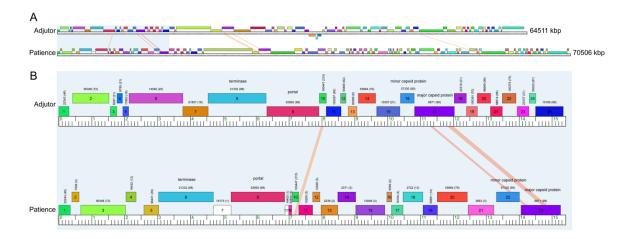
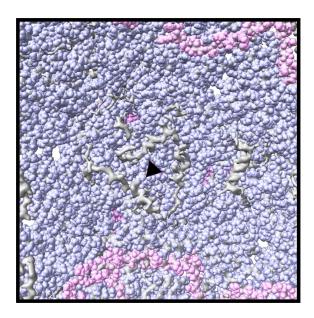
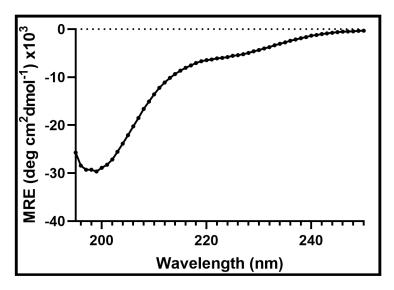
Supporting Information for "A novel stabilization mechanism accommodating genome length variation in evolutionarily related viral capsids"

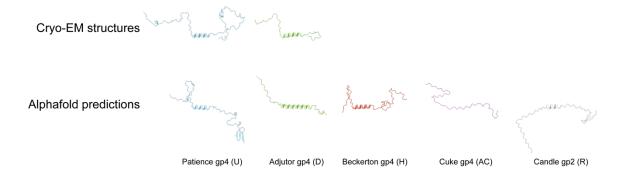

Authors: Jennifer M. Podgorski¹, Joshua Podgorski¹, Lawrence Abad², Deborah Jacobs-Sera², Krista G. Freeman², Colin Brown^{3,4}, Graham Hatfull², Antoni Luque^{3,5,6,7*} Simon J. White^{1*}

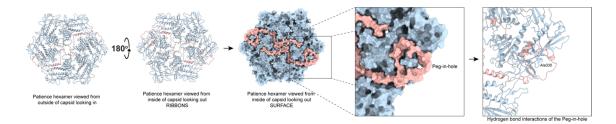
Affiliations


- **1.** Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
- Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- **4.** Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- **5.** Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- **6.** Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- 7. Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33155, USA

Email: <u>simon.white@uconn.edu.</u> antoni.luque@miami.edu


^{*} Authors to whom correspondence should be addressed.


Figure S1. Genomes of Patience and Adjutor. A) shows the full genome of Adjutor and Patience. Orange/yellow lines between the two genomes shows genes that have nucleotide sequence identity. The length of the genomes is shown to the right. B) shows the zoomed in area of the structural genes. Certain genes are annotated. The number above each gene is the pham number. The number in brackets is the number of other phages with the same pham protein. For example, the major capsid protein is Pham 8871 with 98 other bacteriophages containing the same Pham protein. Genome cartoon was created with Phamerator¹.


Figure S2. Unmodelled density in Patience. The areas in grey are unmodelled density observed on the underside of the capsid near the local three-fold (black triangle) axis. Blue shows major capsid protein while pink shows gp4. The helix can be observed on the right hand side.

