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Leukocytoclastic vasculitis (LCV) is a systemic autoimmune disease characterized

by the inflammation of the vascular endothelium. Cutaneous small vessel vasculitis

(CSVV) and anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV)

are two examples of LCV. Advancements in genomic technologies have identified

risk haplotypes, genetic variants, susceptibility loci and pathways that are associated

with vasculitis immunopathogenesis. The discovery of these genetic factors and their

corresponding cellular signaling aberrations have enabled the development and use of

novel therapeutic strategies for vasculitis. Personalizedmedicine aims to provide targeted

therapies to individuals who show poor response to conventional interventions. For

example, monoclonal antibody therapies have shown remarkable efficacy in achieving

disease remission. Here, we discuss pathways involved in disease pathogenesis and the

underlying genetic associations in different populations worldwide. Understanding the

immunopathogenic pathways in vasculitis and identifying associated genetic variations

will facilitate the development of novel and targeted personalized therapies for patients.

Keywords: vasculitis, autoimmune disorder, immunopathogenesis, susceptibility loci, personalized medicine

INTRODUCTION: VASCULITIS EPIDEMIOLOGY AND
CLASSIFICATION

Vasculitides are a group of multi-system diseases characterized by inflammation of blood vessels,
endothelial injury and tissue damage (1). Referring to the Chapel Hill Consensus Conference
(CHCC) nomenclature system, vasculitides are classified according to the size of the affected vessels,
lesion histopathology and other clinical findings (2). Leukocytoclastic vasculitis (LCV) refers to
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a type of small vessel vasculitis, where it can be characterized
based on several histopathological findings including presence of
neutrophil infiltrates, leukocytoclasis (fragmented nuclear debris
from neutrophils), fibrinoid necrosis, and damaged vessel walls
at the affected vessels (3, 4). In this review, we focus on two
forms of LCV, namely the cutaneous small vessel vasculitis
(CSVV) which describes small vessel vasculitis that is usually
confined to the skin, and anti-neutrophil cytoplasmic antibody
(ANCA)-associated vasculitis (AAV), which is usually a severe
and systemic condition. Currently, there is a lack of consensus
on whether AAV should be classified as a form of CSVV or be
treated as a distinct form of vasculitis; in this review, however,
we discuss these two forms separately. Both CSVV and AAV are
of interest because their incidences have been steadily increasing
over the years, most likely due to greater awareness in clinicians
and having more definitive diagnostic criteria for each condition.
Insights from this review can bridge gaps in knowledge for the
development of personalized medicine to treat these two types
of vasculitis in patients who do not respond to conventional
therapeutic strategies.

CSVV is the most common type of vasculitis in dermatology,
mainly affecting the post-capillary venules of the skin (5). The
incidence of CSVV ranges between 15 and 38 per million/year,
with a prevalence between 2.7 and 29.7 cases per million
people (6). In the United States, a population-based study
determined an incidence of 4.5 per 100,000 person-years
in biopsy-proven cases of LCV (7). The trigger for CSVV
may either be idiopathic or due to defined causes such as
medications, infections and underlying rheumatologic diseases
(8). These vasculitides often involve superficial dermal vessels
and manifest as purpuric macules, petechiae or hemorrhagic
vesicles and urticarial lesions mainly on the lower legs (5, 8). The
cutaneous manifestations are sometimes associated with burning
sensations, itchiness or pain (9). However, there is a lack of
evidence to say that CSVV impairs the mobility and mobility of
affected individuals. CSVV can be diagnosed using skin biopsy,

Abbreviations: AAV, ANCA-associated vasculitis; ANCA, anti-neutrophil

cytoplasmic antibody; ARPC1, actin-related protein complex-1; BAFF, B cell

activating factor; CCL17, CC chemokine ligand 17; CD, cluster of differentiation;

COVID-19, coronavirus disease 2019; CSVV, cutaneous small vessel vasculitis;

CTLA-4, cytotoxic T lymphocyte antigen 4; DMARD, disease-modifying anti-

rheumatic drug; EGPA, eosinophilic granulomatosis with polyangiitis; FcγR,

receptor for Fc fragment of IgG; FOXP3, forkhead box P3; GC, glucocorticoid;

GPA, granulomatosis with polyangiitis; GWAS, genome-wide association

studies; HLA, human leukocyte antigen; HSP, Henoch-Schonlein purpura;

GUV, hypocomplementemic urticarial vasculitis; GBM, glomerular basement

membrane; IC, immune complex; ICAM-1, intercellular adhesion molecule-1;

IFNγ, interferon gamma; Ig, immunoglobulin; IL, interleukin; JAK, janus kinase;

LCV, leukocytoclastic vasculitis; Lyp, lymphoid tyrosine phosphatase; MCP,

monocyte chemoattractant protein; MHC, major histocompatibility complex;

MPA, microscopic polyangiitis; MPO, myeloperoxidase; MS, multiple sclerosis;

MyD88, myeloid differentiation primary response 88; NE, neutrophil elastase;

NET, neutrophil extracellular trap; NO, nitric oxide; NSAID, non-steroidal anti-

inflammatory drug; PEXIVAS, plasma exchange and glucocorticoids for treatment

of ANCA-associated vasculitis; PM, personalized medicine; PR3, proteinase-3;

RANTES, regulated on activation, normal T cell expressed and secreted; ROS,

reactive oxygen species; scRNA-seq, single cell RNA sequencing; SLE, systemic

lupus erythematosus; TCR, T cell receptor; TF, tissue factor; Th, T helper cell;

