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Simple Summary: Ocular adnexal marginal zone lymphoma (OAMZL) is a distinct type of lym-
phoma that presents in tissues around the eyeball. The lymphoma develops from mature B lym-
phocytes that have been triggered by antigens for prolonged times. It seems that the B cells often
recognize autoantigens. The lymphoma cells often carry specific chromosomal gains and, in some
cases, chromosomal translocations. A main factor in the development of this lymphoma is the consti-
tutive activation of the NF-κB pathway, which occurs through various types of genetic alterations.
Further key pathogenetic mechanisms involve epigenetic changes, indicated by recurrent mutations
in epigenetic regulators.

Abstract: This review focuses on the biology of ocular adnexal marginal zone B-cell lymphomas of
the mucosa-associated lymphatic tissue (MALT) (OAMZL) subtype. The ocular adnexa includes all
structures and tissues within the orbit except for the eye bulb. In the region of the ocular adnexa,
MALT lymphomas represent the most common subtype of lymphoma, accounting for around 8%
of all non-Hodgkin lymphomas. These lymphomas are often preceded by inflammatory precursor
lesions. Either autoantigens or infectious antigens may lead to disease development by functioning
as continuous antigenic triggers. This triggering leads to a constitutive activation of the NF-κB
signaling pathway. The role of antigenic stimulation in the pathogenesis of OAMZL is supported by
the detection of somatic mutations (partially with further intraclonal diversity) in their rearranged
immunoglobulin V genes; hence, their derivation from germinal-center-experienced B cells, by a
restricted IGHV gene usage, and the validation of autoreactivity of the antibodies in selected cases.
In the established lymphomas, NF-κB activity is further enforced by mutations in various genes
regulating NF-κB activity (e.g., TNFAIP3, MYD88), as well as recurrent chromosomal translocations
affecting NF-κB pathway components in a subset of cases. Further pathogenetic mechanisms include
mutations in genes of the NOTCH pathway, and of epigenetic regulators. While gene expression and
sequencing studies are available, the role of differential methylation of lymphoma cells, the role of
micro-RNAs, and the contribution of the microenvironment remain largely unexplored.

Keywords: ocular adnexal lymphoma; extranodal marginal zone lymphoma; mucosa-associated
tissue; MALT lymphoma; NF-κB; ocular adnexa; orbit

1. Definitions
1.1. Ocular Adnexa

Adjacent structures of the eye are called the ocular adnexa, which include the content
of the orbit, the lacrimal apparatus, the extraocular muscles, the eyelids, the eyelashes, the
eyebrows, and the conjunctiva. Most definitions of the orbit include extraocular muscles,
blood vessels, nerves, fascia, and fat. The eyeball lying in the cavity is not part of the ocular
adnexa. Details on anatomical structures can be found in relevant textbooks [1,2].
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1.2. Extranodal Marginal Zone Lymphomas

Whereas most B-cell lymphomas primarily locate to the lymph nodes or other lym-
phoid organs, some lymphomas have a primary presentation in extranodal sites. The
predominant form of such lymphomas is extranodal marginal-zone lymphoma (EMZL) [3].
The histological picture resembles marginal zones, the prototype of which is seen in the
spleen, and marginal-zone B cells are indeed considered to be the normal counterpart
of EMZL. Most EMZLs arise in mucosal tissues; hence, these lymphomas are then also
defined as mucosa-associated lymphoid tissue (MALT) lymphomas. EMZL can occur at
various locations in the body, including the stomach, the salivary glands, and the ocular
adnexa. Ocular adnexal lymphomas (OALs) do not encompass lymphomas developing in
the eyeball.

The majority of OALs are EMZLs of the MALT subtype developing in sites lacking
germinal-center-containing lymphatic tissues. Primary OALs have to be distinguished
from secondary lymphomas caused by involvement of the ocular adnexa with systemic
lymphomas. Such systemic lymphomas involving the ocular adnexa are mostly diffuse
large B-cell lymphomas, and will not be further considered here. In the following text, we
will focus on the biology of ocular adnexal marginal zone lymphomas (OAMZLs). We refer
to other recent reviews for clinical, diagnostic, and pathological aspects of OAMZL [4–7].

