in

dynamic monitoring of subcellular objects using live imaging

where fluorescence-tagged organelles are followed throughout the

imaging sequence [11–13]. However, to the best of our knowledge,

matching of point sets using two channels of only one timepoint

has not been proposed before for studying protein localization in

fluorescence microscopy. Although both analyses rely on the

property that the same target is imaged, colocalization or

association analysis differs from live cell particle tracking in the

assumption that the same objects may not be visible in the

compared image. Also limiting to still images at sparse time

resolution hinders the use of tracking methods to determine the

mapping between frames.

Matching unpaired point-sets under a given class of transfor-

mations is a problem which can be divided into two main classes.

In what is often called registration, a transformation close to an

optimum matching transformation is known beforehand, and the

problem is to refine that transformation to a nearby local

optimum. By the prior information this local optimum is then

also hoped to be close to a global optimum. In contrast, in point-

pattern matching (PPM) nothing is known about the position of

the global optima. Registration is local non-linear optimization,

while PPM is global non-linear optimization.

In general, any point-set matching algorithm could be used as a

basis of the proposed association analysis. Here we design an

algorithm, based on PPM, particularly suited for the analysis of

fluorescence microscopy images. PPM algorithms can be designed

to be robust against changes in image geometry, e.g., changes in

the number of detected particles, scale or shifts in image. In our

application, the number of detected particles can typically vary

significantly, whereas large systematic changes such as rotation or

scaling between corresponding point locations are not expected.

Thus, we may limit to translations and allow the method to only

accept the transformation when the point sets are close to each

other. Such small changes can be compensated by using PPM,

however, they may cause the objects to be a miss in traditional co-

localization analysis where co-localization is determined by

pixelwise comparison of channels.

As an alternative way of finding point-pair correspondense, we

use the Iterated Closest Points (ICP) [14] [15], or perhaps better

described by Iterated Corresponding Points, which is a popular

class of algorithms for solving the registration problem. There are

many algorithms in this class, many of which are reviewed in [16].

An important trend in ICP-based algorithms has been to make

them robust to missing/extraneous points (subset matching) and

noise. As practical variants of this type, we mention the Biunique

ICP [17] and the Trimmed ICP [18]. We provide a comparison to

the Biunique ICP algorithm by making its initial transformation

match the centroids of the point-sets; such an assumption may or

may not hold for given microscopic images.

In this study we propose a novel method for association analysis.

We show that the method is robust against moderate translations

and object movement between image channels. The applicability

of the method was demonstrated by following the entry of a2b1
integrin and epidermal growth-factor receptor (EGFR) after

triggering their internalization from the plasma membrane using

fluorescent antibodies and fluorescent growth-factor, respectively.

Figure 1. Close-up of a vesicle pair (red: integrin, green: EGF) in widefield microscopy images over a time-lapse. Time between
successive frames is 5.7 s. Movement of vesicles in living cells causes situations where determining true colocalization may be ambiguous –
colocalization determined as a direct overlap potentially misses close association of rapidly moving vesicles, and on the contrary, association
determined using any method using objects in the proximity may give false detections due to closely located vesicles.
doi:10.1371/journal.pone.0094245.g001
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The results indicate that the vesicles containing a2b1 integrin and

EGF are very close to each other along their internalization

pathway to the center of the cell. Quantitative comparison

between the proposed PPM-based association algorithm and the

traditional colocalization estimates suggests that the results are in

line for fixed cell experiments, with the new method providing

improved detection of association by closely located objects in live

cell experiments.

Materials and Methods

Microscopy data and live cell-imaging
The A549 (human lung carcinoma) cell line (ATCC) was used

in all experiments. The cells were grown in Dulbeccos modified

Eagle Medium (DMEM; Gibco) supplemented with 10% inacti-

vated fetal calf serum (FCS), L-glutamine and penicillin-strepto-

mycin (Gibco BRL, Paisley, UK) at 37uC, in 5% CO2. Cells were

plated on cell culture chambers (Ibidi 15 m-slide 8-well) two days

before and starved (serum-free DMEM) for the last 16 hours

before the experiment.