TNFα, tumor necrosis factor alpha; VCAM-1 vascular cell adhesion molecule-1,

α1AT, α1-antitrypsin.

based on the presence of pathological features of LCV when
evaluated histologically. However, these features of LCV are
found in different subtypes of CSVV such as cryoglobulinemic
vasculitis, IgA vasculitis (Henoch-Schonlein purpura, HSP) and
hypocomplementemic urticarial vasculitis (anti-C1q vasculitis,
HUV), as well as in other forms of vasculitis (6). Hence, apart
from using histological findings, specific diagnosis must be
accompanied by the evaluation of clinical features by clinicians.
While cutaneous signs of CSVV are sometimes accompanied
by systemic symptoms such as fever, joint and muscle aches,
systemic progression and multi-organ inflammation is not seen
and if present, often requiring differential diagnosis for other
systemic vasculitides, such as AAV (5).

AAV is characterized by microvascular endothelial
inflammation, leading to extravascular inflammation, progressive
injury, tissue destruction, fibrosis and loss of function in affected
tissue (1). AAV is classified as a rare disease, with an estimated
historical prevalence of 48–184 cases per million people (1).
However, in the past 30 years, the incidence and prevalence
of AAV have increased, with increased peak age of onset and
geographical variations in female-to-male incidence ratios (10).
More recently, the global prevalence rate has been reported to
be 300–421 cases per million persons (1). Increased number
of AAV cases may be attributed to factors such as having
better classification criteria and definitions, greater awareness
amongst clinicians, improved patient survival and prognosis,
and wider availability of serological assays for diagnosis
(1, 10). AAV is diagnosed by the presence of ANCA targeting
perinuclear myeloperoxidase (p-ANCA) and cytoplasmic
protease-3 (c-ANCA) (11, 12). Several subtypes of AAV have
been identified, including microscopic polyangiitis (MPA),
granulomatosis with polyangiitis (GPA, formerly Wegener’s
granulomatosis), and eosinophilic GPA (EGPA, formerly
Churg-Strauss syndrome) (2, 11, 13).

VASCULITIS: IMMUNOPATHOGENESIS
AND ALTERATIONS IN CELLULAR
SIGNALING PATHWAYS

Cutaneous Small-Vessel Vasculitis (CSVV)
The major pathogenetic mechanism in CSVV is the Gell
and Coombs type III immune complex-mediated reaction
(5) (Figure 1A). The latent period between the trigger and
manifestation of CSVV can range from seven days to more than
2 weeks, depending on the time required to produce sufficient
quantities of antibodies and antigen-antibody complexes
upon encountering a stimulus (14). Immune complexes
(ICs) circulating in the patients can activate the complement
system, generating C3a and C5a anaphylatoxins, which initiate
neutrophil chemotaxis and release of vasoactive amines causing
endothelial cell retraction (5). Pro-inflammatory cytokines and
chemokines, such as IL-1, TNF-α, IFN-γ, IL-8, MCP-1, and
RANTES produced by macrophages increase the expression
of endothelial selectins, intercellular adhesion molecule-1
(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1),
which promotes neutrophil diapedesis. After the neutrophils exit
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the blood vessel, neutrophil degranulation releases collagenases
and elastases, and generates reactive oxygen species (ROS),
resulting in sustained inflammation and fibrinoid necrosis of
neighboring vessel walls (5). ICs can also deposit directly on
endothelial cells and trigger localized inflammation, such as the
deposition of IgA-ICs in glomerular capillaries as seen in cases
of Henoch-Schonlein purpura with glomerulonephritis (5). As
the disease progresses, lymphocytes gradually become more
abundant over time and may also be involved in the pathogenesis
and disease progression, eventually becoming the most abundant
cell type in lesion histopathology (4). CD4+ helper T cells secrete
cytokines, notably IL-1, IFN-γ, and TNF-α, and recruit CD8+

cytotoxic T cells, B cells and natural killer cells to the affected
site, further promoting inflammation (5). Unlike in systemic
vasculitides such as GPA, CSVV is not associated with abnormal
circulating Treg counts, indicating that CSVV usually does not
have systemic involvement (4).

Previous studies have identified various stimuli that can
trigger the production of pathogenic antibodies in CSVV
patients, which subsequently lead to immunopathology.
Hepatitis C virus infection can induce the production of
cryoglobulins (immunoglobulins that precipitate at temperature
below 37◦C), leading to cryoglobulinemic vasculitis where
cryoglobulin immune complexes precipitate and deposit on
affected small vessels. This subsequently activates the classical
complement pathway and causes endothelial damage (15).
Besides infection, several drugs have also been known to
trigger cutaneous hypersensitivity vasculitis, often presenting
as superficial neutrophil or lymphocytic small vessel vasculitis.
Drug-induced CSVV accounts for ∼20% of all CSVV cases
(16). Examples of drugs that may induce CSVV include
TNF-α inhibitors and levamisole (17, 18). CSVV may also be
triggered directly by endothelial damage due to infections by
vasculotropic viruses such as the COVID-19 causative agent,
SARS-CoV-2 (14); or indirectly by antibodies generated against
exposed autoantigens, such as antiphospholipid antibodies and
anti-neutrophil cytoplasm antibodies (ANCA) (5). Although
possible, ANCA are rarely found in patients with CSVV, with
cases being defined in a distinct subgroup as ANCA-associated
vasculitides (AAV).