2. Epidemiology

In the orbit, OALs are the most common malignancy in adulthood, and account
for 11% of all orbital masses. Primary OALs are nevertheless rare; they represent only
1–8% of all non-Hodgkin lymphomas [8–10], and 5–15% of all extranodal non-Hodgkin
lymphomas [8]. The most common subtype of primary lymphoma of the ocular adnexa is
extranodal marginal zone lymphoma of the MALT subtype, accounting for approximately
67–80% of cases [11,12]. Geographic differences have been recognized, with around 60%
of OALs in the Western world being represented by OAMZLs, whereas in Asian case
series approximately 80% of primary OALs are of this type [5,9,11,13]. The next most
common lymphoma types in the ocular adnexa region are follicular lymphomas, mantle-cell
lymphomas, and diffuse large B-cell lymphomas, each accounting for approximately 10% of
primary OALs [11]. Other subtypes of B-cell lymphoma and T-cell lymphoma are very rare
in this location. Overall, primary EMZL accounts for up to 74% of all orbital malignancies.

OALs show different frequencies for their sites of involvement. Primary conjunctival
and eyelid lymphomas are reported in 20–33% and 5–24% of OALs, respectively [6,14,15];
the lacrimal drainage apparatus is rarely involved. For the lacrimal gland, the annual
incidence is about 0.7/million individuals; 99% of lymphomas in this location are B-cell
lymphomas, with 68% of them EMZLs. The lacrimal sac is reported to be involved in 2% of
patients [16,17]. Secondary involvement of the ocular adnexa with a systemic lymphoma is
described in only 10–32% of all OAL cases [18].

From 1975 to 2001, the incidence of OAL has increased by 6.3% annually, which is more
rapidly than seen for other extranodal non-Hodgkin lymphomas [19,20]. A nationwide
Danish study also reported a rising incidence of OAL from 1980 to 2017. This was observed
for OAMZL for men and women, but not for follicular lymphoma, mantle-cell lymphoma,
or diffuse large B-cell lymphoma [11]. The reasons for the rising incidence are not known.
An increase in the annual incidence of OAMZL from 2001–2017 was also reported by
Cerhan et al. for the USA [21].

3. Morphology and Immunophenotype

Morphologically, OAMZL is characterized by an infiltrate with expansion of the
marginal zone surrounding residual germinal centers, if recognizable. The infiltrate consists
of a heterogeneous population of small, round-shaped lymphocytes, including centrocyte-
like cells, monocytoid cells, and/or scattered immunoblasts (Figure 1) [22]. Plasmacytic
differentiation is frequently seen. The plasmacytic cells express plasma cell markers only
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in 11% of cases [23]. The occurrence of these cells is not significantly associated with
recurrence, systemic disease, or lymphoma-related death [23]

Figure 1. Histology and immunophenotype of OAMZL: (A) immunohistochemistry (Hematoxylin
and Eosin, H&E staining) of conjunctival lymphoma; (B) enlarged view of an H&E staining, demon-
strating a dense infiltrate of small, round-shaped cells; (C) the lymphoma cells express CD20; (D,E) in
this case, no clear overexpression of one light chain is observed; (F) CD5 staining. Tumor cells are
negative; the intermingled CD5+ cells represent T cells.

Regarding the immunophenotype, OAMZL exhibits the same phenotype as other
MALT lymphomas. For identification of a MALT lymphoma, no typical aberrant im-
munophenotypic markers are available. The cells express CD20, CD79a, PAX5, IgM, BCL2,
and TCL1; several cases also express CD11c, CD43, and CD35; rare cases express CD5. The
OAMZL cells are negative for IgD, CD3, CD10, CD23, cyclin D1, BCL6, and IRF4. The
negativity for CD10, CD23, cyclin D1, and BCL6 can be helpful in the differential diagnosis
of OAMZL versus small lymphocytic lymphoma (CD23+), mantle-cell lymphoma (cyclin
D1+), and follicular lymphoma (CD10+BCL6+) [3]. The immunophenotype of OAMZL lym-
phoma cells is therefore very similar to that of normal marginal-zone B cells. Light-chain
restriction as an indication of monoclonality is not regularly detectable [24]. An example is
given in Figure 1.

4. Bilateral and Recurrent Disease

Lymphomas diagnosed as primary OAMZL can arise bilaterally, either simultaneously
or sequentially. Relapses can occur in nearly the same position, usually not in localizations
previously irradiated, or can be found on the other eye. In rare cases, systemic relapses
occur. The time between first manifestation and relapse can take more than a decade. Based
on IGHV clonality analyses, Matsuo et al. observed that bilateral, recurrent, or systemically
multifocal lesions represent a common clone [25].

