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Effects of constructing farmland 
with large amounts of iron tailings 
as soil reconstruction materials 
on soil properties and crop growth
Wenjuan Jin 1,2, Zhongyi Wei 1,2, Xinzheng Liu 1,2, Qi Li 3, Chunlan Han 1,2, Zhenxing Bian 1,2*, 
Xufeng Zhang 1, Fengkui Qian 1,2 & Yonghai Liu 4

With continuous population growth and farmland decrease, the food security is seriously threatened. 
Farmland reclamation has been used as a means of raising the agricultural productivity and improving 
the ecological environment. However, the lack of reclaimed soil represents a serious problem. To 
verify the feasibility and effect of using large amounts of iron tailings to construct farmland, ten 
treatments (T1–T10) were designed to represent different soil profiles of regional normal farmland 
and constructed profiles using iron tailings. All treatments involving an iron tailings layer below 
topsoil exhibited higher soil water contents. The field capacity under T3 (20-cm iron tailings layer 
below cinnamon soil (b)) was 19.20% higher than that under T7 (20-cm red clay layer below cinnamon 
soil (b)), and the field capacity under T5 (20-cm iron tailings layer below cinnamon soil (a)) was 2.26% 
higher than that under T9 (20-cm red clay layer below cinnamon soil (a)). The soil water contents 
under T3 and T5 were almost the same as those under T7 and T9, respectively. The water-holding 
capacity of the 30-cm iron tailings layer (T6) was better than that of the 20-cm iron tailings layer (T2). 
Additionally, none of the treatments caused salt injury to maize. The maize height and stem thickness 
under the treatments employing iron tailings layers below topsoil were significantly greater than 
those in normal farmland; the maize height and stem thickness under T3 were 136.82% and 32.02% 
greater, respectively, than those under T7, and the values under T5 were 9.13% and 9.56% greater, 
respectively, than those under T9. The maize yields matched or even surpassed those in normal 
farmland, namely, the maize yield under T5 was equal to that under T9, and the maize yield under 
T3 was 12.69% higher than that under T7. In general, the application of an iron tailings layer below 
topsoil to construct farmland is a feasible and environmentally friendly way to realize sustainable 
farmland utilization and is beneficial to soil quality and crop yield improvement. Collectively, these 
results provide insight into the efficient utilization of iron tailings and environmental protection.

Mining is an economic activity that intensified during the twentieth and twenty-first centuries to satisfy the 
demands of industrial development, which has caused serious social, environmental and economic impacts, 
especially in resource-rich regions1,2. China is one of the first countries worldwide to exploit and utilize iron ore, 
with abundant reserves and a high annual output. The increasing scale of mining inevitably causes large-scale land 
disturbance and severe damage to the vegetation, soil, and landscape of the original landform, posing a serious 
threat to the regional ecological security3–5. The conflict between human development and farmland protection 
in China has become increasingly aggravated6,7. Therefore, it is necessary to reclaim abandoned mines, construct 
farmland and accelerate ecological restoration8,9.

Land reclamation can be divided into five stages from the perspective of the corresponding workflow, includ-
ing landform reshaping, soil reconstruction, vegetation reconstruction, landscape representation, and biodiversity 
reorganization and protection10. Among these stages, soil reconstruction constitutes the core component of land 
reclamation and ecological restoration in mining areas, and the quality of reconstructed soil directly determines 
the quality of land reclamation10,11. Soil reconstruction refers to the implementation of appropriate reconstruction 

OPEN

1College of Land and Environment, Shenyang Agricultural University, Shenyang 110161, China. 2Key Laboratory 
of Trinity Protection and Monitoring of Cultivated Land, Shenyang  110161, China. 3Liaoning Natural Resources 
Affairs Service Center, Shenyang  110011, China. 4Jianping Shengde Rixin Mining Co., Ltd, Chaoyang  122400, 
China. *email: zhx-bian@syau.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-24599-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20205  | https://doi.org/10.1038/s41598-022-24599-3

www.nature.com/scientificreports/

techniques and application of engineering measures and physical, chemical, biological and ecological methods 
to construct appropriate soil profiles and soil fertility conditions for soil restoration purposes in industrial and 
mining areas. At the same time, it is necessary to stabilize the landscape, restore and improve the soil productivity 
rapidly, and improve the environmental quality of the reconstructed soil11. The materials used for soil reconstruc-
tion include both soil and the soil matrix and other mine waste materials, such as rock, gangue, fly ash, slag, 
low-grade ore, or a mixture of two or more of these materials12. The most ideal soil reconstruction material is the 
original soil stripped in the mining process, but it is difficult to obtain sufficient high-quality soil13. Especially in 
China, many historical legacy mines exist, and there is a serious lack of soil resources, which makes appropriate 
soil substitute materials vital to mine site reclamation.