ANCA-Associated Vasculitis (AAV)
Although the pathogenesis of AAV is multifaceted and
multifactorial, it shares many aspects of that in CSVV,
involving the activation of both cytokine-primed neutrophils
and alternative complement pathways (11) (Figure 1B). ANCAs
are autoantibodies generated by the immune recognition of
autoantigens, such as neutrophil myeloperoxidase (MPO),
proteinase-3 (PR3) and neutrophil elastase (NE) (19).Whilemost
MPO and PR3 are localized in the cytoplasm of unstimulated
neutrophils, small amounts of these antigens can be found
on the cell surface, even in healthy individuals. However,
healthy individuals have only low levels of circulating natural
autoantibodies against these auto-antigens, and the epitope
specificity of their MPO-ANCA differs from that of pathogenic
MPO-ANCA (2). In AAV patients, several mechanisms such
as apoptosis and NETosis (release of neutrophil extracellular

traps) can further promote the release of cytoplasmic antigens
into the extracellular space or increase cell surface expression
of cytoplasmic antigens by neutrophils. It was shown in vivo
that neutrophils from AAV patients with active disease were
more likely to undergo apoptosis and their cells had higher
expression of surface PR3 and MPO (20). In kidney biopsies
from AAV patients, NETs comprising DNA, histones, granule
proteins MPO, PR3, LL37, and NE were found in the glomeruli
(20). In addition, levels of inflammatory mediators such as tumor
necrosis factor-alpha (TNF-α) and C5a were increased in AAV
patients and these can also promote the migration of intracellular
MPO and PR3 from the cytoplasm to the cell membrane or into
the extracellular space (21, 22).

ANCAs play various roles in the pathogenesis of AAV,
contributing to disease development and progression. They are
able to induce NETosis by binding to FcγRIIA on neutrophils
and their ability to induce NETosis correlated with disease
activity (20, 23). ANCAs can also bind to cytoplasmic antigens
exposed on neutrophil surface leading to respiratory burst,
neutrophil degranulation and release of inflammatory mediators
such as pro-inflammatory cytokines, ROS and lytic enzymes,
which can damage the vascular endothelium (11, 24). ANCA-
activated neutrophils can induce injury in nearby microvascular
beds, with NETosis leading to the release of neutrophil
autoantigens for presentation by antigen-presenting cells. In
individuals with active disease, increased numbers of defective
Tregs and Bregs may be found (25, 26). Functional Bregs
are potent immunosuppressors and inducers of Tregs, where
Breg deficiency has been demonstrated in various autoimmune
diseases such as SLE and MS, and most likely in AAV (26).
The loss of an exon-2-deficient FOXP3 in Tregs due to
aberrant splicing results in the loss of downstream protein
sequestration involved in immunosuppressive pathways disrupts
adaptive immune tolerance, leading to activation of neutrophils
and subsequent inflammation of the vessel walls (1, 2, 11,
25, 27). Defective Treg function is thought to be associated
with exaggerated neutrophil activity, although the underlying
mechanisms are not fully understood (28).

In a mouse model of MPO-ANCA vasculitis, neutrophil
depletion prevented disease progression, highlighting the pivotal
role of neutrophils in the development of AAV (11). In AAV
patients, there is a higher proportion of autoantigen-presenting
neutrophils, which can trigger the production of ANCAs through
effect T cell recruitment and subsequent B cell activation,
resulting in disease (1). Circulating neutrophils isolated from
patients with active disease have been shown to generate more
basal superoxide, suggesting that they have been primed in
vivo (24). In addition, surface expression of PR3 on apoptotic
cells acts as a signal to initiate efferocytosis by macrophages.
PR3-expressing apoptotic neutrophils increase production of
pro-inflammatory cytokines, chemokines and nitric oxide (NO)
via the IL-1R1/MyD88 signal pathway (11). The internalization
of PR3 results in diminished anti-inflammatory macrophage
reprogramming, leading to sustained inflammation in a positive
feedback loop (29).

Activation of the complement system through the alternative
pathway also has a central role in the development of AAV,
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FIGURE 1 | (A) cutaneous small-vessel vasculitis (CSVV) begins with pre-exposure to microbial pathogens or certain drugs can induce pro-inflammatory cytokine

secretion by macrophages leading to increased endothelial selectin, ICAM-1 and VCAM-1 expression, neutrophil diapedesis and degranulation that damages the

vascular wall and surrounding tissues. Activation of the adaptive immune system leads to recruitment of cytotoxic lymphocytes and production of IgG and IgM

(Continued)
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FIGURE 1 | immune complexes that deposit along the endothelium and induce neutrophil degranulation; (B) ANCA-associated vasculitis (AAV) can be caused by

APC recognition of surface or secreted neutrophil autoantigens, MPO and PR3, which leads to the production of anti-neutrophil cytoplasmic antigen antiboodies

(ANCAs). ANCA can bind to primed neutrophils expression MPO or PR3 on the surface and induce degranulation or NETosis, which forms an amplification loop of

antigen release and recognition. Activation of the alternative complement pathway through C5a-mediated upregulation of tissue factor and platelet activation also

forms an amplification loop, where C5a binding on neutrophils results in migration of cytoplasmic MPO and PR3 to be displayed on the cell surface.

bridging the inflammatory and coagulation processes found in
active disease (30). C5a induces expression of tissue factor (TF)
on neutrophils and endothelial cells, triggering the extrinsic
coagulation pathway. Increased expression of TF, which may
result in hypercoagulability, has been reported in AAV patients
with active disease (31). Various components of the coagulation
and fibrinolytic cascades can cleave C3 and C5 to generate C3a
and C5a, respectively. Activated platelets express receptors for
C3a and C5a, while C5b-9 induce the release of alpha-granules
and microparticles which further activate the complement
system. Platelet counts are often elevated in patients with active
AAV and these correspond to disease severity, though the actual
crosstalk and interactions are not fully understood (30). In
a mouse model of MPO-ANCA vasculitis, C5-deficient mice
were completely protected from developing the disease (32),
suggesting that C5a can be a potential therapeutic target.

