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Abstract

Mechanisms implicated in disease progression in multiple sclerosis include continued oligo-

dendrocyte (OL)/myelin injury and failure of myelin repair. Underlying causes include meta-

bolic stress with resultant energy deficiency. Biotin is a cofactor for carboxylases involved in

ATP production that impact myelin production by promoting fatty acid synthesis. Here, we

investigate the effects of high dose Biotin (MD1003) on the functional properties of post-

natal rat derived oligodendrocyte progenitor cells (OPCs). A2B5 positive OPCs were

assessed using an in vitro injury assay, culturing cells in either DFM (DMEM/F12+N1) or

“stress media” (no glucose (NG)-DMEM), with Biotin added over a range from 2.5 to 250 μg/

ml, and cell viability determined after 24 hrs. Biotin reduced the increase in OPC cell death

in the NG condition. In nanofiber myelination assays, biotin increased the percentage of

ensheathing cells, the number of ensheathed segments per cell, and length of ensheathed

segments. In dispersed cell culture, Biotin also significantly increased ATP production,

assessed using a Seahorse bio-analyzer. For most assays, the positive effects of Biotin

were observed at the higher end of the dose-response analysis. We conclude that Biotin, in

vitro, protects OL lineage cells from metabolic injury, enhances myelin-like ensheathment,

and is associated with increased ATP production.

Introduction

Multiple sclerosis (MS) most frequently follows an initial relapsing course that then evolves

into a more progressive disorder. Mechanisms implicated in disease progression include con-

tinued tissue injury and failure of repair. The initial lesions of MS feature destruction of myelin

with variable extent of loss of its cell of origin, the oligodendrocyte (OL). In chronic lesions,

there is universal loss of OLs [1, 2]. The degree of recovery from relapses in MS following the

acute event is attributed, at least in part, to remyelination dependent on recruitment of OL

progenitor cells (OPCs) with differentiation into myelin-sheath forming mature OLs [3].

Recent evidence also implicates participation of existent OLs [4–6]. OPCs are increased in
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periplaque white matter (PPWM) in early MS lesions, but decreased in chronic MS lesions [7,

8]. We postulated there was a differentiation block of OPCs in chronic multiple sclerosis

lesions, which may contribute to failure of remyelination [8].

Causes of OL injury and loss in MS include micro-environmental conditions of metabolic

stress such as ischemia/hypoxia and mitochondrial injury [9–12]. OL loss is best recognized in

the pattern 3 lesion subtype [1], that features an “oligodendrogliopathy” defined by retraction

of OL terminal processes (“dying back”) [2]. We have observed retraction of terminal pro-

cesses of OLs even in absence of cell death in the majority of early MS lesions and at the rims

of chronic active lesions [13]. OL/myelin loss impacts the survival and function of neurons/

axons [14]. There are as yet no agents approved for use in MS based on neuroprotective or

remyelination effects.

Biotin is a co-factor required for the activity of a family of carboxylases involved in pathways

that could potentially serve protective roles for cells exposed to hypoxic/ischemic conditions

as implicated in MS, as well as enhance myelination (reviewed in [15]). These carboxylases

include three that are central to aerobic energy production and generate intermediates for the

tricarboxylic acid (TCA) cycle. Such effects are predicted to enhance ATP production. Biotin is

also a co-factor for acetyl-CoA carboxylases involved in fatty acid synthesis, a process underly-

ing myelin production. High dose Biotin is demonstrated to reverse rare genetic CNS disorders

involving energy metabolism defects [16]. In an initial double-blind placebo controlled study,

high dose Pharmaceutical grade Biotin, MD1003 (100 mg three times daily), achieved sustained

reversal of MS-related disability in a subset of patients with progressive MS, not seen in the pla-

cebo group [17]. However the second pivotal Phase III trial (SPI2) did not meet its primary and

secondary end points (Medday announcement (03/10/2020).

In previous studies, we have used in vitro systems to model the response of human and

rodent OL lineage cells to ischemic/hypoxic conditions and to assess myelination capacity [13,

18–21]. For the former, we used dissociated cell cultures of such cells subjected to conditions

of glucose and nutrient deprivation [2, 20–22]. We observe initial process retraction followed

by cell death [22]. This metabolic insult reduces the rate of oxygen consumption and ATP pro-

duction by these cells. OL lineage cells derived from postnatal rats are still at an OPC stage and

are more susceptible to cell death under these conditions than are adult human brain derived

mature OLs [20, 22]. The rodent cells display activated caspase 3 and a high percentage are

TUNEL+ [13, 20, 21]; and this cell death can be inhibited by a pan caspase inhibitor [13]. To

assess the capacity to myelinate, we used ensheathment of synthetic nanofibers, quantified

using a high-throughput program with single-cell resolution [23].