Soil substitute materials, also referred to as artificial soil or new soil source materials14, involve a reasonable 
ratio of solid waste and other nontopsoil resource materials from the perspective of land reclamation and sustain-
able environmental development in mining areas to provide new soil suitable for plant growth15. The preferred 
soil substitute materials are generally industrial solid waste materials obtained from mining areas. Many laws and 
regulations concerning land reclamation in Western countries stipulate that it is necessary to analyze the phys-
icochemical properties and heavy metal content in the soil matrix and overlying strata and subsequently select 
suitable soil substitute materials before mining16,17. For example, in Germany, there occur fewer topsoil sources, 
some of which include stripped topsoil in mining areas and artificial soil18. In the United States of America, it is 
necessary to identify and screen suitable soil substitute materials from the overburden strata of coal seams when 
the amount of stripped soil is insufficient. Baker et al.19 used coal gangue prepared from combustion products 
such as fly ash and sludge to produce stable soil that could be directly applied in farmland. Wilson and Skousen20 
used unweathered gray sandstone and weathered brown sandstone in soil reconstruction of an open-pit mine in 
West Virginia, USA, and experimental observations over eight consecutive years revealed that weathered brown 
sandstone soil exhibited satisfactory physicochemical properties and was an ideal soil substitute material. In 
Indonesia, the utilization of fly ash as a soil substitute material in mining areas was achieved by mixing topsoil 
and fly ash based on the physical characteristics and boron amount eluted from fly ash21. The incorporation 
of eco-engineering tailings into soil-like growth media has been advocated as a promising technique for cost-
effective and sustainable rehabilitation of iron tailings without the need for large volumes of natural topsoil22. 
However, few studies have considered iron tailings as a soil substitute material.

Research on soil substitute materials in China started relatively late. Regarding coal mining area reclamation, 
coal gangue23,24 and fly ash25,26 are usually selected as alternative materials for soil reconstruction. Through pot 
and plot experiments, Hu et al.13 used the overlying rock and soil layer in an open-pit coal mine in Inner Mon-
golia as a matrix and incorporated different additives to improve topsoil alternatives for dump reclamation, and 
the results demonstrated that Layer III of the matrix after weathering was more suitable as a topsoil substitute 
material. In addition, his team added peat27, modified straw28, vermiculite29, and humic acid30 and improved 
and optimized the formula of the applied soil substitute material by assessing alfalfa growth and resisting per-
formance. Because of the different ore-forming geological conditions occurring in different regions, the physical 
and chemical properties of mining solid waste materials are different, so the proportion of solid waste materials 
exhibits notable regional characteristics. Hu et al.31, Duo and Hu32, and Zhao et al.33 proposed a new technology 
of using Yellow River sediments as reconstructed soil material to mitigate coal mining-induced subsidence. In 
regard to soil reconstruction during iron ore reclamation, Lu34 studied the physical and chemical properties of dry 
discharge iron tailings and corresponding reclamation technology and found that a grinding cultivation matrix 
covering a 30-cm iron tailings layer could represent a suitable reclamation mode. Fan35 used the pot test method 
to transform iron ore waste rocks and soil into reclamation mixed soil according to different mixing proportions. 
By analyzing the physical and chemical properties of the obtained mixed soil and its impact on maize growth, 
it was found that iron ore waste reclamation mixed soil at a 3:7 ratio was the most suitable for maize growth.

At present, waste iron tailings are mostly used as soil fertilizers worldwide, but their usage is limited, making 
it difficult to solve various problems, such as iron tailing accumulation and pollution. In northern China, large 
amounts of iron tailings produced during iron ore mining and selection are stored in tailings ponds and are 
often regarded as waste materials36. These tailings ponds not only involve a large amount of land occupation but 
also involve the need for passive tailings pond reclamation. There are many similar places in the world. Western 
Liaoning Province, a region with large amounts of iron tailings, belongs to the semiarid and typical ecologically 
fragile area, where the native topsoil is relatively infertile, and reclamation soil resources are seriously lacking, 
which has become a serious bottleneck in the land reclamation process in this area and has caused various 
problems, such as an insufficient soil cover thickness and poor vegetation growth. Wei and Liang37 innovatively 
proposed the idea of mixing iron tailings with topsoil to increase the soil layer thickness and improve medium- 
to low-yield fields in western Liaoning Province. It has also been demonstrated that the incorporation of an 
appropriate amount of iron tailings into topsoil can improve soil physical properties and crop yields and does 
not contaminate farmland soil38. In addition, Davila et al.39 and Almeida et al.40 evaluated productivity and 
metal accumulation in the Fundao dam area (Minas Gerais, Brazil), released large amounts of iron tailings and 
determined that the concentrations of metals remained within the limits allowed for human consumption, thus 
not posing long-term risks; they indicated that the deposited tailings would not cause future regional heavy 
metal contamination. The results of our previous study revealed that the contents of heavy metals such as Cd, 
Cr, Cu, Zn, Pb, Ni, Hg and As did not exceed the risk intervention values for farmland contamination in China41, 
and the heavy metal content was even lower than that in regional native soil, with no toxicity and no pollution 
sources for soil and crops38. Thus, constructing farmland with large amounts of iron tailings could represent a 
promising method for farmland reclamation.

Few studies regarding the notable use of iron tailings for farmland construction in mining areas have been 
reported to date. Therefore, our general aim was to demonstrate the feasibility of farmland construction involving 
large amounts of iron tailings. Via full utilization of common raw materials in the mining area, including topsoil, 
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iron tailings, waste rocks and stripped soil, 10 types of farmland soil profiles were designed. Considering the 
semiarid climatic conditions in the study area, soil moisture characteristics were closely monitored. Additionally, 
crop growth conditions and yields were regularly monitored. The main objectives of this study were to (1) verify 
the feasibility of a new soil reconstruction material (iron tailings) that could be used to construct farmland and 
describe the associated reclamation technology and construction process and (2) to analyze soil properties and 
crop growth and yield after reclamation.

