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Abstract: The state of health (SOH) prediction of lithium-ion batteries (LIBs) is of crucial importance
for the normal operation of the battery system. In this paper, a new method for cycle life and full life
cycle capacity prediction is proposed, which combines the early discharge characteristics with the
neural Gaussian process (NGP) model. The cycle data sets of commercial LiFePO4(LFP)/graphite
cells generated under different operating conditions are analyzed, and the power characteristic P
is extracted from the voltage and current curves of the early cycles. A Pearson correlation analysis
shows that there is a strong correlation between P and cycle life. Our model achieves 8.8% test error
for predicting cycle life using degradation data for the 20th to 110th cycles. Based on the predicted
cycle life, capacity degradation curves for the whole life cycle of the cells are predicted. In addition,
the NGP method, combined with power characteristics, is compared with other classical methods
for predicting the remaining useful life (RUL) of LIBs. The results demonstrate that the proposed
prediction method of cycle life and capacity has better battery life and capacity prediction. This work
highlights the use of early discharge characteristics to predict battery performance, and shows the
application prospect in accelerating the development of electrode materials and optimizing battery
management systems (BMS).

Keywords: batteries; life prediction; neural Gaussian process; early discharge characteristics

1. Introduction

In recent years, lithium-ion batteries (LIBs) have attracted widespread attention due
to the advantages of their high energy density, low self-discharge characteristics, and
absence of memory effects [1–3]. They have become the preferred energy storage systems
for many engineering and industrial applications, such as portable devices, automobiles,
and aerospace systems [4–6]. However, the performance of LIBs will deteriorate with
the decrease of capacity, which may lead to equipment and system degraded capability,
failures, or even catastrophic loss [7].

State of health (SOH) is an index used to evaluate the aging degree of cells, which in-
cludes capacity fade and cycle life prediction. It provides very useful information to predict
when a battery should be replaced. Battery performance is usually monitored by measuring
battery voltage, current, temperature, capacity, impedance, and other parameters through
relevant experiments. Various corresponding methods can be used to evaluate the battery
health status based on the parameters mentioned above [8]. Cycle life refers to the number
of cycles in which available capacity decays to 80% of the rated capacity of the battery [9].
Therefore, it is vital to achieve an accurate and reliable prediction of SOH of LIBs, which is
a key approach of battery management system (BMS) in scientific research and practical
application [10]. Meanwhile, the accurate prediction model of capacity decay and cycle
life statistics could significantly accelerate the development and commercialization of LIBs,
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such as accelerating the development of novel electrode materials with larger capacities
and longer lives by material design and evaluating the cycle life of batteries [11,12].

Currently, model-based and data-driven methods are the most common methods used
to predict cycle life and capacity degradation [13]. Model-based methods use mathematical
models which are defined according to the physical degradation mechanism or reasonable
experience of the battery, to capture the law of battery degradation [9]. Salkind et al. [14]
used fuzzy logic mathematics to analyze data obtained by Electrochemical Impedance
Spectroscopy (EIS) and coulomb counting techniques, developing a practical method for
the state of charge (SOC) and SOH prediction of batteries. Eddahech et al. [15] predicted the
battery life based a single parameter identified from EIS tests. The authors of [16] developed
a battery nonlinearities model using circuit parameters such as resistors, capacitors, and
inductors that were based on a modified Randles circuit model to predict the capacity
fade. However, the accuracy of the EIS measurements is impacted by the noises caused
by the other integrated components of an online system [17]. Equivalent circuit models
with a large number of unknown parameters capture all key behaviors of battery cells,
and are complex and diverse [18]. Therefore, on the basis of a reasonable battery capacity
attenuation definition, many researchers presented life prediction models combined with
advanced filtering technology. Xing et al. [17] proposed an empirical exponential and
a polynomial regression model to track the degradation trend of cells over their cycle
life based on experimental data analysis, and used a particle filtering approach to adjust
model parameters online. In Ref. [19], a novel model was developed using an unscented
Kalman filter with relevance vector regression, and applied to the cycle life and short-
term capacity prediction of batteries. Su et al. [20] developed a new prognostic method
for determining battery cycle life based on the interacting multiple model particle filter
(IMMPF). Their method, that applies the IMMPF to different state equations, was used for
multiple capacity models of LIBs. Model-based methods have made substantial progress,
and their performance has been verified by different experiments; however, the accuracy
and robustness of those model are limited by the accuracy of the battery degradation
physical model [21].