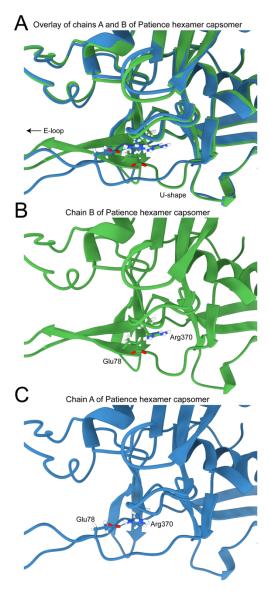
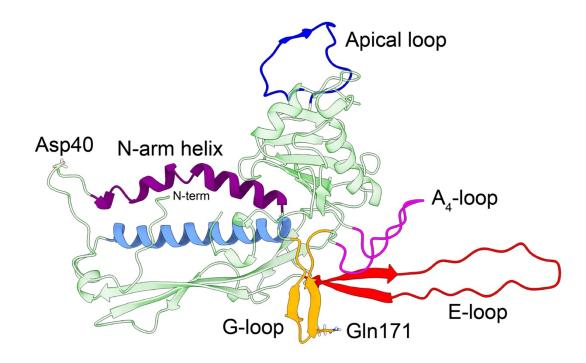
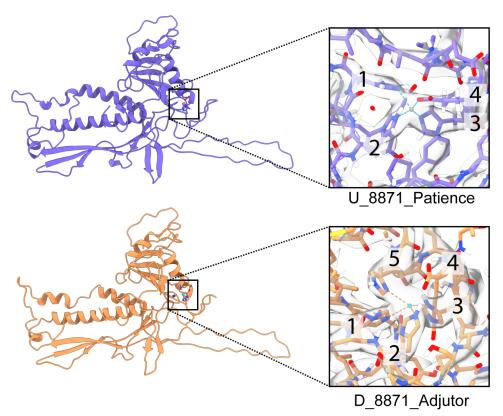
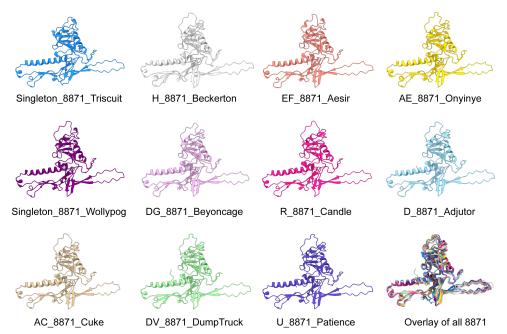
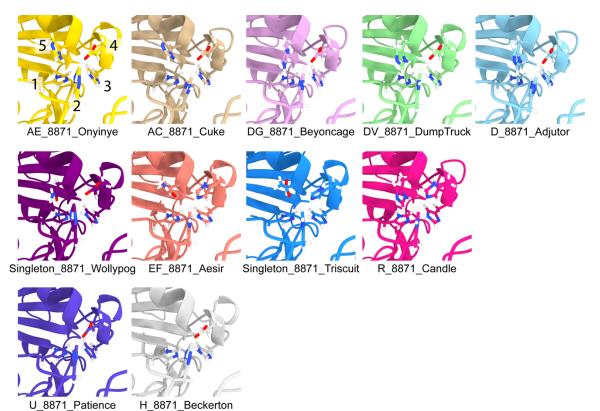

Figure S3. Free Patience gp4 exists as a random coil. A CD spectra of free Patience gp4 at 1 mg/mL.

Figure S4. Alphafold predicted structures of putative gp4 homologs. Patience and Adjutor cryo-EM models and their predictions are shown for comparison.

Figure S5. Peg-in-hole interaction of Patience gp4. Shows the ribbon diagram of the Patience hexamer capsomer from the outside looking into the capsid. This is in flipped 1800 so that the underside of the ribbon diagram of the hexamer is seen. The surface is then shown and zoomed in to highlight the peg-in-hole interaction. Finally, the ribbon diagram of the peg-in-hole is shown with Ala330 labelled as the center of the major capsid protein peg. The hydrogen bonds and salt bridges are revealed.

Figure S6. Straightening of the E-loop of Chain A to bridge the 2-fold chasm. Shows the overlay of chains A and B of the hexamer capsomer (A) as well as the two chains separately with Arg370 and Glu78 highlighted (B and C).


Figure S7. The hexamer major capsid protein.