In the current study, we directly examine the in vitro effects of high dose biotin on func-

tional properties of post-natal rat derived OPCs as related to protection from conditions of

glucose deprivation and capacity to ensheath nanofibers. We then directly assess the biotin

effect on baseline oxidative metabolism and ATP production by the cells using a Seahorse XF

Analyzer. In addition, we examined the expression of biotin-dependent carboxylases [15] in

adult human oligodendrocytes under physiological or metabolic stress conditions (low glu-

cose), mimicking MS lesion microenvironment.

Materials and methods

Cell isolation and culture

Rodent oligodendrocyte cultures. All procedures involving animals were performed in

accordance with the Canadian Council on Animal Care’s guidelines for the use of animals in

research and approved by the McGill University Animal Care Committee. OPCs were pre-

pared from the brains of newborn Sprague-Dawley rats (purchased from Charles River, Saint
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Constant, Canada) as previously described [24]. Microglia were removed by an initial shake-

off, total cells in flasks were digested by trypsin, and the cells were selected using magnetic

beads conjugated with monoclonal antibody A2B5, which recognizes a cell surface ganglioside

[25] to select a progenitor cell pool that comprises ~30% of the total cells. OPCs were initially

plated at a density of 2.5 × 105 cells per mL on poly-lysine-coated chamber slides, and cultured

in defined medium (DFM) consisting of Dulbecco’s Modified Eagle Medium/Nutrient Mix-

ture F-12 (DMEM-F12) supplemented with N1, 0.01% bovine serum albumin (BSA), 1% peni-

cillin-streptomycin, and B27 supplement (Invitrogen, Burlington, ON), platelet derived

growth factor (PDGF)-AA (10ng/ml), and basic fibroblast factor (bFGF, 10ng/ml) (Sigma,

Oakville, ON). Culture media was changed every 48 hrs under the stated conditions. >80–90%

% of cells were O4+ after the initial 4 days in culture following cell isolation.

Proliferation and protection assays. For injury assays, cells were cultured in either DFM

(DMEM/F12+N1) or “stress media” (no glucose (NG)-DMEM). OPCs were treated for 24 hrs

with the indicated concentrations of high dose Pharmaceutical grade Biotin (MD1003), dis-

solved in PBS. Cell viability was assessed after 24 hrs by live-staining with propidium iodide

(PI) (1:200, 15 min, 37˚ C, Invitrogen, Burlington, ON). To identify OPCs, cells were incubated

with monoclonal O4 antibody (IgM, 1:200, R&D Systems, Oakville, ON) [26] for 30 min at 4˚C

then fixed in 4% paraformaldehyde for 10 min at 4˚C, washed twice with PBS, followed by

blocking with HHG (1 mM HEPES, 2% horse serum, 10% goat serum, Hanks’ balanced salt

solution) for 10 min. Secondary antibodies were either goat anti-mouse IgM Alexa Fluor 488

(1:500, Thermo Fisher Scientific, Eugene, OR) or goat anti-mouse IgM-Cy3 (1:250, Abcam,

Toronto, ON) added for 30 min at 4˚C. Proliferating cells were identified by immunostaining

with Ki67-FITC antibody (1:200 dilution, 4˚ C, overnight, Cell Signaling Technology). Mono-

clonal antibodies against galactocerebroside (GC) (IgG3 1:50, 30 min, 4˚ C, derived from

hybridoma, [27]) and myelin basic protein (MBP) (IgG2b, 1:500 dilution, 4˚ C, overnight, Stern-

berger, Lutherville, MD) were used to stain the cells to determine OPC differentiation after 24

hrs and 3 days of biotin treatment, respectively. The corresponding secondary antibodies were

Goat anti-mouse IgG3-FITC (1:100, 1 hour, room temperature, Molecular Probes, Eugene, OR)

and Goat anti-mouse IgG2b-FITC or TxR (1:100, 1 hour, room temperature, Biosource, Cama-

rillo, CA). Cell nuclei were stained with Hoechst 33258 (10 μg/ml, Invitrogen) for 10 min at

room temperature. Cells were then imaged via an epifluorescent microscope (Zeiss).