EGFR was stimulated and followed by microscopy by adding

first biotinylated EGF (0,5 mg/ml) on ice for 45 min and washed

extensively. Then streptavidin Alexa 488 (5 mg/ml) was incubated

on ice for 45 min and washed. a2b1 integrin clustering was done

as described previously [19]. Briefly, specific antibody (A211E10; a

kind gift from Dr. Fedor Berditchevski, Institute of Cancer studies,

Birmingham, United Kingdom) against integrin was bound for

45 min on ice. Cells were washed extensively and incubated with a

clustering secondary antibody (goat anti-mouse Alexa 594;

Invitrogen). After washing, the cells were incubated in serum-free

DMEM at 37uC to allow internalization. In practice, biotinylated

EGF and integrin antibody was added simultaneously on cells and

washed, and subsequently the fluorescent conjugates were added

together on ice. The Ibidi slides were transferred to Zeiss Cell

Observer HS (37uC, 5% CO2). The live imaging was performed

using Colibri LED light source at 470 (41%) and 590 (46%)

wavelengths for Alexa 488 and 594, respectively. Videos with

5.77 seconds (Live I), and 5.16 seconds (Live II) intervals were

taken. In Figs. 1 and 2, close-ups of vesicles imaged using the

maximum speed are illustrated.

For control experiments imaging perfectly colocalizing intensi-

ties, a2b1 integrin clustering was induced using similar amounts of

two fluorescent conjugates (goat anti-mouse Alexa 488 and 594).

In addition, control videos of stable, non-moving vesicles were

imaged after cells were fixed with 4% PFA for 20 min. For

comparison, quantification of colocalization was determined using

colocalization algorithms embedded in the free, open source

software package, BioImageXD (http://www.bioimagexd.net,

[20]). Only high intensity integrin clusters were selected for the

colocalization analysis by first removing the background by

subtracting the most common intensity value from the images.

Next, masks for colocalization analysis were defined by filtering

images with Difference of Gaussian (DoG) filter and subsequent

thresholding. Small particles (less than 3 pixels for fixed and 8

pixels for noisier live cells) were removed from the masks in order

to limit the detection of noise or small debris as spots. Finally, the

masks were used for excluding background from the colocalization

analysis.

Simulated data
One of the motivations for using a point-set-based method for

determining association stems from the fact that the image

channels may be shifted or aligned non-ideally during the

measurement process. The measurement consists of two separate

image acquisitions with different filters applied in order to capture

the desired wavelengths, corresponding to the specific fluorescent

protein markers. To illustrate the robustness against such

misalignments, we generated image sets with varying levels of

global displacement in (x,y) space, and an additional random

movement term for individual spots. The experiment can be

considered as a simulated live cell experiment, where the effect of

potential displacement and movement due to imaging delay can

be studied in a controlled manner. Importantly, the simulated

experiments allow us to study the matching accuracy directly

through examining the correct matches, mismatches and missing

pairings. Thus, the simulations can be used both for evaluating the

Figure 2. Close-up of a set of vesicles in live cell widefield microscopy experiment imaged over time (time between successive
frames is 5.7 s). Low contrast and blur makes object detection challenging.
doi:10.1371/journal.pone.0094245.g002
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usefulness of the point-set based association analysis and for

quantitatively comparing our PPM algorithm with a state-of-the-

art registration algorithm.

Simulated experiments were generated as images with additive

background noise and spots with varying intensity as foreground

objects similarly as in [13]. The simulation parameters, i.e., the

number of objects, object size, and intensity, were inferred from

real data in order to generate data that resembles realistic

experimental image data. The key parameters of the simulation

process were varied as follows. A global translation in random

direction between the image channels was added using parameter

space f0, . . . ,3g (in pixels), where 0 corresponds to no global shift,

and 3 corresponds to maximum allowed magnitude of global

translation. The other key parameter controls the random

movement of individual objects. The movement was implemented

as an additive random term drawn from zero-mean normal

distribution N(0,smov), where smov[f0, . . . ,5g defines the magni-

tude of movement as deviation (in pixels) around the coordinate

point. In the simulated images, the pixel size was set to correspond

to 198|198 nm. Furthermore, we generated three scenarios

corresponding to low, intermediate, and high levels of association

between channels 1 and 2, where the association levels with

respect to channel 1 were set as 0.7477 in high, 0.5225 in

intermediate, and 0.2072 in low association scenario. For channel

2, the association levels were set to 0.8557 in high, 0.4715 in

intermediate, and 0.2805 in low association scenario. Number of

objects was set to vary around a fixed number of 111 objects per

channel, and the association levels between channels were

controlled by adding and removing objects from random locations

such that exactly the pre-set association levels were obtained.