Simultaneously, cycle life prediction based on data-driven methods has also been
widely studied. The data-driven methods can directly capture the degradation evolution
law of LIBs without using a complex mathematical model to define the degradation
mechanisms of LIBs [22], which makes cycle life prediction methods based on statistical
and machine learning techniques attractive. The authors of [22] put forward a Naive Bayes
model to predict the cycle life of cells under different operating conditions. In Ref. [23],
the correlation vector derived from the relevance vector machine (RVM), which can reflect
the capacity degradation trajectory, was used to predict the cycle life of LIBs. Instead of
using capacity to predict SOH, many researchers have constructed battery health indicators
(HIs) to improve estimation accuracy and efficiency, such as equal interval discharge
voltage difference [24], average voltage attenuation [25], and discharge voltage sampling
entropy [26]. Patil et al. [27] presented a real-time cycle life estimation method based
on a support vector machine. In this method, the key features were extracted from the
voltage and temperature distribution, and the cycle data of LIBs under different operating
conditions were analyzed. Liu et al. [24] used HIs, which were extracted based on the
charging and discharging voltage, current, and temperature, to analyze the degradation
of online LIBs. The accuracy and stability of the proposed method was further improved
by using an optimized RVM algorithm. In Ref. [21], the SOC was estimated using a
Gaussian process (GP) regression framework and HIs established by voltage, current, and
temperature. This method obtained the prediction probability distribution of SOC, which
removed the restrictions of the previous methods, in which they could only give the point
estimation of SOC. In Ref. [28], a prediction model combining parameter optimization
and method hybrid Gaussian process function regression was proposed to achieve high
precision predictions. In addition to HIs, neural network techniques have also been used
to predict the SOH of lithium-ion batteries. Wu et al. [29] used the battery terminal voltage
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curve to describe the remaining useful life (RUL) of LIBs, and proposed a LIBs cycle life
estimation method based on a feedforward neural network and the importance sampling.
In Ref. [30], a deep neural network was used to predict the SOH and RUL of batteries. In
Ref. [31], a SOC estimation method was introduced through a combination of a radial basis
function neural network (RBFNN), an orthogonal least-squares algorithm, and an adaptive
genetic algorithm. The method was validated using LiFePO4 (LFP) batteries under several
different discharging conditions. Currently, there are few reports on the use of early data
to predict cycle life. Recently, Severson et al. [32] proposed a prediction model combining
data generation and a data-driven model, which used the discharge voltage curve of the
early cycles to predict and classify the cycle life of LIBs. Their research showed the prospect
of accurately predicting battery life using early discharge characteristics.

In this study, we explore the possibility of extracting battery health indicators from
early discharge characteristics to predict SOH. The proposed methodology is combined
with the Neural Gaussian Process (NGP) model [33–35], which considers battery degrada-
tion under various operating conditions. First, based on a correlation analysis, we predicted
that the average power that decays in the early cycles of batteries is related to the cycle life.
Afterwards, the cycle life of LIBs is predicted using the established model. The proposed
method is then compared with other cycle life and capacity prediction methods.

The rest of the paper is organized as follows. The battery data preparation is presented
in Section 2. The physical feature extraction is shown in Section 3. In Section 4, the
methodology is introduced. The results and description are discussed in Section 5. Finally,
the conclusion is summarized in Section 6.