Interestingly, the type of ocular adnexal and systemic lymphoma occurring in one
patient can be different. In an analysis of 209 OAL patients—31% of them presenting with a
history of systemic lymphoma—the histological subtype was the same in 83% [26]. In 12.3%
of patients, the OAL was more indolent than the systemic lymphoma. Several explanations
are possible, e.g., transformation, composite lymphomas, or trafficking of cells to tissues
encountering different microenvironmental settings. The mechanisms behind this are not
yet well investigated. The observation of different lymphoma subtypes underscores the
importance of biopsies for determination of the histological subtype, even in the context of
systemic lymphoma [26].
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5. Etiology and Pathogenesis
5.1. Precursor Lesions

Several precursor lesions potentially developing to OAMZL have been described,
among them orbital pseudotumors (idiopathic orbital inflammatory disease (IOID)), reac-
tive lymphoid hyperplasia (RLH), and IgG4-related disease [27]. Both exogenous antigens
and autoantigens can trigger the abovementioned precursor lesions in the ocular adnexa.
Precursor lesions as inflammatory non-malignant states have in common that they result in
chronic antigenic stimulation, which may lead to activation of the NF-κB signaling pathway,
to chromosomal alterations, and to other genetic and epigenetic alterations. This multistep
process can drive lymphoma development [28].

OAMZL arising in the context of IgG4-related disease has been repeatedly reported as
OAMZL with IgG4-positive cells or infiltrated by IgG4-positive cells [29–33]. In some cases,
the differentiation between the two entities is challenging, since OAMZL exhibits IgG4-
positive plasma cells in up to 62% of cases [34]. Histopathologically, obliteration of venous
vessels is specific. Plasma cells in IgG4-related disease are polytypic. In IgG4-related disease,
eosinophilia, high IgE titers, polyclonal hypergammaglobulinemia, and often elevated
serum IgG4 levels are observed [35]. Infraorbital nerve enlargement is a unique feature on
MRI scans [31]. Upregulation of activation-induced cytidine deaminase (AID)—the master
factor for somatic hypermutation and class-switch recombination of immunoglobulin
genes—was observed in IgG4-related ophthalmic disease and OAMZL, whereas AID
expression was lower in IgG4-negative OAMZL [36]. AID might be a driver for oncogenesis
in the development of IgG4-related ophthalmic disease to IgG4-positive OAMZL.

5.2. Antigen Stimulation

Chronic (auto)antigenic stimulation via chronic inflammation, infection, or autoim-
mune disease is supposed to be a relevant pathogenic mechanism in the development
of primary MALT lymphoma in general [37]. A multistep process is supposed to pro-
mote survival and growth advantages of stimulated B cells, which may finally give
rise to monoclonal B-cell populations. Various mechanisms are described causing this
antigenic stimulation.

5.2.1. Infectious Agents
Chlamydophila psittaci

Chlamydia are human pathogenic intracellular bacteria that are typically transmitted
via infected birds. Mostly, infections are asymptomatic, but they can cause pneumonia,
chronic conjunctivitis, pericarditis, and hepatitis [38]. Chlamydophila psittaci can induce
immune reactions cross-reacting with autoantigens, leading to insufficient elimination of
the pathogen and induction of lymphoma development [7,39,40].

The prevalence of C. psittaci in OAL seems to be region-specific. In most studies
involving patients from Italy or Korea, C. psittaci was repeatedly detected by PCR and other
methods in OAL cases. Other Chlamydia species were predominantly observed in China
(C. pneumonia) and the UK (C. trachomatis) [7,41,42]. In other countries, however—including
Japan, the USA, Cuba, the UK, the Netherlands, France, and Germany—no evidence for
C. psittaci in samples of OAL was observed [43–51].

(1) Other Bacteria

Among 308 OAL patients analyzed in 11 studies, Helicobacter pylori was detected in
23% of the lymphomas [52]. However, there is the risk of contamination of OAL biopsy
specimens by the rather prevalent H. pylori during sampling, so the true incidence may
be substantially lower. Notably, the prevalence of OAL patients with H. pylori-positive
gastric infections is overall no higher than in the general population [52], arguing against
a significantly increased risk of OAL development in individuals with chronic gastric
H. pylori infection. A recent study confirmed a lack of association between gastric H. pylori
infection and OAL incidence [53]; none of 18 OAL cases in that study showed H. pylori
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DNA in the lymphoma tissue. Thus, the role of H. pylori in the development of OAL is
still unresolved.