Finally, the simulations were replicated 10 times for each

parameter settings. To summarize, the simulation study consisted

of 4|6 parameter combinations repeated in three association

scenarios, each replicated 10-fold, resulting to 720 images with two

channels. Object locations were extracted from the images using

the DoG spot detection as described earlier.

Determining vesicle association using colocalization
analysis

Analysis of vesicle localization between two fluorescence-labeled

image channels can be done in 2D or 3D. The true geometry of

the samples means the 3D imaging with confocal microscope and

subsequent processing in 3D enables more accurate analysis in

theory. However, in live imaging such setting is not always

applicable, since 3D imaging is time consuming whereas

intracellular trafficking and object movement may be fast. In

addition, use of 2D imaging enables higher throughput making 2D

images a commonly used compromise in live colocalization

studies. Thus, we will use 2D images taken in time-lapse live

cell-imaging settings.

Some of the most widely used automated statistical colocaliza-

tion estimates rely on correlation of the pixel intensities between

the image channels. Here we use two pixelwise colocalization

estimates, Pearson correlation and Manders’ coefficient [21], as

reference methods for comparison purposes. Pearson’s correlation

rp[½{1 . . . z1� between channels g1 and g2 is given as

rp~
Sx(g1(x){�gg1)(g2(x){�gg2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sx(g1(x){�gg1)2
� �

Sx(g2(x){�gg2)2
� �q ð1Þ

where �gg denotes the channel mean intensity. Positive correlation

indicates match between channel intensities and suggests there

exists colocalization of some level, whereas values close to zero

show no correlation and thus give no evidence of colocalization.

Possible negative correlations would indicate a negative relation of

pixel intensities between compared channels. Another well-known

statistical measure of pixelwise colocalization is the Manders’

colocalization coefficient Mi, which is defined for channel gi as

Mi~
Sx ig ,coloc(x)

Sxgi(x)
ð2Þ

where the colocalized proportion of the signal gi(x) is given by

gi,coloc(x)~gi(x), if gref (x)wtref ð3Þ

where the selection of the threshold value tref for the reference

channel is essential in determining the colocalizing signal.

Threshold selection, however, is not trivial and despite automated

methods are available [3,22] the selection may sometimes need to

be adjusted by user. Recently, a colocalization measure combining

both rp and Mi has been proposed in [23]. Here we have used the

masks presented earlier to define the region of interest for the

quantitative colocalization estimators. The results by both

pixelwise estimators are obtained using the implementation

available in BioImageXD.

Vesicle association analysis using point-pattern matching
Our approach to determining association is to quantify the

number of matching counterparts from two point sets after using

point-pattern matching for aligning the point sets and for defining

the matches. This approach could be implemented by using any

suitable point set matching algorithm. However, here we define a

point-pattern matching algorithm which makes use of the

properties of the application area. The PPM algorithm described

here, and an alternative point set matching algorithm using ICP,

can both be tested by using the implementations available on our

supplementary site.

Given two finite sets of points, say P,Q5Rd , and a set

F5(Rd?Rd ) of allowed transformations, a PPM algorithm

attempts to determine a transformation f [F such that at least

some subset of the points in f (P) would match some subset of Q.

In this paper we will fix F as the set of translations, i.e. each f [F is

of the form

f (p)~pzt, ð4Þ

for some t[Rd .

The term match must be defined carefully to obtain meaningful

results from a PPM algorithm. For example, defining a match

between P’5P and Q’5Q by the relation f (P’)~Q’ means that a

possible match is destroyed by an arbitrary small translation to any

point in either P’ or Q’. Since any real-world measurement

contains noise, a practical PPM algorithm needs to be able to

maintain a match under small deviations of the point-sets, i.e. to be

robust under noise. In addition, since in practice some measure-

ments can be missing or extraneous in either P or Q, a practical

PPM algorithm should be able to find matches between subsets

P’5P and Q’5Q also.

Considering the application area, if we are to apply PPM to

determine colocalization, then the need for both kinds of

robustness is seen as follows. First, it is likely that the detected

object-sets do not match perfectly even in the case of nearly perfect

colocalization, since the measurements are from different objects.

Second, differences originate from biological variation which leads
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to varying levels of colocalizing points. Third, even when the

targeted objects are colocalized, the point-sets include ‘‘noise’’

from object movements.