2. Battery Data Preparation

We used the degradation data set of 124 commercial LFP/graphite cells (A123 Systems,
model APR18650-M1A, 1.1 Ah nominal capacity, failure capacity of 0.88 Ah) generated
by Severson et al. [32]. In the experiment, those cells were cycled in a forced convection
temperature chamber set to 30 ◦C, and the detection parameter data sets were recorded
by the Arbin LBT potentiostat sensor. Parameters such as voltage, capacity, current,
temperature, and internal resistance were continuously measured during the cycles. The
data set was generated by three batches of batteries through tests, of which the first
batch contained 41 batteries, the second batch contained 43 batteries, and the third batch
contained 40 batteries. All cells in this dataset were charged with a two-step fast-charging
policy. This is the largest publicly available dataset for nominally the same commercial
LIBs cycled under controlled conditions. We studied the performance decline of LIBs
with multiple degradation mechanisms due to the manufacturing processes and operating
conditions of the dataset. Meanwhile, fast charging conditions made it possible to estimate
battery health and optimize battery performance under extremely fast conditions, and
accelerate the commercialization of fast-charging lithium batteries.

Figure 1 shows the functional relationship between the observed discharge capacity
and the number of cycles in the whole life cycle. The capacity of the batteries decay
slowly during the early cycles, while rapidly decaying in the later stage of the cycles. The
degradation tracks of the batteries are interlaced with each other. This indicates that there
is a complex, nonlinear relationship between capacity and cycle number, and it is difficult
to choose an accurate aging model as the basis of battery dataset life prediction [36]. In
order to overcome these difficulties, we combined key physical characteristics, which were
constructed by the early discharge characteristics and reflected the state of health of LIBs,
with a data-driven approach to predict the cycle life of cells.
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Figure 1. The observed discharge capacity curves; the color of the curves changes along the spectrum
according to the cycle life.

3. Physical Feature Extraction

In previous reports, researchers usually used measurement parameters such as voltage,
current, and temperature to construct physical properties to predict battery life [24,27,29].
In this paper, in order to explore the relationship between early discharge characteristics
and cycle life, we use discharge voltage U(t), discharge capacity Q(t), and discharge time
t in every cycle to propose the average power characteristic P, which is a function of cycle
number. The power characteristic Pjk of a battery per cycle is defined as

Pjk =
n

∑
i=2

U(ti)(Q(ti)−Q(ti−1))/(tn − t1) (1)

where j represents the jth battery, and k stands for the kth cycle. For the kth cycle of the
jth cell, U(ti) is the discharge voltage of the cells at time ti, where i is a moment in a
discharge cycle i = 2, 3, . . . , n. Q(ti) and Q(ti−1) are respectively the discharge capacity of
the batteries at time ti and time ti−1 in the cycle. Figure 2a is P attenuation curve of the
cells in the early cycles. Since the capacity increased slightly in the early discharge stage, in
order to study the relationship between the characteristics of the decay phase and cycle life,
we use data from the 20th to 110th cycles. P shows a fluctuating attenuation trend, and its
attenuation is very small from the whole life cycle. We use the variance statistics to convert
the fluctuation attenuation of the average power characteristic Pj of each battery from the
20th to 110th cycles into a scalar PDj to establish a corresponding relationship with the
cycle life Lj. The relationship between PD and cycle life L is quantitatively analyzed by the
Pearson rank correlation coefficients. It is expressed as,

ρPD ,L =
E(PDL)− E(PD)E(L)√

E
(

P2
D
)
− (E(PD))

2
√

E(L2)− (E(L))2
(2)
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Figure 2. (a) P decayed slowly during the 20th to 110th cycles, in which the abrupt data caused by
the recording error is deleted, and (b) the correlation analysis of the logarithm of the variance of P
and the logarithm of the cycle life.

Surprisingly, Figure 2b shows a significant correlation between the variance of char-
acteristic P and cycle life of LIBs (ρPD ,L = −0.936). Compared with previous studies, the
correlation coefficient of power characteristic is higher than that of the voltage characteris-
tic using the 110th cycle and the 20th cycle (ρ∆Q110−20(V) = −0.932, where capacity Q is a
function of voltage, and ∆Q110−20(V) = Q110(V)−Q20(V)) [32].
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4. Methodology
4.1. Neural Gaussian Process Model

Although P is strongly correlated with the cycle life when considering the nonlinear
relationship between cycle number and the discharge capacity, the linear model fails to
predict the capacity decay. Therefore, we built a prediction model based on characteristic P
and NGP.