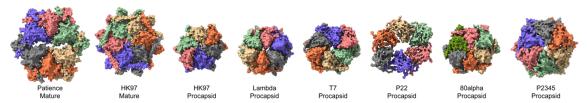

Figure S8. Metal co-ordination in Patience and Adjutor. The cryo-EM derived models are shown on the left with the putative metal binding domain highlighted with a black box. On the right the putative metal binding domain is shown closer up with the cryo-EM map overlaid (grey color). Predicted contacts are represented by dashed lines and residues potentially involved in the metal coordination are numbered.

Figure S9. Predicted structures of all the major capsid proteins found in the Patience-like major capsid protein family. All structures were predicted with Alphafold. The N-terminus was truncated to where it crosses behind the spine helix due to the poor prediction.

Figure S10. Metal co-ordination in the Patience-like major capsid protein. All structures shown were predicted with Alphafold. No metal ion has been modeled in. Every major capsid protein of the Patience-like major capsid protein family shows similar metal co-ordination. In Onyinye, the five amino acids involved in the co-ordination are labelled. The first row all show similar co-ordination and have the same amino acids. The second row highlights the major capsid proteins that have different amino acids in positions 4 and 5. The final row shows Patience and Beckerton that lack the position 5 amino acid.

Figure S11. HK97-fold procapsid hexamer structures. Six procapsid hexamer structures with the mature capsid hexamer of Patience and HK97 bacteriophage for reference. Original PDB files are as follows. HK97 mature capsid (10HG). HK97 procapsid (3E8K). Lambda procapsid (7VI9). P22 procapsid (2XYY). P2345 procapsid (6IBC). T7 procapsid (3J7V).

Table S1. Cryo-EM collection parameters, analysis, and final resolutions.

Data collection	Adjutor	Patience		
Microscope	Titan Krios	Titan Krios		
Acceleration voltage (keV)	300	300		
Spherical aberration (mm)	2.7	2.7		
Pixel size / Å	0.40075	0.3915		
Nominal defocus / μm	0.8 to 2.1	1 to 3		
Detector (mode)	Gatan K3 (super resolution)	Falcon III (counting mode)		
Total exposure dose / eÅ-2	30	30		
Number of frames	30	30		
Number of micrographs	6664	8640		
Number of particles in final refinement	44239	61957		
Extract box size (fourier crop box size)	2560/800	2400/800		
Final pixel size used in reconstruction	1.28	1.19745		
Ewald sphere correction mask diameter	760	788		
Symmetry	I (I1)	I (I1)		
Resolution (FSC 0.143)	2.66	2.39		

Table S2. Members of the Patience-like major capsid protein family of Patience and Adjutor. Gp4 homologs are all putative and not confirmed by cryo-EM (apart from Patience and Adjutor that have been identified in this paper).

Cluster	Number of members	Gp4 homolog pham	Average genome length (bp)	Host	Life Cycle
AC	4	18383	70,029	Mycobacterium	Lytic
AE	2	Unknown	71,497	Mycobacterium	Unknown
D	21	6785	64,805	Mycobacterium	Lytic
DG	9	Unknown	66,155	Gordonia	Lytic
DV	17	Unknown	67,413	Gordonia	Unknown
EF	22	Unknown	56,496	Microbacterium	Lytic
Н	10	16432	69,108	Mycobacterium	Lytic
R	8	36408	71,339	Mycobacterium	Lytic
U	3	16432	66,864	Mycobacterium	Lytic
Singleton_Triscuit	1	Unknown	67,539	Microbacterium	Unknown
Singleton_Wollypog	1	Unknown	63,364	Arthrobacter	Unknown

Table S3. Interactions between Adjutor gp4 and hexamer major capsid proteins. Interactions predicted with the PDBsum server.

Chain	Number of	Interface	Number of	Number of	Number of
	interface		salt	hydrogen	non-
	residues		bridges	bonds	bonded
					contacts
Gp4:A	27:33	1765:1598	4	17	183
Gp4:B	2:2	97:95	0	1	3
Gp4:C	-	-	-	-	-
Gp4:D	-	-	-	-	-
Gp4:E	4:5	257:233	0	1	9
Gp4:F	26:25	1598:1534	5	20	156

Table S4. Interactions between Patience gp4 and hexamer major capsid proteins. Interactions predicted with the PDBsum server.