The way the quality of a matching is measured affects the

robustness of a PPM algorithm tremendously. For example, if

there were an exact copy of the model point-set (what to find) in

the scene point-set (from where to find), but there were an

additional distant cluster of points, we would like the cluster to not

affect the matching result. Many papers on PPM concentrate on

minimizing the Hausdorff distance between point-sets [24] [25]

[26], defined as

dH (P,Q)~maxfsup
p[P

inf
q[Q

d(p,q), sup
q[Q

inf
p[P

d(p,q)g: ð5Þ

Unfortunately, this distance can be made arbitrarily large by

introducing an additional distant point in either X or Y . For this

reason, we reject the minimization of Hausdorff distance as a

practical matching strategy. To improve on the robustness issue,

several authors have proposed using partial Hausdorff distance

instead, where the supremum is taken only over a given

percentage of the smallest distance values. By doing this, it is

hoped that the procedure correctly rejects any points that are too

far away to be meaningful for the matching. Unfortunately, no

percentage is small enough to guarantee that such outliers are

correctly rejected; the number of additional distant points can

always be increased so that the ratio of outliers exceeds the given

percentage. For this reason, we also reject the minimization of the

partial Hausdorff distance as a practical matching strategy.

Instead, we adopt the matching criterion from [27]. Intuitively,

a point p[P matches a point q[Q under f [F , if f (p) is close to q.

By extension, P’5P matches Q’5Q, if each point in f (P’) has a

unique match in Q’. This intuition is made exact in the next

section where we formulate the matching algorithm. Our

approach is to find a match under a given pointwise matching

distance, and then determine the amount of association from this

correspondence.

Van Wamelen et al. [27] presented a fast algorithm for PPM in

R2 under conformal affine transformations, with a robust

matching criterion which we adopt. We do not, however, select

this algorithm, because the application we are dealing with

requires a high degree of robustness. Moreover, the algorithm can

fail on given parameters, for which there is no systematic way to

set to suitable values beforehand. In fact, the requirement for

finding a match if such exists sets a limit for possible algorithms,

and we are not aware of existing studies that would fit our

application. Instead, we will construct one in the next section.

Point-pattern matching under translations
In the following we present an algorithm for PPM between two

finite point-sets in P,Q5Rd , DPD~n, DQD~m, when the class of

transformations F is given by translations f [F which align P to Q:

Ap[P,q[Q : f (p)~q: ð6Þ

The algorithm either reports that there is no match, or reports a

bijection between subsets P’5P and Q’5Q, such that P’ and Q’
match.

Matching criterion

Let P~fp1, . . . ,png5Rd and Q~fq1, . . . ,qmg5Rd be two

sets of points. Let E:E : Rd?R be a norm in Rd . Given d[R, d§0,

called the matching distance, and a[R, 0vaƒ1, called the

matching ratio, the point-set P is said to match the point-set Q if

there is a set M5P|Q~f(pi1 ,qj1 ), . . . ,(piDM D ,pjDM D )g, called a

matching, where each point in P and Q is part of at most one pair,

N Vs[½1,DM D� : Epis{qjsEƒd, and

N DM D§an~Ma.

In addition to the matching criteria above, we also set a limit for

the bias of a match, which will be discussed next.

Bias of a matching
Even if we find a matching M, it might be that the matching is

of poor quality. Assume that for a translation f [F it holds that

Q~f (P)|fq’g, where q’[Rd , and it holds that Eq’{qE~d for

some q[Q. That is, f (P) matches Q perfectly, but there is an

extraneous point q’ nearby q. Let f ’[F : f ’(x)~f (x)z(q’{q).
Then also f ’(P) matches Q. However, the matching given by f ’ is

of poor quality because the difference vectors between the pairs in

the matching are all (except one) in the same direction. We would

rather want the error to be distributed uniformly in all directions.

To avoid these systematically poor matchings, we define the bias of

a matching M by

bias(M)~
E
PDM D

s~1 ½pis{qjs �E
dDM D

: ð7Þ

We will then define a maximum allowed bias b[½0,1�5R, and

require from a matching that bias(M)ƒb. The matching

provided by f ’ in the example can then be avoided, by choosing

b properly, since the errors average near to zero with f and near to

one with f ’.

Nearest neighbors searching
In nearest neighbors searching, the problem is to report those k

points in Q which are closest to a given point p[Rd . To search for

the k nearest neighbors in Q, we shall use the kd-tree data

structure with the sliding midpoint splitting rule [28]. This data

structure can be constructed for Q in O(dm log m) and O(dm)
space.