(2) Viral Pathogens

In several studies on a potential viral etiology of OAL, no viruses were detected in
the lymphomas [51,54]. For chronic hepatitis C virus (HCV) infections, the association
with marginal-zone lymphomas is especially well known [55,56]. Although there are clear
indications for a role of HCV in the pathogenesis of some types of B-cell lymphoma, its role
in OAMZL is less clear [57].

For human-immunodeficiency-virus-infected patients, a higher risk of developing
marginal-zone lymphomas has been described, but there are no reports on higher incidences
of OAMZL [58]. Regarding Epstein–Barr virus, cytomegalovirus, and human papilloma
virus, there are also no reports on higher infection rates in patients with OAL [54,59].

5.2.2. Autoimmune Diseases

The detailed mechanisms of lymphomagenesis in the context of autoimmunity remain
unclear. The occurrence of lymphomas in association with rheumatoid arthritis, Sjögren’s
syndrome, Hashimoto thyroiditis, and other autoimmune diseases is well described [60,61].
A meta-analysis of 20 studies including patients with the abovementioned autoimmune
diseases revealed that lymphomas are more common in these patients than in healthy sub-
jects [62]. The most common lymphoma subtype occurring in patients with autoimmune
diseases is marginal-zone lymphoma [63]. Disease activity, the presence of rheumatoid fac-
tor, and/or cryoglobulinemia in patients with autoimmune diseases are prognostic factors
for lymphoma development, reflecting a continuing immune stimulation [64]. Apoptotic
resistance—mediated by high BCL2 expression, activation of NF-κB, and overexpression
of B-cell activating factor (BAFF)—is increased in autoimmune diseases [65]. Figure 2
provides a proposed scenario of OAMZL pathogenesis.

Figure 2. Proposed scheme of OAMZL pathogenesis. RLH: reactive lymphoid hyperplasia; IOID:
idiopathic orbital inflammatory disease; BAFF: B-cell activating factor; EMZL: extranodal marginal-
zone lymphoma; MALT: mucosa-associated lymphatic tissue.
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5.3. Chromosomal Aberrations
5.3.1. Translocations

In OAMZL, chromosomal translocations leading to constitutive activation of the NF-κB
signaling pathway have been described [22]; these include t(11;18)(q21;q21)/BIRC3-MALT1,
often accompanied by a trisomy 3 [66], and t(14;18)(q32;q21)/IGH-MALT1 (Table 1). The
t(11;18)(q21;q21) juxtaposes BIRC3 (previously also known as API2) to MALT1, resulting
in a fusion gene; this translocation has been detected in 10–15% of OAL cases [67,68].
The t(14;18)(q32;q21) translocation brings the MALT1 gene under control of the IGH
locus enhancers, causing constitutive expression of MALT1, and is present in around
5–10% of OAMZLs. MALT1 is a protease and an important mediator of canonical NF-κB
signaling [69].

Table 1. Genetic alterations of OAMZL.

Chromosomes or
Genes Affected Type of Genetic Alteration Pathway or Main Function Approximate

Frequency (%) References

Chromosomal alterations

Trisomy 3 Chromosomal gain unclear
(FOXP1?) 30–60 [70–72]

Trisomy 18 Chromosomal gain unclear 20–55 [70–72]
t(11;18)(q21;q21) BIRC3-MALT1 translocation NF-κB pathway 10–15 [68,73]
t(14;18)(q32;q21) IGH-MALT1 translocation NF-κB pathway 5–10 [67,70,74]

t(3;14)(p14.1;q32) FOXP1-IGH translocation B-cell development and
survival (NF-κB pathway) 5–15 [75,76]

Gene mutations

TNFAIP3 Deletions, non-synonymous
mutations NF-κB pathway 30–50 [77–81]

MYD88 Non-synonymous mutations
(mostly p.L265P) NF-κB pathway 5–35 [78,81–84]

NOTCH1 Non-synonymous mutations
(mostly HD and PEST domains) NOTCH pathway 2–10 [78,80,85]

NOTCH2 Non-synonymous mutations
(mostly TAD and PEST domains) NOTCH pathway 5–10 [78,86]