Although less common, eosinophilia has also been identified
in cases of AAV, most commonly in EGPA (33). EGPA is
characterized by three phases: (1) asthma and allergy symptoms,
(2) tissue and blood eosinophilia, and (3) necrotising vasculitis
(33). The presence of ANCAs have been reported in 30–40% of
EGPA patients (33). While the direct pathogenic mechanisms
of eosinophils in EGPA are unclear due to a lack of a suitable
animal model, it has been considered to be a TH2-mediated
disease. CCL17 (a chemokine that recruits TH2 cells) and IL-
25 (a cytokine that induces and enhances TH2 responses) are
amongst the mediators that have been implicated in EGPA
pathogenesis (33).

GENETIC VARIANTS AND THEIR
ASSOCIATION WITH
IMMUNOPATHOGENESIS IN VASCULITIS

The human leukocyte antigen (HLA) region, also known as the
major histocompatibility complex (MHC), is a region within the
human genome with the highest density of genes that encode
for several important molecules involved in immune responses,
and has been frequently associated with autoimmune diseases
(34). HLAmolecules encoded by this region present autoantigens
to T cells, resulting in the development of pro-inflammatory
or suppressive T cells depending on how the autoantigens
are presented, subsequently leading to either autoimmunity or
protection from disease (35). Antigen specificity is determined
by specific pockets in the antigen-binding groove of the
HLA molecule, and therefore the amino acid sequence of
these pockets is crucial to understanding the risk for certain
autoimmune diseases (35). While the MHC constitutes the
strongest association in vasculitis, there are several loci outside
the MHC, including SERPINA1, PRTN3, SEMA6A, PTPN22,

CTLA4, FCGR3B, and ARPC1B that have also been established as
genetic risk factors for these diseases, coding for immunological
molecules that increase susceptibility to autoimmunity (36)
(Table 1).

Genetic Variants Associated With
Cutaneous Small-Vessel Vasculitis
Currently, there is not much literature on the genetic factors that
contribute to CSVV pathogenesis. However, some have suggested
that the gene ARPC1B may play a role in predisposition to this
disease (36, 37). The ARPC1B gene encodes ARPC1B, which is
an isoform of ARPC1 (actin-related protein complex-1) and one
of the regulatory subunits of the Arp2/3 complex involved in
actin polymerization and cellular motility (35). Genetic defects
in the proteins regulating cytoskeletal rearrangements often
cause syndromes involving the blood and immune systems
(50). Arp2/3, in particular, is believed to have a critical
role in immune cell synapses formation and T-regulatory cell
function (51). A homozygous complex frameshift mutation
in ARPC1B was identified in a 7-year-old Moroccan boy
who presented with a novel combined immunodeficiency
involving recurrent infections, mild bleeding tendency, vasculitis
(including leukocytoclastic vasculitis), and allergic reactions (52).
This mutation had resulted in a complete lack of the ARPC1B
protein in the boy’s neutrophils. Kahr et al. also described
three patients suffering from CSVV who showed homozygous
mutations in the ARPC1B gene (51). As a result of this mutation,
complete loss of or minimal ARPC1B protein in their platelets led
to defects in Arp2/3 actin filament branching associated with a
range of diseases including inflammatory diseases and cutaneous
vasculitis. Thus, the ARPC1B gene may be identified as a possible
susceptibility locus contributing to CSVV pathogenesis.

Genetic Variants Associated With
ANCA-associated Vasculitis
MHC Associations

With regards to the HLA region, the alleles DPA1, DPB1∗04:01,
DPB1∗04:02, DPB1∗23:01, DQB1∗02, and DRB1∗03 were
associated with the development of PR3-ANCAs, whereas
DQA1∗03:02, DQB1∗03:03, and DRB1∗09:01 were associated
with theMPO-ANCAs (38, 53). These risk factors were identified
based on previous association studies (35, 37, 38, 53, 54).

Merkel et al. found a strong association between theDPB1 risk
haplotype allele with AAV in European populations, suggesting
that the allele gives rise to a β chain polymorphism in the
antigen-binding pocket of the HLA-DP molecule, which may
impact T cell allorecognition and thus affect susceptibility to
autoimmune disease (37). Furthermore, the association between
DQA1∗03:02 and DQB1∗03:03 with MPO-ANCA pathogenesis

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 September 2021 | Volume 8 | Article 732369

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Yap et al. Immunopathogenesis and Genetic Variants in Vasculitis

TABLE 1 | Relationship between vasculitis immunological mechanisms and susceptibility loci in different populations.