In the following we shall assume that for each nearest neighbors

search there will not be two points in Q with the same distance to

p. This simplification is without loss of generality; in an actual

implementation one gives a secondary order to equidistant points,

for example, by giving them an ordered labeling. Let

Br(x)~fy[Rd : Ey{xEƒrg, where r[R and x[Rd .

Maximum bipartite matching
Let G~(V ,E) be a graph (all graphs in this paper are directed

and simple), where V is a finite set of vertices, and E5V2 is a

finite set of edges. A graph is called bipartite, if it can be

decomposed as V~L|R with L\R~1, and E5L|R. A

matching of G is a subset M5E without common vertices (this

definition is consistent with the matching of point-sets after we

define V and E in the algorithm). A maximum matching of G is a

matching of G with the largest possible number of edges DM D. We

use the Hopkroft-Karp algorithm [29] to compute a maximum

matching in a bipartite graph in O(E
ffiffiffiffi
V
p

) worst case time, or in

O(E log(V)) average time for random graphs.

PPM Algorithm
Assume a matching distance d, a matching ratio a, a maximum

allowed bias b, and a maximum number of nearest neighbors k.

Quantitative Analysis of Dynamic Association
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The PPM algorithm consists of repeating the following steps for

each pair (p,q)[P|Q.

1. Let t~q{p.

2. For each j[½1,n�, find k (or as many as possible) nearest points

Nj5Q to pjzt in Q\Bd(pjzt).

3. Let G~(V ,E) be a (bipartite) graph, where V~P|Q, and

E~|n
j~1(fpjg|Nj)5P|Q.

4. Find a maximum bipartite matching M in G.

5. If DM DvMa, start with a new pair (p,q).

6. If bias(M)wb, start with a new pair (p,q).

7. Return M as a matching between P and Q.

Object-based association analysis using point-pattern
matching

In this section we apply the above PPM algorithm for estimating

protein association between image channels. First, since we are

using PPM, the fundamental requirement is to obtain point-sets

where the points denote fluorescence-labeled objects detected from

the image. These objects, appearing as resolution-limited, low

contrast blurry spots are challenging to extract, but methods for

detection have been presented and evaluated in the literature

[30,31]. Here we leave the discussion about the selection of

detection algorithm out of the scope and note that we made the

method selection based on experimenting and used the method

described earlier for detecting the fluorescent objects, and the

centroids of detected objects from two channels form the point-sets

P and Q.

Given the PPM algorithm under translations described above, it

is now possible to define the similarity between point-sets by

finding a transformation between P and Q. This transformation

gives us the following information. First, if a match cannot be

found, there is no association at the specified level of correspon-

dence, which is given as the matching ratio a. Second, if a match

has been found, we can check the transformation in order to find

out how much the point coordinates had to be altered in order to

find a match. A moderate transform suggests that true association

exists at the matching ratio a, whereas a drastic transformation

tells about a correspondence found by chance which should not be

counted as association. Using these observations, a rule for

estimating association under the restrictions can be defined by

C~maxfa[½0,1� : P matches Qg, ð8Þ

where a is the matching ratio, and the matching criterion is as

defined previously. While a is a real number, the matching

algorithms only differ on finitely many values of a, corresponding

to the different number of required points Ma[½1,n� in a matching.

The values of C in Eq. 8 can be interpreted similarly as, for

example, direct pixel or objectwise overlap values – values close to

the maximum value of 1 correspond to high level of association

and values close to the minimum value 0 mean there is very little

association – with the only difference being that also closely

located objects are allowed and direct overlap is not required in

the case of the PPM-based association. Fig. 3 illustrates an

example matching using simulated data with 300 points drawn

from normal distribution and 0.2 ratio of missing points between

channels, and with translation and noise introduced for the point-

set. The matches are marked with lines in the close-up, and circles

illustrate the search range defined with parameter d.

Notes on implementation and 3D
Using two-dimensional projections as a basis of association

analysis is a choice made for practical reasons. However, cells are

naturally 3D objects, and thus confocal microscopy suits well for

true 3D colocalization studies. In such cases, the objects can also

be extracted in 3D, yielding an additional location coordinate.

Although 2D imaging is used in the experiments of this article,

estimating association with the new method based on PPM is also

possible in 3D. Majority of the computational workload comes

from the matching process, thus, we implemented the PPM

algorithm in C++. The implementation is available from

supplemental site https://sites.google.com/site/

vesicleassociation/.

Results

We present quantitative results for both simulated and real data.