PI+ and Ki67+ cells were analyzed using a MATLAB program. The script first identified all

circular Hoechst+ nuclei using the extended local minima of the distance transformed binary

image for watershed segmentation. A similar procedure is used to identify PI+ and Ki67

+ blebs in their respective channels. All circular blebs were then subjected to a circularity-

metric to ensure exclusion of non-circular artifacts and only circular nuclear-like structures

retained. Finally, Hoechst+ nuclei were co-localized with PI+ and Ki67+ blebs on a per pixel

basis, and the number of positive cells counted. PDGFAA/bFGF was used as positive control.

Nanofiber ensheathment assay. OPCs were plated in multi-well aligned Nanofiber plates

(The Electrospinning Company Ltd., Didcot, Oxfordshire, OX11 0RL) and treated with biotin

for 3 days (earliest time to observe nanofiber ensheathment by OPCs—see Xu et al [23]), fol-

lowed by immunostaining with O4 primary antibody and corresponding secondary antibodies

conjugated with either Alexa Fluor 488 (1:500, Thermo Fisher Scientific, Eugene, OR) or

Texas Red (1:100, Biosource, Camarillo, CA). Images were acquired with a Zeiss fluorescence

microscope, % ensheathment by O4+ cells was quantified using MATLAB software as

described by Xu et al [23]. BDNF and PDGFAA/bFGF were used as positive and negative con-

trols respectively.

Metabolic analysis. OPCs were analyzed after first being grown in DFM for 4 days and

then treated with biotin for 1 day. Metabolic measurements were carried out as described
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previously [22]. The cells were washed with XF assay medium (pH adjusted to 7.4) and equili-

brated for 1 hr in the Seahorse incubator. The XF96 plate was inserted into the Seahorse ana-

lyzer (Seahorse Bioscience, Billerica, MA) where 4 basal assay cycles were performed

consisting of a 3 min mix followed by 3 min measure. After completion, oligomycin (OLIGO,

0.5 μM), a mitotoxin that inhibits ATP synthase (complex V), decreasing electron flow through

the electron transport chain (ETC) with resultant reduction in mitochondrial respiration or

Oxygen consumption rate (OCR), was added by automatic pneumatic injection for 3 assay

cycles. Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP, 0.5 μM), an uncoupl-

ing agent that collapses the proton gradient and disrupts the mitochondrial membrane poten-

tial, was then added for an additional three assay cycles followed by rotenone (R, 0.1μM), a

complex I inhibitor, plus antimycin A (AA, 0.2μM), a complex III inhibitor, for another three

assay cycles. This combination (R/AA) shuts down mitochondrial respiration and enables the

calculation of nonmitochondrial respiration driven by processes outside the mitochondria

(Agilent, manufacturer’s instructions). The coupling efficiency to calculate mitochondrial

ATP production was derived from differences in oxygen consumption rate (OCR) upon addi-

tion of oligomycin compared to basal rate, converting OCR to ATP production using a phos-

phate/oxygen ratio of 5.5 [28, 29]. Extracellular acidification rates (ECAR) were calculated by

the addition of 2-deoxy-glucose (2DG; 1M). Proton production rate (PPR) was utilized to esti-

mate ATP production from glycolysis in a 1:1 ratio [30]. All reagents were purchased from

Sigma (St. Louis, MO).

Gene expression. Human adult brain derived OL expression of biotin-dependent carbox-

ylases–these data were derived from a previously reported microarray analysis performed on

human adult brain derived OLs maintained in dissociated culture under control or 48 hrs of

glucose/nutrient deprivation conditions [18].

Statistical analysis. All statistical analyses were performed with GraphPad Prism. 1 way-

ANOVA was performed followed by Dunnett’s multiple comparison Test for Fig 1A and 1B,

2A, and 3E. For Fig 2A, the % of ensheathed O4+ cells was compared between the DFM con-

trol and each concentration of biotin by paired T-test. For Fig 2B, 1 way-ANOVA (Kruskal-

Wallis test) was performed followed by Dunnett’s multiple comparison Test. For Fig 2C,

unpaired T-test was performed to compare the control and each concentration of biotin. For

Fig 3C, we compared the means of OCR for each seahorse treatment (basal, oligomycin

(OLIGO), FCCP, R/AA and 2DG) between control vs 250 μg/ml, control vs. 25 μg/ml, using

paired t-test. For Fig 3B, 2 way-ANOVA was performed. � P < 0.05, �� P< 0.01, ��� P< 0.001.