Type of vasculitis Immunological

target

Susceptibility

loci

Associated

population

Mechanism References

ANCA-associated

vasculitis

HLA-DP DPB1*04:01,

DPB1*04:02,

DPB1*23:01

European The risk haplotype allele underpins a β chain

polymorphism in the antigen-binding pocket of

HLA-DP, influencing T cell allorecognition.

(37)

HLA-DQ DQA1*03:02,

DQB1*03:03

Chinese DQA1*03:02 codes for Asp160 on the DQ α

chain. Asp160 forms a salt bridge with His111

on the DQ β chain, stabilizing the HLA

homodimer and better priming the CD4+ T

cells.

(38, 39)

HLA-DR DRB1*09:01 Japanese Binds to MPO and forms an MPO/HLA-DR

complex to transport the MPO protein to the

cell surface. Exposed MPO associated with

HLA-DR on cell surface induces autoantibody

production.

(40)

α1AT SERPINA1

(rs28929474/null

allele)

European Inhibits PR3 and thus inhibits inflammatory

responses induced by PR3. Under-expression

of the gene causes increased levels of

circulating PR3, resulting in synthesis of

PR3-directed ANCA.

(37, 41–43)

PR3 PRTN3

(rs62132293)

European A proteinase which leads to proteolytic vessel

damage. Risk variant causes overexpression of

gene by neutrophils.

(37, 41, 43,

44)

SEMA6A SEMA6A (T allele

of rs26595)

European Involved in the immune response related to

autoimmune disorders.

(42, 45, 46)

Lyp PTPN22

(rs2476601)

European Base substitution at Lyp620W makes Lyp more

susceptible to proteolytic degradation,

impairing its inhibitory effects on T cell

activation and reducing immune tolerance.

(37, 47)

CTLA-4 CTLA4 (rs231726,

G allele of

rs3087243,

rs3096851)

European Individuals with the risk variant (G allele of

rs3087243) have T cells with lower activation

threshold and thus an increased risk for

autoimmune diseases.

(42, 48)

CD16B FCGR3B (NA1,

NA2)

Caucasian Engaged by anti-PR3 antibodies to activate the

ANCA-effector response, causing respiratory

burst, phagocytosis, and neutrophil

degranulation, thus affecting the severity of

disease.

(49)

Cutaneous small

vessel

leukocytoclastic

vasculitis

ARPC1B ARPC1B Inconclusive Homozygous complex frameshift mutation

causes under-expression of the gene. ARPC1B

deficiency in neutrophils and platelets leads to

defects in Arp2/3 actin filament branching,

resulting in blood and immune-related

diseases.

(50–52)

that was found in Chinese subjects may be due to the formation
of stable HLA class II αβ homodimers (38). These stabilized
homodimers facilitate CD4+ T cell priming, whereby CD4+
T cells can only be primed if an immune complex is formed,
made up of the stabilized αβ homodimer, T cell receptor, and
the antigen (39). The αβ homodimer is stabilized through the
formation of a salt bridge between Asp160 on the DQ α chain,
encoded by the risk allele DQA1∗03:02, and His111 on the DQ
β chain (38). On the other hand, the role of DRB1∗09:01 in
AAV pathogenesis for the MPO-ANCA subgroup in Japanese
populations has been attributed to the association between MPO
proteins and HLA-DR molecules encoded by DRB1∗09:01 (40).
A major role of HLA class II molecules is to present antigens to
T cells, where HLA-DR, a type of HLA class II molecule, had

a high affinity to MPO. HLA-DR binds to intracellular MPO
to form an MPO/HLA-DR complex in order to transport the
MPO protein to the cell surface, thus initiating the production of
autoantibodies against this complex (40). This suggests thatMPO
associated with HLA-DR are structurally different from native
MPO, likely due to cryptic autoantibody epitopes on MPO being
exposed by binding with HLA-DR. These structurally different
MPO proteins are recognized as “neo-self ” antigens by immune
cells, therefore inducing autoantibody production (55).

Non-MHC Associations

A susceptibility locus associated with AAV targeting PR3, a
proteinase causing proteolytic vessel damage, was identified as
SERPINA1 with haplotype rs28929474 in European populations
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(37, 41). This gene encodes for α1-antitrypsin (α1AT), an
inhibitor of PR3 and PR3-induced inflammatory responses (37).
As for the risk variant, it causes under-expression of the gene,
suggesting that it leads to increased levels of circulating PR3,
thus resulting in the synthesis of ANCA directed to PR3 (41).
Furthermore, the gene PRTN3 (haplotype rs62132293) encoding
PR3 was identified as a susceptibility locus for AAV in individuals
of European descent, with the risk variant causing overexpression
of this gene by neutrophils and thus increased expression of
PR3 (37, 41).

Another susceptibility locus is SEMA6A (rs26595 T risk allele),
found to be significantly associated with GPA in a genome-
wide association study involving subjects of European descent
(42). The functions of semaphorin 6A, encoded by this gene,
are not well-characterized, and its role in the risk for GPA
remains unclear, but a possible link points to the involvement of
semaphorins in the immune response in autoimmune disorders
(42, 45, 46).