Simulated data, for which ground truth is available, is designed for

demonstrating the properties and validating the performance of

the PPM-based association algorithm. Importantly, simulation

serves as a powerful tool for validating the novel approach based

on point-set matching, and it enables comparing the proposed

matching algorithm to state-of-the-art algorithm directly, using

matching accuracy as the criterion. Real data, collected using

experimental setup described in Materials and Methods section,

allows comparison with traditional colocalization measures in true

use cases. Due to the lack of ground truth only indirect measures of

accuracy can be used, as is typically the case for real data. The real

experiments, however, can be validated through the biological

setup. We have used two different scenarios; fixed cells with very

high level of colocalization between the labeled structures and live

cell experiments with known association of labeled structures

without a perfect overlap.

The results section starts by an extensive simulation study where

we demonstrate the properties of the PPM-based association

algorithm and compare it with ICP matching. Furthermore, we

show how the proposed method is able to detect associations under

circumstances where traditional colocalization estimates fail to

produce accurate results. Second, we present a comparison with

fixed cells where traditional colocalization measures are known to

perform well. Third, we show how the association algorithm

performs in live cell experiments and again compare against

traditional colocalization methods. Finally, we demonstrate

robustness to artificially generated imaging delay between frames

in live cell experiments.

Robustness to channel displacement and object
movement with simulated data

One of the key advantages in simulation is that the ground

truth, that is, the correspondence between objects in the two

channels is known. This enables the use of quantitative measures

of matching accuracy instead of evaluating the results only based

on the association estimate. Here we use the ground truth

information for determining true positive matches (object paired

with a correct counterpart), false positive matches (mismatch,

object paired with a wrong counterpart) and false negative

matches (object not paired although counterpart exists), from

which the precision, recall, and subsequently, the F-measure are

determined as explained in [32].

In Fig. 4, the F-measure results by PPM and ICP are shown as

summaries across all 10 replicates, and parameter combinations

leading to undefined F-measure (due to failed matching where

none on the pairings were true positives) were left out of the graph.

The results for both algorithms are obtained with matching
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distance d~6, which corresponds to roughly 1200 nm distance

with the simulated data. Further, we used the simulation

experiment for studying the effect of the matching distance

parameter in both point-set based algorithms (Supplemental

results) without significant changes in the relative performances.

The results in Fig. 4 confirm that the point-set based approach

for determining object association is able to handle moderate

object movements (Fig. 4 (a)) and that global translation between

image channels can be eliminated very efficiently (Fig. 4 (b)). When

examining the results given by the two matching algorithms, it can

Figure 3. Example of matching point-sets. Left: Point-set (red) and an altered set (blue) under noise, transformation, and with missing points
with probability of 0.2. Right: The same point-sets after matching. Each matched point has been marked with a line to the corresponding point in the
other set. The search area has been shown with circles. Top: Close up where matches and search areas can be seen.
doi:10.1371/journal.pone.0094245.g003

Figure 4. Result summary for simulated experiments. Results for PPM (triangle) and ICP (circle) are given as average F-measure for ten
replicate simulations for each parameter combination. All three simulation scenarios are shown in the same figure; high association level with solid
line and light grey, intermediate association level with mid grey dash line, and low association level with dotted dark grey line. (a) Results illustrated
with standard deviation of the random particle movement (smov) as a parameter. (b) Results illustrated with length of the global transformation (in
pixels) as a parameter. F-measure is calculated through quantifying true and false matches, and results are not shown for parameter combinations
leading to undefined F-measures.
doi:10.1371/journal.pone.0094245.g004
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be seen that PPM slightly but consistently outperforms the ICP

method for high and intermediate association values. Moreover,

the results confirm that, as can be expected, both of the methods

relying on point-set matching generally perform more accurately

when the level of association is higher, but the drop in matching

accuracy due to lowering association level from approximately

0.80 to 0.25 was not dramatic for the PPM, whereas the ICP-

based method resulted to several failed pairings with low

association values (leading to missing values in the graphs). Given

that it is common in this application that the association level may

be low either due to the lack of association in the studied biological

phenomenon, or due to severe imbalance in the number of objects

in the channels, we will conclude based on the presented results

that the proposed PPM-based method should be preferred for

matching the point sets. In the remaining experiments, we will

only use PPM for representing the proposed point-set based

approach.