Materials and methods
Study area.  The experimental site is located in a newly reclaimed farmland area in Xincheng village (41°45′ 
N, 119°37′ E), Xiaotang town, Jianping County, Chaoyang city, Liaoning Province, northern China (Fig.  1), 
which is an area rich in iron ore resources. Mining waste materials, such as iron tailings and waste rock materials, 
occupy large amounts of land. This area is characterized by a semiarid monsoonal climate with a mean annual 
temperature of 7.6 °C, a mean annual precipitation of 614.7 mm, and a mean annual effective evaporation of 
approximately 1853 mm. According to the soil classification system of China, the soil in this region belongs 
to Haplic-Ustic Argosols42,43. The original farmland in the region exhibits a thin tillage layer (approximately 
15 cm), heavy clay soil texture, weak soil moisture regimes, and low soil organic matter content, which leads 
to the farmland in western Liaoning Province mostly providing medium- and low-yield fields. Aridity is the 
primary limiting factor of the regional farmland quality44. In addition, the thin topsoil layer leads to an extreme 
lack of soil resources for land reclamation.

Reclamation procedures.  Combined with land construction planning, a section of the abandoned river in 
Xincheng village was selected for the experiment, and experimental site construction began in March 2020 and 

Figure 1.   Location of the study area (the red rectangular boxes represent the distribution of the experimental 
plots of reclaimed farmland. T1 to T10 indicate the ten types of reclamation treatments. The map images 
were obtained from www.​google.​com/​maps. The photos of the experimental site were taken during the field 
investigation).

http://www.google.com/maps
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was completed in April 2020. The process of farmland construction involving large amounts of iron tailings was 
as follows (Fig. 2): first, waste rock materials stripped during mining were placed at the bottom to increase the 
ground elevation. Next, mining gravel was emplaced atop the waste rock materials as a foundation for cultivation 
construction. Then, subsoil stripped during mining was placed atop the gravel layer as an impermeable layer. 
Finally, iron tailings and stripped topsoil were emplaced layer by layer atop the subsoil layer. The total thick-
ness of topsoil and iron tailings ranged from approximately 40 to 60 cm. Iron tailings are generally employed to 
increase the soil thickness of the tillage layer and serve as a water-holding layer in farmland.

Considering the specific local conditions, 10 experimental plots (12 × 6 m) were established combined with 
previous research results for iron tailings mixing into topsoil (Yang, 2016; Wei and Liang, 2016) (Fig. 1), repre-
senting 10 types of construction treatments (T1–T10) (Fig. 3). In each plot, three 6 × 4 m repeated test subzones 
were established. Waste rock and gravel materials were produced by stripping bedrock during mining. The lower 
layer stripped during pit excavation and mining, mainly referred to as red clay in this paper, is a relatively clayey 
soil layer occurring several meters to more than ten meters below the surface. Iron tailings were acquired from 
dry discharge iron tailings remaining after the iron mining activities of the Jianping Shengderixin Mining Co., 
Ltd., Chaoyang city, Liaoning Province. After testing, the contents of heavy metals such as Cu, Pb, Zn, Fe, Ni, 
Mn and Cr in the obtained iron tailings did not exceed the risk intervention values for agricultural land con-
tamination in China41, and the heavy metal content was even lower than the environmental background value 
(the heavy metal content in regional native soil), with no toxicity and pollution risks to soil and crops. Topsoil 
was obtained from topsoil dumps formed via topsoil stripping during mining, exhibiting two colors, i.e., brown 
and yellow, but both these soils were cinnamon soil in the Chinese soil classification system42,43. Thus, these 
soils were named cinnamon soils (a) and (b), respectively. In addition, all the structural materials were stacked 
near the experimental site, and the essential traits of the red clay, iron tailings, and stripped topsoil are listed in 
Table 1. Under the T1 treatment, iron tailings were placed atop a 20-cm cinnamon soil (a) layer overlying the 
gravel layer. Under treatments T2, T3, T4, T5 and T6, a 20-cm or 30-cm iron tailings layer was placed atop the 
gravel layer to replace red clay as the water-retention layer, and topsoil layers of different types and thicknesses 
were employed. Under the T7, T8, and T9 treatments, a 20-cm red clay layer was placed atop the gravel layer, 

Figure 2.   Photos of the farmland construction procedure (Note: ①, ②, ③, and ④ indicate the placement 
sequence of the structural materials; This image was drawn by the first author).

Figure 3.   Schematic diagram of the soil profiles under the different farmland construction treatments.
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followed by topsoil, representing the normal farmland soil profile in the study area. Under treatment T10, a 20-cm 
red clay layer was placed atop the gravel layer, and iron tailings and topsoil were then emplaced layer by layer 
atop the red clay layer. In addition, the previous research results of our research group regarding the application 
of a 5-cm mixed iron tailings-topsoil layer to improve the soil quality were applied to treatments T1, T4 and T8 
to further verify these findings.