NGP is a machine learning method that combines neural network and GP. It makes
use of the advantages of the neural network function approximation to solve the difficulty
of selecting the kernel function of Gaussian process through experience. This allows the
model flexibility to carry out nonlinear simulation to achieve target prediction.

Figure 3 illustrates the schematic structure of the NGP. In order to learn and optimize
the parameters of the model and generate target prediction, the model divides the data
set (x1:n, y1:n) into a training set (x1:m, y1:m), 1 < m < n and test set (xm:n, ym:n), where
x1:n(x1, . . . , xn), y1:n(y1, . . . , yn). In particular, in the training and test stages of the model,
the data consists of the context set (xC, yC) and the target set (xT , yT). In the training
phase, the context set (xC, yC) and the target set (xT , yT) are derived from the training set
(x1:m, y1:m). In the test phase, the context set (xC, yC) is the training set (x1:m, y1:m) and the
target set (xT , yT) is the entire data set (x1:n, y1:n). The marginal joint distribution of the
objective function F(xT) is defined as,

p(ŷT |xT , xC, yC) =
∫

p(ŷT |xT , k∗, zC)p(zC|sC)dzC (3)

where ŷT is the prediction target vector. p denotes the abstract probability distribution over
all random quantities, z is the latent variable of the model, obeys the Gaussian distribution,
and measures the probability uncertainty of the model. sC is a parameter generated by
the context set (xC, yC), and zC ∼ N (µ(sC), Iσ(sC)) is modelled by a Gaussian parameter
by sC. k∗ is the attention mechanism of the model. This mechanism makes full use of the
information of xC, and gives important contextual points that have more weight within the
model. The mechanism of attention can be defined by the Laplace kernel, the dot-product
kernel, etc. At the same time, the parameters of the encoder and decoder are learned by
maximizing the following evidence lower bound (ELBO),

log p
(
y′T|xT , k∗, xC, yC

)
≥ Eq(z|xT ,yT)[log p(yT|zT , k∗, xT)− log(q(zT |sT)/q(zC|sC))] (4)

where q(zT |sT) and q(zC|sC) are the variational posteriori of p(zT |sT) and p(zC|sC) ,
respectively. During the training, the target values yT are known, and Equation (4) is used
to optimize the encoder and decoder parameters. And y′T is the prediction vector of xT.
During the test, Equation (3) is used to predict the target values ŷT .

4.2. Prediction Framework

The procedure of the battery cycle life prediction, based on early discharge charac-
teristics, is presented in Figure 4. Moreover, the methods of voltage characteristic and
the RBFNN model are compared, respectively, to illustrate the advantages of the power
characteristic and NGP model proposed in this paper.
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Suppose the battery data is (x1:n, L1:n), and divide the data set into training set
(x1:m, L1:m), 1 < m < n and test set (xm:n, Lm:n). The prediction step of battery life can
be expressed as follows: firstly, the power characteristic PD of all cells is calculated by
Equation (1). Then, the battery life L̂ is predicted by Equations (3) and (4). At the same
time, according to the results of the single point life prediction, we use the same data as the
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life prediction to realize the prediction of the whole life cycle capacity degradation of cells.
Specifically, we normalize Cy1:L̂Cy1, . . . , CyL̂, denoted as C∗

y1:L̂
, and establish a functional

relationship with Q1:L̂Q1, . . . , QL̂. Normalization is defined as

C∗y1:L̂ = Cy1:L̂/L̂ (5)

Similar to the battery cycle life prediction, the training set data is used to optimize the
model. For the test batteries, the discharge capacity data (C∗y1:110, Q1:110) of the first 110
cycles are inputted into the model to obtain the capacity (C∗

y1:L̂
, Q1:L̂) of the entire life cycle.