Comparison with traditional colocalization estimates
with fixed cells

Second, we estimate colocalization for fixed samples from

human lung carcinoma cells. This data can be considered as a

reference set since the cells are fixed and a2b1 integrin was labeled

using similar amounts of two fluorescent conjugates inducing

almost perfect colocalization. The quantitative results for four sets

of fixed cells (denoted by Fix I–IV) comprising 277 images with

two fluorescence channels are shown in Table 1. For PPM, we

used matching distance d~4, and maximum bias b~0:1. The

matching distance was determined through setting a limit for the

allowed area of determining association using expert knowledge

and information about the pixel dimensions; here d~4 corre-

sponds to v800 nm. As expected, the association results given by

the PPM-based method are rather high which is well in

accordance with the experimental setup.

For comparison, we estimated the colocalization by the

commonly used Pearson correlation (rp) as well as with the

Manders’ colocalization coefficient (Mi) where the DoG method

was used for masking as explained earlier, and i refers to the image

channel. Also the direct overlap percentage of pixels (Opixi) was

calculated for both channels using the masked images. The results

suggest that the PPM-based method yields colocalization estimates

which in general behave similarly as the Manders’ colocalization

coefficient as well as the traditional pixelwise colocalization

estimate. Importantly, allowing the point-set based method to

determine association within the matching distance instead of

limiting to direct colocalization does not seem to result to

overestimated values when compared to the traditional colocaliza-

tion measures.

Association and colocalization in live cell-imaging
Next, we assess the PPM-based method in live microscopy

where movement of vesicles potentially affects to traditional

colocalization estimates. We use two live microscopy datasets with

integrin labeled cells from the A549 cell line imaged at over 150

time-points. The labeled structures are now different, thus direct

colocalization is expected to be low but the structures are known to

be closely associating. An example image can be seen in Fig. 5 (a)

and the objects detected from both channels are shown in (b). In

total, there are 330 images with two fluorescence channels, and the

average particle counts (size limited to be 8 pixels minimum) are

given in Table 2. The PPM maximum bias was again set to

b~0:1, and matching distance was set to d~4 corresponding to

v800 nm distance, which defines the allowed area for determin-

ing association. The matching process is visualized in Fig. 5 (c)

where the matching area (defined by the matching distance) is

shown with white circle around the transformed point locations,

and paired objects are shown with blue lines connecting the object

centers after applying the transformation by PPM algorithm.

In Table 2, the results for a live cell experiments are given.

Based on the results, the traditional methods do not give much

colocalization whereas the association estimate by PPM suggests

that, even though the structures are not directly overlapping, there

exists a certain level of association which is only revealed by the

new point-set based method. The close-up area shown in Fig. 5 (c)

shows examples of points located very closely in the two channels

having very little or no direct overlap, but which are paired by the

PPM algorithm, leading to detected association. This is in line with

control colocalization measurements of 3D data in confocal

microscopy [33] and shows a high amount of association but very

limited direct colocalization. Results for the two datasets (denoted

as Live I & II in Table 2) are almost identical. The data thus

suggest that EGFR and integrin-positive structures stay close but

separate after their triggered internalization. This has also been

recently shown by us using confocal 3D colocalization analysis

[33].

Robustness to imaging delay with real data
The robustness of the algorithm against delay in imaging

process is studied next. Different levels of delay are considered by

using frames I0(n) and I1(nzt) for determining colocalization,

where I0 and I1 are the two image channels, n is the current frame

and t[f0, . . . ,3g is the delay in frames, where the length of delay is

defined by the imaging frequency (here the delay is multiples of

5.7 s). The results are shown in Fig. 6 both as numerical estimates

and as relative values normalized by the first, non-delayed

datapoint. The results are presented with respect to channel I1.

For PPM we evaluated the effect of search range parameter d by

giving values 4, 6, 8, 10. Given the rather long delay, this time it is

justified to use larger values for d. The objectwise overlap was

Table 1. Colocalization and association estimates for fixed cell image sets.

Image set #images m#1 m#2 CPPM 1 CPPM 2 M1 M2 Opix1 Opix2 rp

Fix I 71 154.41 126.46 0.6719 0.8123 0.7198 0.8111 0.6407 0.7300 0.7008

Fix II 70 154.40 67.37 0.4168 0.9493 0.4938 0.8946 0.3970 0.8469 0.7166

Fix III 69 201.32 82.06 0.3844 0.9345 0.4994 0.8705 0.3419 0.8266 0.7882

Fix IV 67 92.45 71.73 0.5645 0.7079 0.5441 0.7525 0.4784 0.6310 0.8116

Average number of objects per channel for each set are given as m#i , association estimate by the PPM-based methods in CPPM i, Manders’ colocalization coefficient is
Mi , pixelwise overlap is Opixi, and rp is the Pearson correlation.