Results

Biotin mediated protection from “stress” conditions—Under glucose-free (NG) conditions,

the mean % cell death (PI+ OPCs) at 24 hrs was 29 ± 7% (11–68%) vs. 8± 2% (2,5–12%) for

control conditions (n = 8, p = 0.02, S1 Fig). As shown in Fig 1A, supplementation with biotin

was done over a concentration range of 0.25 ng/ml to 250 μg/ml; significant reductions in the

% PI+ cells were noted over the 2.5μg/ml to 250 μg/ml range (mean % reduction 35 ± 5%,

n = 8, p< 0.001 at 250 μg/ml). PI staining is illustrated in Fig 1C–1F. Biotin had no significant

effects on protection of OPCs at concentrations of 0.25 ng/ml to 1.25 μg/ml. Biotin supplemen-

tation did not induce a significant change in cell proliferation as measured by % Ki67 + cells

(Fig 1B), at any of concentrations used. The % of Ki67+ cells is 16.1±2.6% under basal DFM

conditions. Ki67 staining is illustrated in Fig 1G–1J. Cultures supplemented with PDGFAA

and bFGF were used as the positive control in the proliferation assay. There was a trend for

Biotin to increase GC+ cells after 1 day treatment (1.4 ± 0.2 fold of control by 250μg/ml biotin,

n = 8, p = 0.07 S2 Fig). The % of MBP+ cells was not increased after 3 days treatment.
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Biotin mediated enhancement of nanofiber ensheathment under DFM condition–Overall

biotin supplementation increased the % of nanofiber ensheathing O4+ cells compared to

defined media (DFM) control conditions over the 2.5–250 μg/ml dose range (27.58±6.25 for

250 μg/ml biotin vs. 16.31±4.54 DFM, n = 7, p<0.05) (Fig 2A). At the individual cell level, bio-

tin supplementation also increased the number of ensheathed segments per cell (panel 2B),

and the proportion of cells with higher log length of segments (panel C). As expected, BDNF

(10 ng/ml) enhanced ensheathment whereas PDGFAA/bFGF was inhibitory. Examples of

nanofiber ensheathment under control and biotin supplemented conditions are provided in

Fig 2D and 2E, respectively. Almost all cells are O4+ but only a small minority (<5%) are

MBP+.

Biotin increased ATP production by OPCs under DFM control conditions. As shown in

Fig 3A and 3B, OCR under all conditions (basal and after addition of mitotoxins) was higher

for cells supplemented with biotin at 250 and 25 μg/ml compared to control conditions. P val-

ues are shown in Panel C. ECAR were at the margin of detection and no biotin-related effect

could be observed (S3 Fig). In order to determine the contribution of non-mitochondrial,

Fig 1. Effects of biotin on OPC survival and proliferation. Panel A, OPCs were treated with indicated concentrations of biotin when

cultured in glucose-free DMEM (NG) for 24h. For this analysis, OPCs were immunostained with monoclonal antibody O4 and PI

(panels C-F). Cells were imaged and PI+ cells were analyzed using a MATLAB program as described in the methods. Panel B, OPCs

were treated with indicated concentrations of biotin when cultured in DFM for 24h. For this analysis, OPCs were immunostained with

O4 and Ki67 (panels G-J). Cells were imaged and Ki67+ cells were analyzed using a MATLAB program described in the methods. PF:

PDGFAA + bFGF. N = 8. Panel A—% PI + OPCs in presence of biotin compared to NG conditions alone; Panel B—% Ki67+ OPCs in

presence of biotin or PF alone compared to DFM alone.(paired t-test): �, p< 0.05; ��, p< 0.01; ���, p< 0.001. Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0233859.g001
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ATP-linked, and proton leak components to overall OCR, we expressed each as a % of total

OCR for each condition, as shown in panel D. Biotin did not change non-mitochondria oxy-

gen consumption that accounts for ~50% of the OCR. Biotin did significantly increase the

ATP-linked contribution to OCR at the higher concentration (250 μg/ml) as shown in Panel E

(the calculation is described in method). The calculated ATP-linked OCR production was 6.0

±0.22 pmol/min/μg protein with 250 μg/ml biotin vs. 2.7±0.61 in DFM conditions alone

(n = 4, p< 0.01).

Expression of Biotin regulated carboxylase genes in human OLs subjected to glucose/nutri-

ent deprivation–Table 1 shows a suggestive decrease of biotin-regulated carboxylase genes

except for MCCC1 in adult human OLs cultured for 2 days in the deprivation conditions. At

this time there was minimal cell death and only initial indication of process retraction as

shown in our previous study [13].