Planting and management.  After reclamation, each plot was covered with mulch, and maize (Zea mays 
L., i.e., Gaoke 985) was planted in each experimental plot according to the national guidelines for maize culti-
vation. The planting density was 60,000 plants per hectare. The seeding depth ranged from approximately 3 to 
5 cm. Before seeding, 450 kg of stable composite fertilizer (the effective content of N-P2O5-K2O = 25-11-12%) 
was applied per hectare as base fertilizer. All the fertilizer was first evenly broadcast across the surface and then 
incorporated with a rotary tiller. Drip irrigation pipes were laid in the experimental plots, and supplementary 
irrigation was performed via drip irrigation.

Soil sampling and analysis.  The main purpose of this paper was to explore the feasibility of the applica-
tion of large amounts of iron tailings to construct farmland, thereby improving regional medium- and low-yield 
fields and increasing the crop yield. Considering the semiarid climate conditions in western Liaoning Province, 
the bulk density, field capacity, soil water content, soil electrical conductivity (EC), and crop growth and yield 
under the different treatments were monitored. The bulk density reflects the effect of iron tailings on improving 
the local clayey soil texture. The feasibility of replacing soil with iron tailings as a water-retaining layer to obtain 
reclaimed soil was reflected by soil moisture indicators, and the feasibility of using iron tailings to increase crop 
yields was characterized by crop growth and yield indicators.

Soil and crop samples were collected in July 2020 and October 2020, and during each sampling, the ten 
experimental plots were sampled. Samples were obtained from the topsoil layer (0–20 cm). Both the bulk den-
sity and field capacity were measured via the cutting ring method45. Both the soil water content and soil EC 
were measured with a moisture teller (PICO-BT 0809)46–48. The plant height and stem thickness of maize were 
measured once every 5 days during the growing period using a standard meter and Vernier caliper, respectively. 
The dry weight and maize yield were measured at harvest to determine the grain yield of 30 randomly selected 
plants in each experimental plot, which was converted into the per hectare yield.

Data analysis.  The experimental data were first processed in Excel 2016 (Microsoft Corp., Redmond, WA, 
USA), and the STDEVP function in Excel 2016 was used to calculate the standard deviation (SD) of each treat-
ment. Then, the experimental data were analyzed using statistical software SPSS 25 (SPSS Inc., Chicago, IL, 
USA)49. One-way analysis of variance (ANOVA) followed by Tukey’s test (P < 0.05) was used to calculate the 
significant difference in soil physical indicators among the different treatments. Origin 2017 was used to graph 
and present the data.

Results
Soil properties.  Bulk density.  The bulk density under the different treatments is shown in Fig. 4. The bulk 
density significantly differed among the different types of topsoil, but no significant differences in the remaining 
indices were noted among the various topsoil types (P < 0.05). The bulk density ranged from 1.34 to 1.40 g·cm−3 
and was ranked as T8 < T4 < T1 < T5 < T2 < T9 < T6 < T10 < T3 < T7. Among all treatments, a 5-cm mixed iron 
tailings-topsoil layer was employed under T1, T4 and T8, and the bulk density was lower than that under the 
other treatments. The topsoil under the T2, T5, T6, T8 and T10 treatments was cinnamon soil (a), and the bulk 
density was lower than that under the T3 and T7 treatments, whose topsoil comprised cinnamon soil (b). The 
bulk density under T8 was 5.50% lower than that under T7, and the value under T4 was 3.08% lower than that 
under T2. Mixing iron tailings into topsoil could significantly reduce the bulk density. The bulk density of cin-
namon soil (a) was lower than that of cinnamon soil (b).

Field capacity.  The field capacity data are shown in Fig. 5, and the field capacity significantly differed among 
the different treatments (P < 0.05). Generally, the field capacity ranged from 22.61% to 34.77% and was ranked 
as T1 < T2 < T7 < T4 < T10 < T5 < T9 < T6 < T8 < T3. T1 exhibited the smallest soil thickness (only 25 cm) and the 
lowest field capacity. The field capacity under T4 was 12.59% higher than that under T2, and the field capac-

Table 1.   Essential characteristics of the practical materials.

Practical 
materials

Mechanical composition (%)

Texture
Bulk density 
(g·cm−3) Porosity (%)

Moisture 
content (%) EC (S·m−1)

Organic carbon 
(g·kg−1)

Clay 
(< 0.002 mm)

Silt 
(0.05 ~ 0.002 mm)

Sand 
(> 0.05 mm)

Red clay 49.55 24.98 25.47 Clay 1.49 59.51 58.5 0.36 1.71

Iron tailings 0.23 31.28 68.42 Sandy loam 1.53 44.2 8.9 0.17 6.09

Cinnamon 
soil (a) 32.88 47.82 19.30 Silty clay loam 1.39 53.3 17.1 0.27 16.16

Cinnamon soil 
(b) 31.73 49.19 19.08 Silty clay loam 1.41 53.9 17.5 0.25 15.88
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ity under T8 was 18.14% higher than that under T7. The topsoil under T3 was cinnamon soil (b), and the field 
capacity was 22.65% higher than that under T2, whose topsoil comprised cinnamon soil (a). The field capacity 
under T3 was 19.20% higher than that under T7, and the value under T5 was 2.26% higher than that under T9. 
Compared to T2, the field capacities of T6, T5 and T10 were significantly higher, by 21.54%, 19.72% and 15.52%, 
respectively. Mixing iron tailings into topsoil could improve the field capacity. The field capacity of cinnamon 
soil (b) was higher than that of cinnamon soil (a). The field capacity obtained by placing iron tailings below top-
soil was higher than that obtained by placing red clay below topsoil. Increasing the soil thickness could improve 
the field capacity.