5. Results and Description
5.1. Cycle Life Prediction

The battery data set consists of three sampling batches; we divided the data into a
training set, the first test set, and the second test set to verify the predictive performance
and adaptability of the model. In particular, we combined the first two batches of data
and divided the data set into the training set (41 cells) and the first test set (43 cells, by
intermittent sampling, and divided the battery data of the third batch into the second
test set (40 cells). To evaluate the prediction accuracy of the proposed method, the mean
absolute percent error (MAPE) is used in this paper. It is given by

MAPE =
1
n

n

∑
j=1

∣∣Lj − L̂j
∣∣/Lj × 100% (6)

where Lj is the observed cycle life of the jth battery, L̂j is the model predicted life of the jth
battery, and n represents the number of training sets or test sets.

In this paper, the validity of the proposed power characteristic and model is illustrated
by comparing the cycle life prediction performance of the voltage characteristic and the
RBFNN model. Figures 5 and 6 show the predicted performance of the power characteris-
tics using the NGP model and the RBFNN model, respectively. Figures 7 and 8 compare the
predicted results of the voltage characteristics using the NGP model and the RBFNN model.
A comparison between the predicted cycle life and the observed cycle life is shown in
Figures 5a, 6a, 7a and 8a. Table 1 displays the MAPE of cycle life for each method. A smaller
MAPE value indicates a better data set cycle life prediction performance. Surprisingly, the
predicted error of the NGP model, using power characteristics, is 12.0% in the first test set
and 8.8% in the second test set, using only the 20th to 110th cycles data. It is worth noting
that the battery performance has only a very weak decay during the first 110 cycles. In
the first test set, excluding a rapidly degraded battery that deviates from the relationship
between P and the cycle life of the other batteries, the predicted error is reduced to 8.8%.
Simultaneously, the prediction errors of the RBFNN model using power characteristics
in the training set, the first test set, and the second test set are 10.2%, 10.1%, and 9.8%,
respectively. The prediction errors of the NGP model using voltage characteristics in the
training set, the first test set, and the second test set are 9.3%, 10.7%, and 11.9%, respectively.
The prediction errors of the RBFNN model using voltage characteristics in the training
set, the first test set, and the second test set are 10.5%, 12.5%, and 12.6%, respectively. As
can be seen from Table 1, NGP performs better than RBFNN when using the same battery
characteristics. At the same time, using the same model, the predictive performance of the
power characteristics optimizes the voltage characteristics. The prediction curves of each
method are shown in Figures 5b, 6b, 7b and 8b. For voltage characteristics, the prediction
curve of the NGP model is smoother than that of the RBFNN model. The RBFNN model
shows a sharp value in the lower left corner of Figure 8b. For the power characteristics,
the prediction curves of the two models are smooth. The results show that the proposed
power characteristics can improve the prediction accuracy of the model, and the NGP
model has a better regression fitting performance. The NGP model, combined with the
power characteristics, is an effective method to predict the cycle life of batteries.
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Figure 5. NGP and power characteristic model cycle life prediction. (a) Comparison of observed life and predicted life,
(b) the cycle life predicted curve.
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Figure 6. RBFNN and power characteristic model cycle life prediction. (a) Comparison of observed life and predicted life,
(b) the cycle life predicted curve.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 13 
 

 

  

Figure 7. NGP and voltage characteristic model cycle life prediction. (a) Comparison of observed life and predicted life, 
(b) the cycle life predicted curve. 

  

Figure 8. RBFNN and voltage characteristic model cycle life prediction. (a) Comparison of observed life and predicted life, 
(b) the cycle life predicted curve. 

Table 1. Comparison of battery cycle life prediction performance. 