doi:10.1371/journal.pone.0094245.t001

Quantitative Analysis of Dynamic Association

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94245



calculated for comparison purposes using the same segmentation

masks which were also used as a basis of PPM matching. The

results represented as relative to the non-delayed case reveal how

the direct pixelwise colocalization estimate and the PPM method

with small search range are sensitive to imaging delay, whereas

association values obtained with larger search ranges are less

affected by the artificially introduced delay. The results also

indicate that PPM-based association estimates are larger than

direct overlap-based colocalization, as was expected due to the

lack of direct colocalization of the labeled structures.

Discussion

In this article, we have presented a computational method for

estimating protein association between two image channels using

an object-based point-pattern matching approach. The method

searches a mapping between point sets detected from the image

channels through pairing individual objects detected in both

channels. The association is estimated as the fraction of paired

objects, creating a measure that is directly comparable to the

colocalization percentages between overlapping objects or masked

image pixels/voxels. The advantage of the proposed method stems

from the inherited robustness of PPM against directed movement

between the image channels, which could be potentially caused by

misaligned image channels. Also other moderate transformations,

such as random object movement during the lag in the imaging of

the fluorescence channels, can be compensated within the search

area. Any movement of the fluorescence-labeled subcellular

structures will potentially lead to missed colocalization unless the

movement is compensated, whereas the proposed method based

on PPM is able to resolve association in cases where moderate

object movement exists. The robustness against moderate trans-

lation and object movement are beneficial in live cell imaging

where rapid movement of objects occur, in such cases the use of

PPM-based method provides an advantage over the traditional

colocalization measures such as Pearson correlation or Manders’

coefficient. Furthermore, the proposed method does not limit to

quantification of direct colocalization, but it also detects the

nearby objects associated with the same structure. The robustness

of using the point-set matching comes at the cost of an additional

computational step. Since determining colocalization or associa-

tion is not typically a real-time task, this disadvantage does not

hinder the use of the PPM-based method.

The proposed PPM-based method was experimentally validated

with several time-lapse image sequences with hundreds of image

frames, each image typically containing in the order of hundreds

of fluorescence-labeled subcellular objects. The results obtained

for simulations demonstrate the benefits of the proposed method.

Misalignments and random movement of individual objects cause

significant drop in the performance of traditional methods,

whereas the matching based PPM and ICP methods performed

well when the random movement was moderate. Moreover, the

results obtained for fixed human lung carcinoma cells with known

colocalization of two a2b1 integrin fluorescent conjugates show

that the estimates by the PPM association method are well in

accordance with the traditionally applied pixelwise colocalization

Figure 5. Frame from a live-cell imaging experiment with; a) overlay of original image channels, b) detected objects, colors correspond to image
channels and direct pixelwise overlap (colocalization) is visible as yellow color, c) close-up showing transformed point set and search area with white
dashed circles and found matches (association) with blue lines.
doi:10.1371/journal.pone.0094245.g005

Table 2. Colocalization and association estimates for live cell-imaging experiments.

Image set #images m#1 m#2 CPPM 1 CPPM 2 M1 M2 Opix1 Opix2 rp

Live I 156 103.60 260.69 0.3813 0.1528 0.1618 0.0850 0.1595 0.0615 20.0294

Live II 174 142.37 410.02 0.4682 0.1650 0.1574 0.0831 0.1690 0.0561 20.0590

Average number of objects per channel for each set are given as m#i , association estimate by the PPM-based methods in CPPM i, Manders’ colocalization coefficient is
Mi , pixelwise overlap is Opixi, and rp is the Pearson correlation.

doi:10.1371/journal.pone.0094245.t002
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estimates, such as the Manders’ colocalization coefficient and

Pearson correlation, as well as with colocalization estimated with

direct object-based overlap. Finally, we studied how association

estimate performs in live cell experiments using live microscopy of

a2b1 integrin and EGF labeled cells from the A549 cell line. It was

shown that dynamic association of two structures which do not

perfectly overlap could be detected by the proposed method.

Further, the effect of delay on the colocalization in live imaging

situations was demonstrated, and the results under artificially

created heavy delay further confirm the robustness of our method

compared to estimate without movement compensation. With

these results, the PPM association method can be recommended

for object association studies as well as a robust substitute for

traditional colocalization methods for live biological fluorescent

samples.
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