Soil water content.  The soil water content under the different treatments during maize growth was monitored 
for one month, and the results are shown in Fig. 6. Overall, the soil water content revealed fluctuating changes. 
At the first stage (Days 1 to 11), all treatments exhibited a high soil water content, and the trend gradually 
increased. At the second stage (Days 11 to 18), the soil water content under all treatments basically reached the 
highest value and tended to remain stable. In addition, the duration of the second stage was shorter than that of 
the first stage. At the third stage (Days 18 to 27), the soil water content under all treatments gradually decreased 
and reached a minimum on Day 27. At the stable stage, the soil water content was ranked as T8 < T4 < T1 < T7 
< T3 < T10 < T2 < T6 < T9 < T5. The soil water content under T5 was 11.53% higher than that under T9, and the 
value under T3 was almost the same as that under T7. The soil water content under T6 was 0.65% higher than 
that under T2, which reflected that the thickness of the iron tailings layer could affect the topsoil water content.

Figure 4.   Bulk density under the different treatments (the different letters denote significant differences at the 
0.05 level).

Figure 5.   Field capacity under the different treatments (the different letters denote significant differences at the 
0.05 level).
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Soil EC.  A moisture teller was used to monitor the soil EC under each treatment during maize growth for 
one month, and the results are shown in Fig. 7. The soil EC of the topsoil layer under each treatment indicated 
an overall fluctuating trend with the value increasing before Day 21 and then decreasing thereafter. Similar to 
the soil water content, the soil EC under T8 was the lowest at each time, with a value ranging from 0.20 to 0.30 
S·m−1, followed by T4, with values ranging from 0.24 to 0.40 S m−1. Overall, the soil EC was ranked as T8 < T4 
< T10 < T1 < T3 < T9 < T6 < T2 < T5 < T7. Normal growth and development of crops require soil nonsalinization, 
in which the soil EC value should be lower than 2 S m−144. The maximum EC of the topsoil under all treatments 
was 0.46 S m−1, which is far lower than the threshold limit. Therefore, the soil EC under each treatment indicated 
suitable growth and development conditions for crops.

Crop growth and yield.  Plant height.  The plant height of maize was measured for one month during the 
maize growing period. As shown in Fig. 8, the plant height of maize revealed an obvious upward trend during 
the monitoring period. Overall, the plant height under all treatments was ranked as T7 < T9 < T5 < T6 < T10 < T
2 < T8 < T1 < T3 < T4. The plant height under T4 was 38.28% greater than that under T2, and the value under T8 
was 94.35% larger than that under T7. The plant height under T3 was 136.82% greater than that under T7, and 
the value under T5 was 9.13% larger than that under T9. Compared to T2, the plant heights under T6, T5 and 
T10 were significantly smaller, by 49.91%, 52.83% and 39.11%, respectively.

Stem thickness.  The stem thickness of maize was determined while measuring the plant height, and the results 
are shown in Fig. 9. The stem thickness of maize also exhibited an obvious upward trend during the monitoring 
period. Based on the obtained data, the plant height under all treatments was ranked as T7 < T9 < T5 < T6 < T10 
< T2 < T3 < T1 < T8 < T4, and the variation trend was consistent with that of the plant height. The stem thickness 

Figure 6.   Soil water content under the different treatments (I, II, and III indicate the three stages of soil water 
content change).

Figure 7.   Soil EC under the different treatments.
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under T4 was 13.37% larger than that under T2, and that under T8 was 36.78% larger than that under T7. The 
stem thickness under T3 was 32.02% larger than that under T7, and the value under T5 was 9.56% larger than 
that under T9. Compared to T2, the stem thicknesses under T6, T5 and T10 were significantly smaller, by 4.91%, 
2.18% and 0.91%, respectively.

Dry weight.  The dry weight data of maize are shown in Fig. 10, and the dry weight significantly differed among 
the different treatments (P < 0.05). Generally, the dry weight was ranked as T1 < T5 < T6 < T3 < T9 < T7 < T2 < T4 
< T10 < T8. T1 achieved the minimum dry weight (only 51.67 g per plant). The dry weight under T4 was 17.03% 
higher than that under T2, and the value under T8 was 46.81% higher than that under T7. The dry weight under 
T3 was 20.51% lower than that under T7, and the value under T5 was 20.0% lower than that under T9. Com-
pared to T2, the dry weights under T6 and T5 were all 34.29% lower, but that under T10 was 19.15% higher. 
The application of a mixed 5-cm iron tailings-topsoil layer could facilitate dry material accumulation in crops. 
Placing red clay below topsoil was more conducive to dry matter accumulation than was placing iron tailings.