Data Set 
MAPE of Model with Characteristics 

Power with  
NGP (%) Power with RBFNN (%) Voltage with NGP (%) 

Voltage with RBFNN 
(%) 

Train 8.4 10.2 9.3 10.5 
First test 12.0 (8.8) 13.8 (10.1) 12.7 (10.7) 14.7 (12.5) 

Second test 8.8 9.8 11.9 12.6 
The results in parentheses exclude a battery that deviates from the relationship between P and cycle life, or between V and 
cycle life. 

5.2. Capacity Prediction 
In this brief, batteries with a different cycle life (i.e., cycle life 335, cycle life 854, cycle 

life 1028, and cycle life 1638) are selected to verify the NGP model capacity prediction 
results, and compare the prediction results of the RBFNN model. As the prediction results 
of the RBFNN model are affected by the length of the training data, we not only use the 
data of the first 110 cycles to predict capacity, but also use the data of the first 20% of cycles 
of the predicted life of the power characteristics to predict capacity. The MAPE of the cycle 
that reaches the capacity failure threshold for the first time is used to quantify the perfor-
mance of the method, based on NGP and RBFNN. 

0 500 1000 1500 2000

Observed cycle life

0

500

1000

1500

2000

Train
First test
Second test
Reference line

(a)

P
re

d
ic

te
d

 c
yc

le
 li

fe

0 500 1000 1500 2000

Observed cycle life

0

500

1000

1500

2000

P
re

d
ic

te
d

 c
yc

le
 li

fe

Train
First test
Second test
Reference line

(a)

P
re

d
ic

te
d

 c
yc

le
 li

fe

Figure 7. NGP and voltage characteristic model cycle life prediction. (a) Comparison of observed life and predicted life,
(b) the cycle life predicted curve.



Sensors 2021, 21, 1087 10 of 14

Sensors 2021, 21, x FOR PEER REVIEW 9 of 13 
 

 

  

Figure 7. NGP and voltage characteristic model cycle life prediction. (a) Comparison of observed life and predicted life, 
(b) the cycle life predicted curve. 

  

Figure 8. RBFNN and voltage characteristic model cycle life prediction. (a) Comparison of observed life and predicted life, 
(b) the cycle life predicted curve. 

Table 1. Comparison of battery cycle life prediction performance. 

Data Set 
MAPE of Model with Characteristics 

Power with  
NGP (%) Power with RBFNN (%) Voltage with NGP (%) 

Voltage with RBFNN 
(%) 

Train 8.4 10.2 9.3 10.5 
First test 12.0 (8.8) 13.8 (10.1) 12.7 (10.7) 14.7 (12.5) 

Second test 8.8 9.8 11.9 12.6 
The results in parentheses exclude a battery that deviates from the relationship between P and cycle life, or between V and 
cycle life. 

5.2. Capacity Prediction 
In this brief, batteries with a different cycle life (i.e., cycle life 335, cycle life 854, cycle 

life 1028, and cycle life 1638) are selected to verify the NGP model capacity prediction 
results, and compare the prediction results of the RBFNN model. As the prediction results 
of the RBFNN model are affected by the length of the training data, we not only use the 
data of the first 110 cycles to predict capacity, but also use the data of the first 20% of cycles 
of the predicted life of the power characteristics to predict capacity. The MAPE of the cycle 
that reaches the capacity failure threshold for the first time is used to quantify the perfor-
mance of the method, based on NGP and RBFNN. 

0 500 1000 1500 2000

Observed cycle life

0

500

1000

1500

2000

Train
First test
Second test
Reference line

(a)

P
re

d
ic

te
d

 c
yc

le
 li

fe

0 500 1000 1500 2000

Observed cycle life

0

500

1000

1500

2000

P
re

d
ic

te
d

 c
yc

le
 li

fe

Train
First test
Second test
Reference line

(a)

P
re

d
ic

te
d

 c
yc

le
 li

fe

Figure 8. RBFNN and voltage characteristic model cycle life prediction. (a) Comparison of observed life and predicted life,
(b) the cycle life predicted curve.

Table 1. Comparison of battery cycle life prediction performance.