KMT2D Non-synonymous mutations Epigenetic regulation 5–20 [78,80,81,86]
CREBBP Non-synonymous mutations Epigenetic regulation 15 [51,80]

TBL1XR1 Non-synonymous mutations
(mostly WD40 domain)

Regulation of nuclear
receptor activity (NF-κB and

AP1 pathway)
10–20 [51,80,81,85]

JAK3 Non-synonymous mutations JAK/STAT signaling 5–10 [51,81]

CABIN1 deletions, Non-synonymous
mutations NFAT signaling 30% [87]

RHOA deletions, Non-synonymous
mutations Rho signaling 26% [87]

Non-synonymous mutations: includes damaging point mutations, small insertions/deletions.

The t(3;14)(p14.1;q32)/FOXP1-IGH was observed in around 5–15% of OALs, and leads
to constitutive expression of FOXP1 [75,76,88]. FOXP1 is a transcription factor that supports
B-cell survival, and can cooperate with NF-κB, so that for this translocation event there is
also a link to the NF-κB pathway [89].

Further translocations occur in OAMZL with lower prevalence. These include t(1;14)(p22;q34)
juxtaposing BCL10 to the IGH locus, or t(5;11) with unknown translocation partners [90].
Notably, translocations are observed in OAMZL at lower frequencies than in MALT lym-
phomas occurring in other regions, and the various EMZLs show distinct patterns of
recurrent chromosomal translocations [88].
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5.3.2. Copy Number Variations

The most frequent copy number variations in OAMZL are trisomy 3 and trisomy 18,
in approximately 30–60% and 20–55% of patients, respectively (Table 1) [70,71]. Trisomy 3
is more common in persons above 50 years of age, whereas trisomy 18 is observed mostly
in younger, female patients. The cases with trisomy 18 have more lymphoproliferative
lesions, less nodularity, and are associated with recurrent disease [91]. The pathogenetic
effect of these trisomies in OAMZL is unknown.

5.4. Genetic Alterations in Particular Signaling Pathways
5.4.1. Nuclear Factor Kappa B (NF-κB) Pathway

NF-κB is a transcription factor family that plays a critical role in B-cells’ activation,
development, and survival [92]. The NF-κB pathway is normally only transiently activated
in B cells by binding of various ligands to receptors, including Toll-like receptors, the
TNF-α receptor, the BCR, CD40, and others. The intracellular signaling transduction is
mediated via a canonical and a non-canonical pathway [88]. A major role of deregulated
activation of this pathway in OAMZL is already indicated by the fact that the three most
frequent chromosomal translocations of OAMZL cause, or at least contribute to, NF-κB
activation, as discussed above. A further major driver for constitutive NF-κB activation in
OAMZL is genetic alterations leading to functional changes of TNF-α-inducible protein
3 (TNFAIP3), previously also called A20. Somatic deletions and/or point mutations lead
to inactivation of this negative regulator of the classical NF-κB pathway [79]. In OAMZL,
destructive TNFAIP3 mutations and/or deletions were observed in 30–50% of cases [77,80]
(Table 1). TNFAIP3 is the most frequently mutated gene detected so far in OAMZL. It
has been reported that IGH/MALT1 translocations are mutually exclusive with TNFAIP3
mutations/deletions in OAMZL [79], indicating that these are alternative mechanisms for
deregulated NF-κB activation in OAMZL.

To identify potential mutations in further genes of the NF-κB signaling pathway,
sequencing analyses were performed by several groups. In 24 OAMZL samples, sequencing
of hotspots in the genes CARD11, MYD88, and CD79B, known to be frequently mutated in
other B-cell lymphomas, revealed no mutations [93]. In a targeted sequencing approach of
genes involved in the NF-κB signaling pathway performed by our team with 63 patients,
mutations in TNFAIP3 (27% of cases), MYD88 (19%), and BCL10 (6%) were observed [78].
Further genes, mutated to lower frequencies, were TNIP1, NFKBIA, BIRC3, CARD11, and
CD79B. Only a few genes encoding components of the non-canonical NF-κB pathway were
mutated (MAP3K14, BIRC3, and CYLD), whereas other mutated genes were involved in
the canonical pathway [78]. A further study analyzing the frequency of MYD88 L265P
mutations in primary OAL found the gene to be mutated in 36% of patients [82]. In a
targeted next-generation sequencing (NGS) approach to OAL including 20 samples, with
17 of them being primary OAL, 25% of cases exhibited mutations in the TIR domain of
MYD88 [83]. Two of the three studies mentioned carefully excluded lymphoplasmacytic
lymphoma/Waldenström macroglobulinemia by analyzing paraproteins and plasmacytic
differentiation—especially with IgM [78,83], which is necessary when analyzing MYD88
mutations. Further NGS-based approaches using whole genomes, whole exomes, and
targeted sequencing confirmed and extended these findings [51,80,86].