Crop yields.  Maize was harvested in October 2020. The crop yields under each treatment are shown in Fig. 11. 
Overall, the maize yields under all treatments were higher than 7, 000 kg·ha−1 and indicated no significant dif-
ferences among the different treatments (P < 0.05), while the crop yields could be ranked as T1 < T2 < T6 < T4 < 
T7 < T10 < T5 < T9 < T8 < T3. T3 attained the maximum yield (9,793.92 kg·ha−1). The yield under T4 was 19.24% 
higher than that under T2, and the value under T8 was 7.32% higher than that under T7. The yield under T3 was 
12.69% higher than that under T7, and the crop yield under T5 was basically the same as that under T9. Com-
pared to the T2 treatment, the yields under the T6, T5 and T10 treatments were all higher, by 17.66%, 26.72% 
and 25.83%, respectively.

Discussion
Feasibility of farmland construction with iron tailings and its influence mechanism on soil 
properties and crops.  The theory of soil-forming factors posits that soil is the product of multiple natural 
factors, such as biology, climate, parent material, topography, and time, as well as human activities50. In this 

Figure 8.   Plant height under the different treatments.

Figure 9.   Stem thickness under the different treatments.
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study, based on the theory of soil-forming factors and reconstruction of soil parent material, different farmland 
soil profiles were constructed using solid waste materials (waste rocks, gravel particles, soil stripping materials, 
and iron tailings) generated during mining as soil substitute materials. The entire reclamation project was com-
pleted in two months, and maize was planted in the same year. The maize growth level was basically consistent 
with that in local normal farmland, and there was no contamination in the reclaimed farmland plots, which 
indicate the feasibility of constructing farmland involving large amounts of iron tailings.

Agriculture in the semiarid area of western Liaoning is supported by natural rainfall, and atmospheric pre-
cipitation is the main source of soil moisture51. Improving the soil storage capacity above that attributable to 
atmospheric precipitation is the key to agricultural production in western Liaoning. Due to the clayey soil texture 
of native soil in western Liaoning, its water retention capacity is poor. Therefore, the main purpose of using iron 
tailings to reclaim farmland is to obtain a certain thickness of the iron tailings layer below topsoil as a water-
retaining layer in farmland and improve the water-retaining capacity. The field capacity is frequently used to 
measure the water retention capacity of soil, which exhibits significance in guiding agricultural production and 
irrigation52,53. The results of the field capacity and soil water content in the experiment revealed that the field 
capacity under all treatments entailing the placement of iron tailings below topsoil was higher than that under the 
treatments entailing the placement of red clay below topsoil. In addition, increasing the filling thickness of iron 
tailings could effectively improve the field capacity. The reason is that the specific surface area is closely related 
to the field capacity, and the higher the specific surface area is, the greater the ability to accept water molecules 
and the greater the ability to conserve water53,54. Iron tailings are mostly irregular granular materials55, and their 
specific surface area is higher than that of clay particles, resulting in an increase in the field capacity. With increas-
ing filling thickness of iron tailings, the water retention capacity increased. Regarding the soil water content, 
variation may be affected by regional rainfall. At the early stage of monitoring (1st–18th days), i.e., in early and 
middle July, regional rainfall occurred frequently, and the soil water content increased and stabilized. However, 
during the late monitoring period (18th–27th days), i.e., in late July, regional rainfall occurred less frequently, 
and evaporation was high, resulting in a significant decrease in the soil water content, which eventually stabilized. 

Figure 10.   Dry weight under the different treatments (the different letters denote significant differences at the 
0.05 level).

Figure 11.   Crop yields under the different treatments (the different letters denote significant differences at the 
0.05 level).
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Moreover, the soil water content obtained by placing iron tailings below topsoil was equivalent to or even higher 
than that obtained by placing red clay. Although the moisture content in regional dry discharge iron tailings 
is low, only 8.9%, due to the satisfactory water retention capacity of its irregular particles, iron tailings could 
effectively store rainfall and provide water for topsoil during regional droughts, so that the moisture content in 
reclaimed soil was higher than that in regional normal farmland soil. The above fully demonstrates that when a 
large amount of iron tailings is used to construct farmland in the semiarid area of western Liaoning, placing an 
iron tailings layer of certain thickness instead of soil below topsoil as a water-retaining layer could represent a 
suitable way to effectively improve the moisture characteristics of reclaimed soil.

An increase in soil moisture may lead to an increase in soil salinity. The processes of salt transport with water 
and salt removal by water vividly describe the influence of water on soil salinity movement56. The placement 
of iron tailings below the topsoil layer as a water-retaining layer may increase the content of water-soluble salts 
in soil and limit seed germination and crop growth when improving soil moisture in the region. It has been 
widely reported that the soil EC is an index for soil water-soluble salt determination, which is an important soil 
property44. The dynamic monitoring results of the soil EC indicated that EC exhibited an overall upward trend 
from Days 1 to 21 but gradually decreased thereafter. The whole process is consistent with the change in the 
soil water content. The soil EC under the treatments involving the placement of iron tailings below topsoil was 
higher than that under the treatments involving the placement of red clay below topsoil during the monitoring 
period, indicating that placing iron tailings below topsoil could increase the soil EC. The EC of iron tailings is 
approximately 30% lower than that of topsoil because the moisture content in iron tailings (8.9%) is lower than 
that in topsoil (approximately 48%). However, placing iron tailings below topsoil could increase the topsoil EC 
because when iron tailings are used as a water-retaining layer, the resulting moisture content is higher than that 
in regional native soil, and when there occurs high evaporation in the region and a lack of rainfall, the iron tail-
ings layer could provide more moisture for topsoil so that more salt could become concentrated in the topsoil 
layer. Normal growth and development of crops require soil nonsalinization, in which the soil EC value should 
be lower than 2 S·m−144. Although placing iron tailings below topsoil could increase the soil EC, the dynamic 
monitoring results indicated that the maximum soil EC under each iron tailings filling structure treatment was 
0.43 S m−1, which is far below the salt tolerance limit of crop growth. Therefore, the use of large amounts of iron 
tailings instead of soil for filling below topsoil as a water-retaining layer will not result in salt injury to crops, 
which further proves that the use of large amounts of iron tailings in farmland construction is feasible.