Chain		Number of	Interface	Number of	Number of	Number of
		interface	area (A²)	salt	hydrogen	non-
		residues		bridges	bonds	bonded
						contacts
	Gp4:A	47:55	2993:2755	1	27	267
	Gp4:B	3:3	160:164	0	2	18
	Gp4:C	1:1	66:59	0	1	6
	Gp4:D	5:9	308:283	3	16	149
	Gp4:E	14:22	818:704	0	5	72
	Gp4:F	27:28	1481:1484	5	17	142

Table S5. Metal Ion-Binding site prediction scores of the putative metal binding sites in the Patience-like family of major capsid proteins. The Alphafold prediction pdb files were used with the online server.

Meta	Patience	Adjutor (score/residues	Candle		
l lon	(score/residues	involved)	(score/residues involved)		
	involved)				
Ca ²⁺	0/None	0/None	0/None		
Cu ²⁺	0.933/185P, 198H, 200H,	0.963/202H,224H,228H	1.035/207H,229H,233H		
	224H				
Fe ³⁺	0.721/198H/200H/223E	0.896/202H,204H,224H	0.943/207H,229H,232H,		
			233H		
Mg ²⁺	0/None	1.054/202H,204H	1.150/207H,209H		
Mn ²⁺	0/None	0/None	0/None		
Zn ²⁺	1.077/198H,200H,226Y	1.259/202H,204H	1.214/207H,209H,229H		
Cd ²⁺	0/None	0/None	0/None		
Fe ²⁺	0.873/198H,200H,224H,3	1.156/202H,204H	0.791/208D,209H,232H,		
	72R		233H		
Ni ²⁺	1.059/198H,200H,223E	0.966/202H,204H, 227E	1.048/209H,229H		
Hg ²⁺	0.580/200H/377I	0.739/198F,202H	0.550/209H,387V		
Co ²⁺	1.276/198H,200H,223E	1.098/224H,228H	1.177/229H,233H		
Cu ²⁺	0.750/200H/220L/224H	0.915/202H,204H,228H	1.35/232H,233H		

Table S6. Geometrical analysis of the HK97-fold capsid range. The columns include the triangulation number (T), the hexagonal coordinates separating nearby pentamers (h,k), the class P, the multiplicity f, the generating hexagonal coordinates of the class, (h0,k0), the presence of a hexamer centered on the 3-fold axis (3-fold H), the triangulation number divided by three (T/3), and the hexagonal coordinates of the 3-fold hexamer (hH, kH). The capsids containing a hexamer centered on the 3-fold axis are shaded in grey.

T	h	k	Р	f	h_0	\mathbf{k}_{0}	3-fold H	T/3	h _H	k _H
1	1	0	1	1	1	0	no	1/3		
3	1	1	3	1	1	1	yes	1	1	0
4	2	0	1	2	1	0	no	4/3		
7	2	1	7	1	2	1	no	7/3		
9	3	0	1	3	1	0	yes	3	1	1
12	2	2	3	2	1	1	yes	4	2	0
13	3	1	13	1	3	1	no	13/3		
16	4	0	1	4	1	0	no	16/3		
19	3	2	19	1	3	2	no	19/3		
21	4	1	21	1	4	1	yes	7	1	2
25	5	0	1	5	1	0	no	25/3		
27	3	3	3	3	1	1	yes	9	3	0
28	4	2	7	2	2	1	no	28/3		
31	5	1	31	1	5	1	no	31/3		
36	6	0	1	6	1	0	yes	12	2	2
37	4	3	37	1	4	3	no	37/3		
39	5	2	39	1	5	2	yes	13	1	3
43	6	1	43	1	6	1	no	43/3		
48	4	4	3	4	1	1	yes	16	4	0
49	5	3	49	1	5	3	no	49/3		
49	7	0	1	7	1	0	no	49/3		
52	6	2	13	2	3	1	no	52/3		