5.4.2. NOTCH Pathway

The NOTCH signaling pathway is important in cell differentiation; it is active in many
cell types regulating cell development, differentiation, and homeostasis, and is involved in
many malignant diseases, including lymphomas [94–96]. The NOTCH signaling pathway
cross-interacts with the NF-κB signaling pathway as its upstream regulator [97–99]. Non-
synonymous NOTCH1 or NOTCH2 mutations were observed in up to 10% of OAMZLs,
with a similar pattern as described for other B-cell lymphomas. There is a clustering of the
mutations in the HD and PEST domains of NOTCH1, as well as downstream of the ankyrin
repeats in the intracellular domain of NOTCH2 [78,80]. For both genes, these types of
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mutations cause a gain of function, as the inhibitory C-terminal PEST domains are removed
or otherwise inactivated. Copy number gains in the NOTCH target HES4 may be a further
mechanism of enforced NOTCH pathway activity in OAMZL [51,100].

5.4.3. NFAT Signaling

A recent exome sequencing study provided the first evidence for recurrent alterations
in the NFAT signaling pathway in OAMZL. Frequent deletions and destructive mutations
were detected in the gene encoding the negative NFAT signaling regulator CABIN1 (30% of
cases with mutations), as well as rarer mutations in NFAT members themselves and other
NFAT signaling pathway components.

5.5. Epigenetic Regulators

Alterations in epigenetic modifiers occur in several types of lymphoma [101]; addi-
tionally, in OAMZL, genes encoding epigenetic regulators are mutated. Among these
genes are KMT2D (approximately 5–20% of cases) and CREBBP (ca. 15%). In individual
studies, mutations in the epigenetic regulators KMT2C and EP300 have been detected,
such that a clear determination of the overall frequency of such alterations needs further
investigation [78,80,86]. KMT2C and KMT2D, belonging to the mixed-lineage leukemia
(MLL) family of histone methyltransferases, methylate Lys-4 of histone H3. Mutations
leading to inactivation of these genes lead to diminished global H3K4 methylation in follic-
ular and diffuse large B-cell lymphoma [102]. Conditional deletion of Kmt2d in different
developmental stages of B cells in mice resulted in an increased number of germinal-center
B cells end enhanced proliferation. From these results, the authors suggested the KMT2D
acts as tumor suppressor gene. KMT2C, which functions very similarly to KMT2D, and can
partially replace a loss of KMT2D, is therefore also supposed to be tumorigenic in case of a
loss [103]. CREBBP and EP300 are related histone and non-histone acetyltransferases, which
regulate transcriptional activity in several signaling pathways via chromatin remodeling.
In follicular and diffuse large B-cell lymphoma, monoallelic deletions/mutations result in
defects of acetylation of the oncoprotein BCL6 and the tumor suppressor p53.

5.6. Additional Mutated Genes

In addition to the genes in major signaling pathways or involving epigenetic regulators
already mentioned, further genes recurrently mutated in OAMZL include TBL1XR1 [81].
TBL1XR1 is an essential regulator of transcriptional repression, and contributes to canonical
NF-κB activation [104]. This gene can activate the transcription of transcription factors
such as NF-κB and JUN [105], and may therefore contribute to the strong NF-κB activity
in OAML. TBL1XR1 is mutated in various tumors and lymphomas, promoting tumor cell
survival. In OAMZL, mutations were consistently detected in 10–20% of cases, so TBL1XR1
is one of the most frequently mutated genes in this type of lymphoma (Table 1). TBL1XR1
mutations have been linked to a poor prognosis in aggressive lymphomas [106,107]. In
a small cohort of patients with OAL of the MALT subtype, TBL1XR1 mutations were
associated with unique morphometric phenotypes [108]; the cells exhibited significantly
lower circularity and solidity as analyzed via computational digital image analysis.