Meanwhile, the gene PTPN22 with haplotype rs2476601 has
been associated with AAV pathogenesis in European populations
due to the link between the risk variant to the aberrant
increase in dendritic cell activation and lymphocyte antigen
receptor signaling (37). The risk variant encodes Lyp620Wwhich
leads to dendritic cell and lymphocyte hyper-responsiveness,
increasing the risk for autoimmune diseases (47). Lyp (lymphoid-
tyrosine phosphatase) downregulates T cell antigen receptor
(TCR) signaling, and risk variants are associated with multiple
autoimmune diseases including rheumatoid arthritis (47, 56,
57). Lyp620W has a loss-of-function effect; at the site of the
Lyp620W variant, the arginine to tryptophan substitution causes
Lyp to become more susceptible to proteolytic degradation,
reducing Lyp levels and impairing its inhibitory effects on
T cell activation, thus compromising immune tolerance (47).
However, the mechanism by which this loss-of-function effect
of the Lyp620W variant impacts AAV pathogenesis has yet to
be identified.

CTLA4 was confirmed as a genetic risk factor in CSVV
(48). Three haplotypes of this gene—rs231726, the G allele
of rs3087243, and rs3096851—were identified in European
populations (42, 48). CTLA4 encodes the protein CTLA-4
(cytotoxic T lymphocyte antigen 4), expressed on activated T
cells, which represses T cell activation by associating with CD80
and CD86 on antigen-presenting cells (48, 58, 59). CTLA-4
competes with CD28, a T cell co-stimulant, for CD80 and CD86
binding, and CTLA-4 levels increase when T cells are activated
via T cell receptor and CD28 (58). Patients with GPA were found
to have increased levels of CTLA-4, a sign of T cell activation
(60). Steiner et al. suggested that elevated levels of CTLA-4
are involved in the development of Th1 cells (the primary T
cell subpopulation in GPA), due to the role of CTLA-4 in the
differentiation of T cells into Th1 cells in TcR transgenic mice.
It is also elucidated that individuals carrying the G allele of
rs3087243 possess T cells with a lower activation threshold,
thus leading to a higher risk for autoimmune diseases (48). The
complete role of CTLA4 in AAV pathogenesis, however, is not
fully understood and requires further investigation (48).

The gene FCGR3B could also be considered a susceptibility
locus for AAV. The role of its genetic variants, namely NA1
and NA2, in AAV pathogenesis can be explained through
their involvement in the ANCA-effector response (49). The
ANCA-effector response was associated with inflammatory
necrosis of small blood vessels (61). ANCA-induced effector
mechanisms are triggered when anti-PR3 antibodies bind to
granular PR3 presented on activated neutrophils (49). These
anti-PR3 antibodies then engage IgG Fc receptors such as
FCGR3B (CD16B), encoded by FCGR3B, which further activate
the ANCA-effector response, leading to respiratory burst,
phagocytosis, and neutrophil degranulation, and this affects the
strength of ANCA-induced activation of neutrophils and thus the
severity of AAV (49).

TREATMENT STRATEGIES FOR
VASCULITIS

Due to genetic factors playing a major role in vasculitis
pathogenesis, targeting associated genes and their corresponding
molecular pathways is the suitable approach. Over the years,
monoclonal antibodies have gained much attention as a
promising therapeutic strategy for the management of vasculitis.
Monoclonal antibodies can be a suitable alternative to the first-
line drugs based on glucocorticoids (GC), which have limitations
such as GC resistance and severe complications (62). Here,
we discuss recent findings obtained from studies on potential
therapies for both AAV and CSVV.

Cutaneous Small-Vessel Vasculitis
Treatment of CSVV is clinically driven, perhaps due to the
lack of understanding of the genetic background of this disease.
Approach to therapy depends on the etiology and severity of the
disease (63, 64). If the underlying etiology can be identified, such
as due to an infection or a known drug, eliminating the cause
would be the best course of action (64). If the CSVV is a result
of a systemic vasculitis (e.g., AAV), treatment will be determined
by the severity of internal organ involvement, and will usually
require a combination of steroids and an immunosuppressive
drug, for example rituximab for the treatment of AAV (64, 65).
Idiopathic CSVV, on the other hand, has an excellent prognosis,
with 90% of cases resolving within weeks to months of onset
(66). Therefore, conservative treatment like bed rest, elevation
of lower extremities, warming, analgesics, non-steroidal anti-
inflammatory drugs (NSAIDs) and antihistamines can be used
to alleviate symptoms such as burning or pruritus (63). If the
condition extends to an ulcerative, nodular, or vesicobullous
form or it becomes recurrent, additional aggressive systemic
medications are necessary (63).

Diet, especially those involving a specific food allergen, is
commonly cited as an inciting agent of CSVV, and adjusting to
bland, low-antigenic diets is usually recommended to prevent
recurrences of the condition (63). With regards to medication,
the corticosteroid prednisone is the most widely used treatment
for idiopathic CSVV (63, 64). The anti-gout agent colchicine
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(0.6–1.8mg per day) has been shown to resolve CSVV within 1–
2 weeks (63, 67–69). If colchicine proves ineffective, dapsone, an
anti-inflammatory and antineutrophilic agent, can be substituted
or added (64). If CSVV is persistent, daily azathioprine, a steroid-
sparing agent, may be prescribed (63, 70).

In 2017, a case was reported whereby a woman in her 40s
suffering from CSVV, with a history of intermittent purpuric
lesions for 20 years, was successfully treated with leflunomide
(71). Leflunomide is a pyrimidine synthesis inhibitor and is an
inexpensive, effective treatment for psoriatic and rheumatoid
arthritis and several types of vasculitis. The patient was reported
to remain free of new skin lesions and other cutaneous symptoms
following 4 months of leflunomide therapy. Further investigation
through prospective clinical trials is needed to assess the efficacy
of leflunomide for CSVV treatment.