Crop growth and yield are important indicators to determine whether the performance of reconstructed 
farmland is satisfactory. Soil drought and water shortages are important factors restricting crop growth and 
leading to low yields in western Liaoning57. Soil drought reduces the water use efficiency, destroys photosynthetic 
organs, hinders crop metabolism and root growth, and directly affects the crop chlorophyll content58. Maize is 
the dominant crop in western Liaoning, its roots are mainly concentrated in the 0–40 cm soil layer, and the soil 
moisture content in the root layer directly affects crop root development59. The results demonstrated that the plant 
height and stem thickness of maize under the treatments involving the placement of iron tailings below topsoil 
were higher than those under the treatments involving the placement of red clay below topsoil, which suggested 
that the use of iron tailings instead of soil below topsoil could effectively promote maize growth. Compared to 
normal farmland, the plant height of maize grown in iron tailings-filled farmland was 9.13% greater, and the 
stem thickness was 9.56% larger at maturity. The reason is that the water-retaining layer comprising iron tail-
ings could effectively improve the soil water content, thereby enhancing the water utilization rate so that maize 
would not lack moisture during growth and could grow fast. In terms of the maize yield, the value under T3 was 
12.69% higher than that under T7, and the maize yields under T5 and T9 were basically the same. The maize 
yield in normal farmland in western Liaoning is approximately 9,000 kg·ha−160. The yields under T3, T5 and T10 
all exceeded 9,000 kg·ha−1, which is higher than that in local normal farmland, indicating that the maize yield in 
farmland constructed with iron tailings was equivalent to or even better than that in regional normal farmland 
during the year of construction. compared to T2 (20-cm iron tailings layer below a 20-cm topsoil layer), the yields 
under T5 (20-cm iron tailings layer below a 30-cm topsoil layer) and T6 (30-cm iron tailings layer below a 20-cm 
topsoil layer) were 26.72% and 17.66% higher, respectively, indicating that the increase in the thickness of the 
constructing layer could improve the maize yield to a certain extent. This may occur because the increase in the 
thickness of the constructing layer could effectively improve the field capacity and moisture content, effectively 
enhance the growth of maize, and provide the moisture needed for the formation of maize grains during the 
grain-filling period, thereby increasing the maize yield. Thus, from the perspective of crop growth and yield, 
it is feasible to use a large amount of iron tailings instead of soil to construct a farmland water-retaining layer, 
which could promote maize growth and effectively improve the maize yield.

Influence mechanism of farmland topsoil mixed with iron tailings on the soil properties and 
crops.  Our research group previously proposed that the application of a 5-cm iron tailings layer atop topsoil 
in farmland could improve the soil texture and soil moisture characteristics while increasing the soil thickness. 
Therefore, we applied this technique in the process of using a large amount of iron tailings to construct farmland 
for further verification. The soil texture of the original farmland soil in western Liaoning is dense, belonging to 
silty clay loam, which seriously affects crop growth60. Mixing sand in clay soil is an effective way to improve the 
clayey soil texture61, and as expected, the results in this study supported this finding. The bulk density is one of 
the important indices reflecting the soil texture, which is closely related to soil and agricultural ecosystems and 
notably influences soil thermal, hydraulic and mechanical properties62,63. Our results indicated that the bulk 
density under the treatment with a 5-cm mixed iron tailings-topsoil layer was 3.08% lower than that under the 
treatment with no iron tailings mixed into topsoil, which indicates that the application of a 5-cm iron tailings 
layer atop topsoil could effectively reduce the soil bulk density. The reason is that although the bulk density of 
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iron tailings (1.53 g·cm−3) is higher than that of regional stripped topsoil (1.39 or 1.41 g·cm−3) (Table 1), iron 
tailings comprise irregular particles, and the sand content is high. After application to topsoil, iron tailings are 
fully mixed with the topsoil via tillage, which effectively alters the mechanical composition of the soil layer and 
thus changes the soil porosity. The bulk density is usually related to the soil porosity64. An increase in the sand 
content could yield a loose and porous soil environment and increase the soil porosity, thereby reducing the bulk 
density and effectively improving the texture of the native clayey soil.