The JAK/STAT signaling pathway is necessary for cytokine signaling and immune
regulation, and plays an important role in various types of lymphoma [109]. Activating
mutations in JAK3, known to cause constitutive activation of the JAK/STAT signaling
pathway, were observed in up to 10% of patients with OAMZL [51]. Interestingly, patients
with mutant JAK3 exhibited a shorter progression-free survival [51].

In a recent study, deletions and non-synonymous mutations in the RHOA gene were
detected in 26% of OAMZL studies [87]; this points to a potential role of altered Rho
signaling in OAMZL, but further studies are needed in order to clarify the consequences of
the mutations detected in RHOA.
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6. B-Cell Receptors of OAL

Analysis of the rearranged immunoglobulin genes of B-cell lymphomas can reveal
valuable insights into the specific B-cell subset from which a lymphoma derives. More-
over, in various types of B-cell lymphoma, the BCRs of the lymphoma cells recognize
foreign or autoantigens, which may represent a major factor in lymphoma’s pathogene-
sis [110]. Numerous studies of the IGHV genes of OAL—mostly those of the MALT type—
showed that in nearly all cases the lymphoma cells carried somatically mutated IGHV
genes [76,111–116]; this revealed the origin of OAL from germinal-center-experienced B
cells, as the process of somatic hypermutation, which produces such mutations, takes place
specifically in germinal-center B cells [117]. In a substantial fraction of cases, there were
signs of low-level ongoing hypermutation, indicating that the lymphoma cells had retained
some features of germinal-center B cells, and may still be antigen-driven [76,112,113,116].
A biased IGHV gene usage can be a further indication that the BCRs of a particular type of
lymphoma are specific to a limited set of antigens. Numerous studies of OAMZL have ad-
dressed this issue and, indeed, revealed that some IGHV genes were more frequently used
than expected based on their usage in the normal B-cell population. The fact that not all
studies found the same biased IGHV gene usage may be due to the often rather small num-
ber of cases studied, and the fact that most studies involved cases from distinct continents,
suggesting that geographic conditions may influence IGHV gene usage. The IGHV genes
repeatedly reported to be frequently rearranged by OAL clones include IGHV4-34, IGHV3-7,
IGHV3-23, and IGHV3-30 [76,112,113,115,116,118]. Several of these genes are known to be
frequently used by autoantibodies, raising the suspicion that the BCRs of OAL may often
be autoreactive; this is also implied by the observed link between these lymphomas and
autoimmune diseases, as discussed above. This hypothesis was experimentally validated
by showing autoreactivity of five out of five antibodies tested [119].

Taken together, the numerous studies on the BCR sequence features have provided
strong indication that OAL is derived from antigen-experienced (post) germinal-center B
cells that have a biased IGHV usage and are often autoreactive. The chronic stimulation of
such autoreactive B cells may be an important factor in the transformation of these cells
into malignant OAL clones.

The mechanisms and pathways involved in the pathogenesis of OAMZL are depicted
in Figure 3.

Figure 3. Mechanisms and pathways involved in the pathogenesis of OAMZL. TLR: toll-like receptor;
C. psittaci: Chlamydophila psittaci.
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7. Altered DNA Methylation

Altered DNA methylation plays a significant role in the pathogenesis of marginal-zone
lymphomas [120]. Promoter methylation in TNFAIP3—which is also frequently mutated
in OAMZL, as discussed above—was observed in 19% of OAMZLs, and was associated
with hemizygous deletion of TNFAIP3, but mutually exclusive with mutations in the gene.
Promoter methylation seems to have an additive effect in the regulation of A20 expression,
since promoter methylation in addition to hemizygous deletion resulted in lower transcript
expression [79].

Choung et al. investigated aberrant promotor methylation of known or suspected
tumor-suppressor genes in OAMZL, as well as the potential association with C. psittaci
infections in 35 cases [121]; they observed CpG island methylation in nine genes, which was
not the case in any of the 13 control cases. C. psittaci was detected in 75% of cases available
for analysis. ECAD hypermethylation was significantly higher in C. psittaci-positive cases,
but was not correlated with clinical characteristics. A comparison of genome-wide DNA
methylation profiles in relation to C. psittaci infection status and response to doxycycline
treatment in OAMZL revealed distinct methylation patterns. The methylation status of
DUSP22 was likely attributable to infection, whereas methylation of the genes IRAK1 and
CXCL6 may reflect treatment response [122].