Data Set
MAPE of Model with Characteristics

Power with
NGP (%)

Power with
RBFNN (%)

Voltage with
NGP (%)

Voltage with
RBFNN (%)

Train 8.4 10.2 9.3 10.5
First test 12.0 (8.8) 13.8 (10.1) 12.7 (10.7) 14.7 (12.5)

Second test 8.8 9.8 11.9 12.6

The results in parentheses exclude a battery that deviates from the relationship between P and cycle life, or
between V and cycle life.

5.2. Capacity Prediction

In this brief, batteries with a different cycle life (i.e., cycle life 335, cycle life 854, cycle
life 1028, and cycle life 1638) are selected to verify the NGP model capacity prediction
results, and compare the prediction results of the RBFNN model. As the prediction results
of the RBFNN model are affected by the length of the training data, we not only use the
data of the first 110 cycles to predict capacity, but also use the data of the first 20% of cycles
of the predicted life of the power characteristics to predict capacity. The MAPE of the
cycle that reaches the capacity failure threshold for the first time is used to quantify the
performance of the method, based on NGP and RBFNN.

Figure 9 shows the capacity prediction results of the NGP and RBFNN models. The
details of the capacity prediction results can be seen in Tables 2 and 3. Figure 9 shows that
the capacity prediction curve of the NGP model fits the real curve better. For the failure
life predicted by the capacity curve, the prediction error of the NGP model is less than
5% using the first 110 cycle data, and the performance growth is small after changing the
length of training, while the performance of the RBFNN model, using only the data of the
first 110 cycles, is poor with the increase of battery cycle life. When using the data of the
first 20% cycles of the predicted life of the power characteristics, the RBFNN model shows
better performance, but is still worse than the NGP.
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Table 2. Failure cycle life prediction based on NGP and RBFNN models.

Model Cycle Life 335 Cycle Life 854 Cycle Life 1028 Cycle Life 1638

Power P predicted cycle life 353 856 1037 1638
NGP predicted failure cycle

(110 cycles) 339 834 1006 1581

NGP predicted failure cycle
(20% predicted of cycle life) 342 840 1020 1588

RBFNN predicted failure cycle
(110 cycles) 315 731 861 1828

RBFNN predicted failure cycle
(20% predicted of cycle life) 291 830 1043 1712

Table 3. MAPE comparison of failure cycle predicted by capacity curve of NGP and RBFNN models.

Model Cycle Life 335 (%) Cycle Life 854 (%) Cycle Life 1028 (%) Cycle Life 1638 (%)

NGP with 110 cycles 1.2 2.3 2.1 3.5
NGP with 20%

predicted of cycle life 2.1 1.6 0.8 3.1

RBFNN with 110 cycles 6.0 14.4 16.2 11.6
RBFNN with 20%

predicted of cycle life 13.1 2.8 1.4 4.5

The results show that the data length has little effect on the performance of the
NGP model, but has a great influence on the RBFNN model. In practice, the battery
discharge data are measured, so it is difficult to increase the training length of the model.
Combined with the prediction results of cycle life and capacity, the NGP model shows
good prediction accuracy.

6. Conclusions

This paper proposes a battery life prediction model, combining discharge character-
istics and NGP, using early cycle discharge data. For the degradation data generated by
commercial LFP/graphite batteries under different cycling conditions, we do not use a
priori battery degradation knowledge. Rather, on the one hand, we extract the average
power characteristic from the discharge voltage, battery capacity, and charging time, and,
on the other hand, combined with NGP, using only the 20th to 110th cycle data, we get 8.8%
life predicted error and a complete capacity degradation predicted curve. The prediction
results show that the performance of the NGP and power characteristic model is better than
that of the traditional FRBFF and voltage characteristic techniques. Thus, the proposed
method NGP with early discharge characteristics has superior performance in cycle life and
capacity prediction. In general, our approach can optimize material design, and provides a
reliability assessment for the BMS by evaluating battery performance early in the battery
cycle. In future, new studies should consider more battery discharge characteristics in
order to improve prediction performance.
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