Changes in the soil texture could lead to changes in soil hydrothermal conditions, thereby affecting the soil 
quality and crop growth and yield. In our study, the field capacity, soil water content, maize plant height, stem 
thickness and yield obtained by placing a 5-cm iron tailings layer atop topsoil were all better than those obtained 
by not mixing iron tailings into topsoil. The reason is that the application of iron tailings to topsoil followed by 
plowing and mixing could increase the soil porosity and decrease the bulk density. Moreover, the bulk density 
and soil porosity greatly influence the soil water content65. An increase in the soil porosity could enhance the 
distribution of soil pores, expand the soil storage space, store more water in soil pores, and effectively improve the 
soil water holding capacity. Although the application of a 5-cm iron tailings layer atop topsoil increased the soil 
moisture content, resulting in an increase in the soil EC to a certain extent, its value was far below the maximum 
salt tolerance limit of crop growth and would not result in salt injury to crops. Soil texture improvement and 
soil moisture content increase could effectively promote maize growth, and the plant height and stem thickness 
of maize during the growth period were 9.13% and 9.56% greater, respectively, than those under the treatments 
without iron tailings application. At the maize grain-filling stage, the increase in soil moisture was beneficial to 
the formation of maize grains, and the yield of maize was 12.69% higher than that under the treatments without 
iron tailings application. These results are also consistent with the findings of Yang38 and Ji et al.66, who reported 
that applying iron tailings to topsoil significantly promoted crop growth. Other studies have also reported that 
restoration efforts in arid ecosystems should focus on increasing the sand content in soils near the surface to 
reduce the evaporative water loss and improve the soil quality and crop health67.

Benefits and limitations of constructing farmland with large amounts of iron tailings.  The 
selection of a reasonable construction scheme based on experiments using solid waste materials produced in 
mining processes as soil substitute materials is of great significance for land reclamation in mining areas with 
scarce soil resources. First, this allows the problem of poor vegetation growth due to an insufficient thickness of 
the overlying soil in these areas to be solved. Second, the cost to mining enterprises of purchasing reclaimed soil 
is greatly reduced, as soil reconstruction using substitute materials can save more than 50% of the available soil; 
for example, assuming a soil cover thickness of 30 cm, the total amount of soil needed is less than 1500 m3 per 
hectare, and if the local price of topsoil is approximately 30 CNY ·m−3, then, in this case, the reclamation invest-
ment cost can be reduced by 45,000 CNY per hectare50. While saving many guest soil sources, secondary land 
damage is reduced. Finally, the problem of the disposal of solid waste generated in the mining process can be 
solved. Agricultural resource utilization of iron tailings, used for medium- and low-yield field improvement and 
reclamation, not only consumes large amounts of beneficiation iron tailings accumulated in inventories but also 
prevents land occupation and contamination problems attributed to iron tailings accumulation and improves 
medium- and low-yield fields, thereby greatly protecting soil resources. It can thus be observed that using solid 
waste as a soil substitute material can provide certain economic and ecological benefits.

The study preliminarily analyzed the physical and hydrological characteristics of soil under different construc-
tion measures in experimental plots using iron tailings to replace soil for farmland construction and revealed 
that it was feasible to use iron ore waste materials such as iron tailings and waste rocks for soil and farmland 
construction enhancement. Since the experimental demonstration was only conducted for one year, the relevant 
experimental observation data are insufficient. In the future, it is necessary to establish long-term experimental 
monitoring campaigns, further study the influence of various factors on the soil structure, continue to optimize 
the best structural measures, improve the application effect of this technology, and promote its application 
accordingly.

Iron tailings should be popularized and applied according to local conditions. At present, most iron tailings 
are used as fertilizer substrates, and their consumption is low. The use of iron tailings to improve barren soil and 
construct farmland prevents the problem of passive tailings pond reclamation due to the notable accumulation 
of mineral processing tailings in the past, which is a suitable method for resource utilization of iron tailings and 
can provide broad application prospects. However, due to the limitations of the obtained monitoring data and 
other aspects, this study only preliminarily verified the soil characteristics and effects of the application level of 
iron tailings in Jianping County, and more comprehensive research and analysis and evaluation studies should be 
conducted in the future. In addition, mining waste rock and soil fill pit and reclamation projects are underway, 
which can improve the entire iron ore waste agricultural resource utilization technique, forming a complete set 
of technical systems.

Conclusions
Aiming at the problem of iron ore waste resource utilization and lack of soil for soil reconstruction, we proposed 
the technology of using a large amount of iron tailings to reconstruct reclaimed farmland soil. The experimental 
application of various treatments to newly reclaimed farmland revealed that iron tailings could be considered 
effective soil substitute materials to construct farmland and improve the soil texture and water content. Moreover, 
the maize growth in the experimental plots was normal, and the crop yields were close to or even higher than 
those in local normal farmland. Iron tailings could be recommended as a feasible and harmless material for 
farmland construction because of the advantages in improving the soil quality and crop yield.
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For relatively barren local topsoil layers, the application of a 5-cm mixed iron tailings-topsoil layer could 
effectively improve the textural characteristics of clayey soil in western Liaoning, increase the soil water capac-
ity, and enhance soil moisture, atmosphere, and thermal conditions, which was conducive to maize growth and 
achieved the purpose of generating a high yield.

Given the semiarid climatic conditions in western Liaoning, solid waste resulting from iron ore mining could 
be used as farmland construction material to establish a water-retaining layer below topsoil, and satisfactory 
results could be obtained. At the same time, the accumulated waste rocks, topsoil stripping materials, iron tail-
ings, and other waste materials could be consumed, resulting in higher economic and ecological benefits, which 
represents a suitable way for agricultural resource utilization of iron ore waste materials.

Data availability
All data generated or analysed during this study are included in this published article.
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