A recent study explored the role of oxidative stress in CSVV
pathogenesis, suggesting that damage to blood vessels so often
seen in CSVV could be caused by an imbalance in redox
homeostasis (72). Recruitment of neutrophils to the affected
tissues triggers ROS production, leading to lipid peroxidation in
skin tissues and forming acrolein, a type of reactive aldehyde
(73). The study showed that the concentration of acrolein-
protein adducts in the skin of small-vessel vasculitis patients is
proportional to disease severity (72). Therefore, CSVV might
be treated through the mitigation of oxidative stress using
antioxidative pharmacologic agents, while disease activity could
be assessed using immunohistochemical assessments of acrolein
content in the patient’s skin, thus allowing for more targeted
treatments (72). One such promising antioxidative therapeutic
agent is peoniflorin, the main component of total glucosides
of peony derived from the root of Paeonia lactiflora Pall. (74–
76). The results from a study revealed that peoniflorin reversed
the oxidative damage in human umbilical vein endothelial cells
caused by hydrogen peroxide, hence suggesting that peoniflorin
may be a candidate therapeutic strategy for oxidative stress-
related vascular diseases (76).

ANCA-Associated Vasculitis
Based on findings derived from genetic studies, it has been
elucidated that ANCA-mediated neutrophil activation and B
cells are crucial to AAV pathogenesis, and therefore potential
treatments can include B cell-depleting drugs (36, 77). In terms
of the induction of AAV remission, rituximab represents a very
promising contender (65). Rituximab is a murine / human
chimeric monoclonal antibody against CD20, a B cell marker,
and was licensed in 2011 for remission induction of AAV (65,
77, 78). During the first phase of an international randomized
controlled trial known as RITAZAREM, rituximab was shown
to be very effective in reinducing remission in relapsed AAV
patients when taken in combination with relatively low doses of
glucocorticoids (77).

One of the classical features of AAV is represented by
granulomatous inflammatory lesions, which are initiated by
macrophages and CD4+ T cells (79). T cell activation requires
a costimulatory receptor (CD28) and CTLA-4 acts as a negative
regulator of CD28, preventing the binding of CD28 with its

ligand, thus blocking T cell activation (80). Abatacept, a disease-
modifying anti-rheumatic drug (DMARD), is made up of the
CTLA-4 ligand-binding domain and a modified Fc domain
derived from IgG1, hence can be a possible therapeutic option
for AAV treatment (80). An open label clinical trial involving
patients with relapsing GPA showed that abatacept resulted in
remission in 80% of patients (81). There is also an ongoing phase
III clinical trial (NCT02108860) that aims to assess the efficacy of
abatacept in achieving sustained remission in patients suffering
from a non-severe relapse of GPA.

Despite the promise of these biological agents as therapeutics
for AAV, they are still limited by adverse effects such as infections
(81, 82). One study found that severe pulmonary infections were
the major infectious complication observed in AAV patients
treated with a low dose of rituximab (82). They attributed the
B cell-depleting role of rituximab as a cause of these infections
and identified renal dysfunction and old age as risk factors of
such adverse effects. Given that both rituximab and abatacept
are immunosuppressants, it is not surprising that patients treated
with these drugs are more vulnerable to infections, and therefore
this adverse event should be assessed accordingly during follow-
up appointments with the clinicians (81, 82).

Plasma exchange, an effective treatment against
thrombocytopenic purpura, a disorder which causes low
platelet count, is also considered as a course of treatment for
AAV patients (83–85). Plasma exchange may benefit patients by
removing pathogenic ANCAs in the plasma, as well as clotting
factors involved in the coagulation cascade (85, 86). However, the
PEXIVAS trial, the largest study of plasma exchange in AAV, did
not show that adjunctive plasma exchange benefits patients with
severe AAV (87, 88). Nevertheless, it was suggested that patients
with both ANCA and anti-glomerular basement membrane
(GBM) antibodies should still be treated with adjunctive plasma
exchange. Treatments for patients with anti-GBM disease
involve immunosuppression and adjunctive plasma exchange
(87). Since both patients with single anti-GBM positivity and
double positivity for anti-GBM antibodies and ANCA experience
aggressive pulmonary and renal disease, plasma exchange seems
appropriate for treating double positivity patients (87).

DEVELOPING PERSONALIZED MEDICINES
FOR VASCULITIS

Personalized medicine (PM) seeks to deliver targeted therapies
to patients who have otherwise been unresponsive to previous
treatments, based on a well-informed understanding of the
mechanisms of the disease within the individual patient, and is
currently the desired treatment of choice for rheumatic diseases
(89, 90). As a primary step toward the success of PM, actionable
biomarkers are required to assess disease pathophysiology
and the molecular pathways involved (90). One technology
advance in the field of PM in terms of pathophysiology
characterization is Big Data, a multi-dimensional approach
that enables the generation of vast amounts data and involves
genomics, proteomics, metabolomics, and epigenetics in areas
of epidemiology and healthcare delivery (90–95). An example of
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Big Data technology is single cell RNA-seq (scRNA-seq) which
details the transcriptional products of an individual cell, allowing
researchers to define diseases functionally instead of clinically
based on signs and symptoms (90–94). As Big Data technology
has been applied in rheumatic diseases such as rheumatoid
arthritis, systemic lupus erythematosus, and systemic sclerosis
(90), it is reasonable to think that Big Data can also be applied
in studies on vasculitis pathophysiology. Hence, as mentioned
throughout this review, genetic studies play a crucial role in
identifying these mechanisms as well as in determining the
genetic predisposition of each unique patient.