Discussion

The current studies demonstrate the measurable capacity of high dose Biotin to protect OL

lineage cell from metabolic stress, enhancing nanofiber ensheathment, and increasing ATP

production. Our in vitro studies are based on the use of post-natal rat derived OL linage cells,

obtained using a shake off method and then further enrich for the population using A2B5 anti-

body coated immunomagnetic beads. As expected, the majority of cells obtained, from the

Fig 2. Effects of biotin on OL ensheathment. OPCs growing on nanofibers were treated with indicated concentrations of biotin in

DFM for 3 days. The cell cultures were immunostained with O4 (red) and MBP (green) antibodies. Cells were imaged. % of ensheathed

O4+ cells (panel A), number of sheaths per cells (panel B) and the proportion of length of sheath segment per cell (panel C) were

analyzed using a MATLAB program and illustrated (mean and/or SEM for each condition are listed in the table underneath each graph).

Panels D and E are examples of cells under DFM alone and biotin (250 μg/ml) treated conditions, respectively. Panel F is a higher

magnification of a cell from panel E. N = 7. Comparison to control DFM (pair t-test): �, p< 0.05; �� p< 0.01, ��� p< 0.001. Scale

bars:10 μm in panel E, 20 μm in panel F.

https://doi.org/10.1371/journal.pone.0233859.g002

PLOS ONE Biotin promote oligodendrocyte progenitor cells survival, ensheathment and ATP productuion

PLOS ONE | https://doi.org/10.1371/journal.pone.0233859 May 29, 2020 6 / 12

https://doi.org/10.1371/journal.pone.0233859.g002
https://doi.org/10.1371/journal.pone.0233859


Fig 3. Effects of biotin on OPC metabolism. OPCs growing on seahorse plates were treated with indicated concentrations of biotin in DFM for

24 hr, followed by Seahorse analyzer measurement. Panel A presents OCR data normalized to basal values under DFM control conditions that

ranged from 2.2 to 4.8 pmol O2/min/μg protein. The time point for applying OLIGO, FCCP, R/AA and 2DG is indicated. Panel B shows the

mean relative basal OCR and after addition of mitotoxins. Panel C shows the p values for Biotin compared with DFM control for Panel B. Panel

D shows OCR normalized; panel E shows calculated ATP production, ��, p< 0.01 for 250 μg/ml Biotin compared to DFM or 25 μg/ml Biotin (1

way-ANOVA followed by Tukey multiple comparison test, n = 4).

https://doi.org/10.1371/journal.pone.0233859.g003

Table 1. Biotin regulated carboxylase gene expression in human OLs.

Carboxylases AveExpr (LG) AveExpr (N1) geneSymbols LogFC P.Value

Acetyl-Coa Carboxylase A 7.5 7.7 ACACA -0.223 0.24

Acetyl-Coa Carboxylase B 5.9 6.0 ACACB -0.071 0.66

Methylcrotonyl-CoA carboxylase 1 6.8 6.6 MCCC1 0.097 0.52

Methylcrotonyl-CoA carboxylase 2 5.2 5.5 MCCC2 -0.271 0.16

Pyruvate carboxylase 6.4 6.6 PC -0.168 0.28

Propionyl-Coa carboxylase A 6.7 7.0 PCCA -0.494 0.01�

Propionyl-Coa carboxylase B 7.0 7.3 PCCB -0.285 0.23

https://doi.org/10.1371/journal.pone.0233859.t001
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outset, are in the OL lineage as assessed by expression of O4; not many are yet MBP positive.

Our basal culture media, DMEM F12, contained 0.0035mg/L of biotin https://www.

thermofisher.com/ca/en/home/technical-resources/media-formulation.55.html. We did not

assess biotin free media as our focus was on effects of high dose biotin modeling the in vivo
effects of this approach.

We elected to assess dose-dependent protective effects of biotin using glucose depletion as

the insult. These conditions model those that can occur in the MS lesion microenvironment

[31–35]. Our previous in vitro studies indicate that these can induce a dying back response of

OLs that may be reversible or preventable by protective strategies [13]. We had also shown

using human adult brain derived OLs that this metabolic insult down-regulated pathways des-

ignated as cell morphology, cell metabolism, and cell signaling, as well as pathways specifically

implicated in myelination [13]. We recognize that the OPCs used as the targets in this study

may be more susceptible to the insults used compared to more mature cells derived in vitro
from these OPCs or directly from the adult CNS [20]. OPCs injury may itself be directly rele-

vant to the evolution of the MS disease process as such damage in MS lesions could contribute

to impaired remyelination as considered below [36].