8. Altered microRNA Expression

The role of microRNAs (miRNAs) in OAMZL is not well understood. Hother et al.
studied miRNA expression via microarray analysis in a cohort of 18 OAMZLs, 15 of them
being primary lymphomas. Comparing the results to aggressive lymphomas, the authors
observed MYC- and NFKB1-mediated dysregulation of miRNA expression in the samples
with aggressive lymphomas; they concluded the existence of fundamental differences in
miRNA expression between OAMZLs and diffuse large B-cell lymphomas, mainly due to
differences in the MYC and NF-κB regulatory pathways [123].

9. Microenvironment

In the absence of a local trigger such as C. psittaci, it is unclear why EMZLs arise in
the specific location of the ocular adnexa. The ocular adnexa lack lymphatic tissue, which
contains germinal centers. Lymphocytes therefore have to migrate and home to the ocular
adnexa. In an immunohistochemical analysis of 91 lymphoma cases, including 28 OAM-
ZLs, homing and trafficking of lymphocytes by chemokines, sphingosine-1-phosphate,
chemokine receptors, and integrins was analyzed [124]. Comparing lymphomas arising in
secondary lymphatic organs with OALs, distinct patterns of lymphocyte homing molecules
were observed. Analysis of molecules responsible for entry in extranodal sites—such
as CXCR4, CXCL12, and α4β1 integrin—revealed a high CXCR4 expression for EMZL.
CXCL12 expression was higher for extranodal lymphomas than for nodal lymphomas,
providing a strong homing signal. Retention in the tissue was mediated by CXCR5 and
CXCL13 expression [124].

The role of a specific microenvironment in OAMZL needs to be further analyzed. Kim
et al. analyzed tumor-infiltrating T cells [125]; their group was particularly interested in the
clinical significance of tumor-infiltrating FOXP3+ T cells in patients with OAMZL. Biopsy
specimens of 42 patients with and without treatment were stained for FOXP3 expression.
Treatment was chemotherapy, radiotherapy, doxycycline, or a watch and wait concept. A
complete response was observed in 50% of patients. A high number of FOXP3+ T cells was
associated with a higher rate of complete response and a tendency towards a prolonged
progression-free survival [125].

In 2013, Kinoshita et al. investigated the role of the vascular endothelial growth
factor (VEGF) in OAMZL and RLH. In 22 OAMZLs and 16 reactive samples the VEGF
and CD20 positivity were higher in the lymphomas than in the RLH samples. Microvessel
density as determined by anti-CD34 staining showed a significant positive correlation
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with VEGF/CD20 expression. The authors suggested a significant role for VEGF in the
pathogenesis and tumor angiogenesis of OAMZL [126].

10. Conclusions

There is now compelling indication that continuous antigenic stimulation of B cells by
particular bacterial infections or autoantigens is the basis for the development of OAMZL.
Such an initial and prolonged antigenic triggering of B cells is a general feature of marginal-
zone B-cell lymphomas, as well as several other types of B-cell lymphoma [110]. Although
the lymphoma is located outside the secondary lymphoid organs, it is obvious that a T-
cell-dependent germinal-center reaction plays an essential role in the pathogenesis of lym-
phoma, as nearly all cases carry somatically mutated IGV genes, representing a genetic trait
of a germinal-center reaction. This reaction likely plays a role in the pathogenesis of OAMZL
not only by generating long-lived and presumably high-affinity B cells, but also by promot-
ing chromosomal translocations and mutations in non-IG genes [127]. OAMZL therefore
belongs to the large group of germinal-center-derived B-cell lymphomas [127,128]. A fur-
ther similarity not only to other marginal-zone B-cell lymphomas, but also to various other
lymphoma types (e.g., many diffuse large B-cell lymphomas and Hodgkin lymphoma), is
the major role of constitutive NF-κB activity, mediated by various types of chromosomal
translocations and mutations in proto-oncogenes and tumor-suppressor genes [129]. As
other genetic alterations detected in OAMZL have also been found in other types of lym-
phomas, there is (so far) no distinct genetic or epigenetic event known that is specific to
only this lymphoma. It is likely that it is the particular combination of antigenic specifici-
ties of the lymphoma cells, microenvironmental interactions, and genetic and epigenetic
alterations that specifies OAMZL as a distinct type of human B-cell lymphoma.
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