Literature on the development of PM for CSVV is
considerably less compared to that for AAV, possibly due
to the lack of publications on the genetic factors that may
contribute to the disease. Nevertheless, scRNA-seq has been
shown to be a promising strategy in identifying CSVV risk
factors. Using scRNA-seq, the distribution of signaling molecules
as well as HLA-II molecules in vascular endothelial cells across
different tissues could be assessed (59). It was found that HLA-II
genes exhibited higher expression levels in vascular endothelial
cells from the skin than that from the thyroid, trachea, and
brain, perhaps leading to the higher rate of dermal vasculitis
in CSVV (59, 69). Furthermore, tofacitinib has been proposed
as a possible therapy for CSVV patients in a recent case report
(96). Tofacitinib is a Janus kinase (JAK) 3/1 inhibitor used
in the treatment of rheumatoid arthritis, which suppresses
inflammation by interfering with inflammatory cytokine
signaling (5, 97). The case report presented a 29-year-old
Chinese woman with a 5-year recalcitrant CSVV, who upon
treatment with tofacitinib, achieved complete recovery, possibly
due to tofacitinib interfering with the signal transduction of
proinflammatory cytokines (96). However, more investigation
into the efficacy and safety of tofacitinib in CSVV treatment is
greatly needed since this is the first case of its kind.

Currently, AAV treatment is based primarily on organ
involvement and severity of disease, as seen in the use of
rituximab in the induction of remission and plasma exchange
in patients with severe or refractory AAV suffering from
severe renal involvement (serum creatinine > 500 µmol/L)
(65, 98–100). Over the years, PM in AAV has been gaining
attention due to the increasing understanding of its immune
pathology (65). This understanding has identified distinct AAV
categories based on the immunological markers PR3 and MPO
(100). Treating AAV patients based on their ANCA type
(PR3 or MPO) may be more effective than treating them
based on their clinicopathologic disease definitions (EGPA,
MPA, or GPA), due to the stronger correlation between the
differences in pathogenesis, genetics, and treatment responses
with the ANCA type (101, 102). For example, the PR3-
ANCA subgroup is associated with the variants of HLA-
DP, α1AT, and PR3, while the MPO-ANCA subgroup is
associated with the variants of HLA-DQ (43). Conversely,
differences in genetic associations were found to be weaker
when AAV patients were grouped following the traditional
GPA/MPA classification (100). Overall, further understanding of
the immunopathology of ANCA type may provide a basis for PM
for AAV, addressing issues related to cost and unnecessary drug
toxicity (100, 103).

Hence, treatments focusing on immunological targets in
PR3-ANCA and MPO-ANCA subgroups are being investigated,
such as anti-CD20 therapy (rituximab) which reduces in AAV
patients the levels of ANCA, shown to stimulate the release
of pro-inflammatory cytokines and ROS from monocytes and
neutrophils (77, 100). Furthermore, treatments that target the
pro-inflammatory cytokines IL-17, IL-21, and IL-23, namely anti-
IL-12/IL-23, anti-IL-17, and anti-IL-17R treatments, could be
effective for AAV therapy as AAV patients show elevated levels
of these cytokines (100). IL-17, IL-21, and IL-23 are involved
in the development of Th17 cells, and IL-17 and IL-21 are said
to assist autoreactive B cells in patients suffering from systemic
autoimmune diseases (104). The cytokine B cell activating
factor (BAFF), which stimulates PR3- and MPO-specific B cell
differentiation into antibody-secreting cells, may also be targeted
(105). In a multicenter, double-blind, placebo-controlled trial,
anti-BAFF therapy (belimumab) administered to AAV patients
in remission did not reduce the risk of relapse (106). Belimumab
did, however, maintain remission in patients who were treated
with rituximab prior to the trial. Thus, belimumab as a potential
targeted treatment for AAV requires further investigation.

Personalized medicine for AAV can be taken a step further
with autoantigen-specific or ANCA-specific treatment (100).
A study reported a promising strategy using cytotoxic T
cells conjugated with a chimeric autoantibody receptor that
recognizes antibodies against PR3 or MPO on B cells in AAV
patients (107). These cytotoxic T cells would kill PR3- or MPO-
specific B cells in the AAV patient. In addition, the use of
peptibodies or peptides linked to an antibody backbone to target
pathogenic ANCA has also been suggested for the mitigation of
self-reactive B cells in AAV patients (108). Of course, the safety
and efficacy of these treatments as well as their feasibility as AAV
targeted therapies need to be further assessed.

CONCLUSION

It is clear that a deeper understanding of the
immunopathogenesis of vasculitis and its associated genetic
risk factors has allowed for recent developments in treatment
and promising ideas for personalized medicine. However, the
specific genetic variants which predispose individuals to CSVV
as well as their pathogenic mechanisms have yet to be fully
explored. Therefore, genome-wide association studies (GWAS)
and population studies are necessary to identify risk alleles
associated with CSVV, while functional analyses are crucial to
pinpoint the direct causal effects of the risk alleles to aid in the
development of targeted treatments. Further investigations into
the immune pathology of ANCA types and into prospective
targeted therapies are also recommended for the optimization of
personalized medicine for AAV.
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