Enhancing remyelination remains a central challenge for MS with most efforts beginning

with screening for agents that promote ensheathment as we have done in this study [37, 38].

Most implicate this process as being dependent on OPCs that need to survive, proliferate,

migrate, differentiate, and then contact and ensheath their targets, an energy-consuming pro-

cess [39]. The use of artificial nanofibers provides a convenient platform to assess ensheath-

ment although lacking complete features of myelination such as formation of specialized para-

nodal loops [40, 41]. Artificial fiber assays have been used to screen for agents that promote

myelination [42, 43]. The changes in the number of ensheathing cells we observed with biotin

are unlikely to be related to cell proliferation/differentiation as we did not observe differences

in cell numbers in our dissociated cell cultures and no differences in % O4 (or MBP) + cells.

Myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. Biotin is

required to synthesize fatty acids and membrane formation [44], therefore we did not use bio-

tin-free medium in our experiments. Although we did not specifically measure the expression

or activity of the acetyl-coA carboxylase which could be involved in myelination [15, 45, 46],

the increase in number of ensheathed segments per cell and changes in sheath length would be

consistent with enhanced lipid synthesis.

To evaluate whether the increase in the number of ensheathed segments was associated

with changes in energy metabolism, we assessed the effects of biotin on the metabolic status of

cells under DFM basal culture conditions using a Seahorse XF bio-analyzer. As confirmed in

the current study, post-natal rat OPCs mainly utilize oxidative phosphorylation to produce

ATP [20, 22]. The OCR levels recorded in the current study are characteristic and comparable

to our previously published respiration profiles of post-natal rat brain derived oligodendro-

cytes [20, 22]. The mechanisms whereby Biotin supplementation increases the resting OCR

could include biotin being a co-factor of carboxylases. Three out of five biotin dependent

mammalian carboxylases lie in mitochondria (Pyruvate carboxylase, Propionyl-CoA carboxyl-

ase and 3-methylcrotonyl-CoA carboxylase) [15] and have a role in providing intermediates to

the TCA cycle. Increased processing of intermediates through the TCA cycle generates more

NADH and FADH2. Increased NADH and FADH2 levels necessitate processing through oxi-

dative phosphorylation accounting for OCR increment. Oxygen consumption has been shown

to reflect NADH turnover in brain tissue [47]. Changes in biotin availability in yeast have been

shown to impact OCR levels, at concentration of 200 μg/L [48]. As shown in rat oligodendrog-

lia, carboxylase activities are sensitive to levels of biotin availability [49]. Further, biotin can

attenuate oxidative stress and mitochondrial dysfunction in murine oligodendrocytes [50].
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Our findings that biotin-dependent carboxylase gene expression level is reduced in human

OLs exposed to metabolic stress conditions that have been used to model what is encountered

in MS lesions [22, 51–53] suggest a basis whereby biotin may target the MS disease process

within the CNS.

Conclusion

Our in vitro based results indicate that high dose biotin supplementation protects OL lineage

cells from metabolic injury and enhances their ensheathment capacity; such effects are associ-

ated with enhanced ATP production.

Supporting information

S1 Fig. Glucose-free (NG) conditions trigger cell death in OPCs. OPCs were cultured in

DFM control or NG conditions for 24 hrs. OPCs were immunostained with monoclonal anti-

body O4 and PI. PI+ cells were analyzed using a MATLAB program described in the methods.

Comparison between DFM and NG was performed by paired t-test, p = 0.02, N = 8.

(TIF)

S2 Fig. Effects of biotin on OPC differentiation. Panel A, OPCs were treated with indicated

concentrations of biotin in DFM for 24 hrs. OPCs were immunostained with monoclonal anti-

bodies O4 and GC. Cells were imaged and GC+ cells were analyzed using a MATLAB program

described in the methods. Panel B, OPCs were treated with indicated concentrations of biotin

in DFM for 3 days. OPCs were immunostained with monoclonal antibodies O4 and MBP.

1-way ANOVA was performed followed by Dunnett’s multiple comparison test.

(TIF)

S3 Fig. Effects of biotin on OPC metabolism. ECAR data normalized to basal values under

control conditions that ranged from 0.03 to 0.3 pmol O2/min/μg protein. The time point for

applying OLIGO and 2DG is indicated.

(TIF)
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