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Abstract: Macrophages maintain tissue homeostasis by phagocytosing and removing unwanted ma-
terials such as dead cells and cell debris. Microglia, the resident macrophages of the central nervous
system (CNS), are no exception. In addition, a series of recent studies have shown that microglia
phagocytose the neuronal synapses that form the basis of neural circuit function. This discovery has
spurred many neuroscientists to study microglia. Importantly, in the CNS parenchyma, not only
microglia but also blood-derived monocytes, which essentially differentiate into macrophages after
infiltration, exert phagocytic ability, making the study of phagocytosis in the CNS even more interest-
ing and complex. In particular, in the diseased brain, the phagocytosis of tissue-damaging substances,
such as myelin debris in multiple sclerosis (MS), has been shown to be carried out by both microglia
and blood-derived monocytes. However, it remains largely unclear why blood-derived monocytes
need to invade the parenchyma, where microglia are already abundant, to assist in phagocytosis. We
will also discuss whether this phagocytosis can affect the fate of the phagocytosing cell itself as well
as the substance being phagocytosed and the surrounding environment in addition to future research
directions. In this review, we will introduce recent studies to answer a question that often arises
when studying microglial phagocytosis: under what circumstances and to what extent blood-derived
monocytes infiltrate the CNS and contribute to phagocytosis. In addition, the readers will learn
how recent studies have experimentally distinguished between microglia and infiltrating monocytes.
Finally, we aim to contribute to the progress of phagocytosis research by discussing the effects of
phagocytosis on phagocytic cells.
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1. Introduction

The CNS, consisting of the brain and the spinal cord, is separated from the periphery
by the presence of the blood–brain barrier (BBB), meninges, and the choroid plexus [1–3].
Since the major immune cells present in the parenchyma are microglia [4,5], unwanted
materials (dead cells, aggregated proteins, etc.) in the parenchyma are removed mainly by
microglial phagocytosis under physiological conditions [6,7]. Although not discussed in
this review, astrocytes, another type of glial cell, also have the ability to phagocytose [8].

Dead cells and aggregated proteins that remain unremoved in the parenchyma cause
tissue damage via the release of reactive oxygen species and various inflammatory me-
diators [9–12]. Thus, the phagocytosis of this debris by microglia has been thought to be
important for homeostasis in the brain and spinal cord. On the other hand, in diseases with
physical damage or excessive inflammatory responses, blood-derived monocytes infiltrate
the parenchyma due to a loosening or disruption of the BBB [7,13,14]. These monocytes
infiltrating the parenchyma have been shown to exert phagocytic activity in various dis-
eases [7,13]. For example, in addition to myelin debris in MS [15] and apoptotic neurons in
stroke [16], blood-derived monocytes have been suggested to phagocytose amyloid-beta
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(Aβ) and synapses [17,18]. Because microglia and blood-derived monocytes have different
cell lineages and gene expression [6,19,20], differences in phagocytic capacity are also
expected. However, many studies have analyzed microglia and blood-derived monocytes
together as phagocytes without distinguishing between them or have examined each cell
under different conditions, and little has been done to examine the differences in phagocytic
capacity between microglia and blood-derived monocytes under the same conditions.

In recent years, thanks to technical advances in cell lineage analysis and genetic
analysis, several methods have been developed to distinguish between microglia and
blood-derived monocytes and to manipulate them separately, making it possible to directly
compare their phagocytic abilities [21,22]. The heterogeneity of phagocytosis by cell type
offers the possibility of manipulating phagocytosis in a cell-type-specific manner and
is expected to be a therapeutic target for various diseases in which phagocytosis plays
an essential role. In this review, we first introduce the phagocytosis by microglia in the
physiological conditions. Next, we focus on studies that examined the phagocytosis
of microglia and blood-derived monocytes under conditions in which blood-derived
monocytes invade the parenchyma. We will then discuss the extent to which the phagocytic
capacity of the two types of macrophages differs and what is responsible for this difference.
Specifically, we will mention how many monocytes infiltrate the parenchyma in each
disease and how long they stay there and focus on factors that may affect phagocytosis,
such as cytokines.

Although circulating monocytes basically differentiate into macrophages and den-
dritic cells after infiltrating into tissues, the possibility that they exert their phagocytic
function even before differentiating into macrophages cannot be excluded. Therefore,
in this review, for studies in which differentiation into macrophages cannot be clearly
confirmed, monocytes after invasion will be described as blood-derived monocytes but
not as macrophages. Although microglia and blood-derived monocytes show similar
characteristics in the parenchyma, the methods and criteria used to distinguish between
them (degree of expression of molecular markers and morphology) will be introduced and
summarized in Tables 1 and 2. In addition, please refer to Figure 1, which shows each type
of macrophages.

Table 1. Transgenic animals for immune cell subtype-specific analysis.

Animal Manipulation Objective Limitation Reference

CD11b-HSVTK mice Injection of GCV into the
ventricle

Microglia-specific
depletion Long-term administration of GCV

causes microhemorrhages and
artificial influx of peripheral

macrophages into the CNS [23].

[23]

Inhibition of monocyte
infiltration into the brain

parenchyma
[24]

unspecified Injection of clodronate
into the lateral ventricle

Perivascular-macrophage-
specific depletion - [25]

Nr4a1−/− mice
BM derived monocyte

transplantation
BM derived

monocyte-specific labeling - [26]

CX3CR1CreERT2/+xR26-
stop-RFPfl/+ mice

Intraperitoneal injection of
tamoxifen Microglia-specific labeling It is necessary to distinguish

between microglia and BAMs [27]. [18]

β-actin-EGFP mice BM derived macrophage
transplantation

BM derived macrophage-
specific labeling - [28]

CCR2-RFP::CX3CR1-
GFP mice -

Distinguishment between
microglia and macrophage

(microglia: GFP;
monocyte: RFP)

- [15,29]

lysozyme M
EGFP-knockin mice

BM derived monocyte
transplantation

BM derived
monocyte-specific labeling - [30]

C57BL/6J-GFP mice BM derived monocyte
transplantation

BM derived
monocyte-specific labeling - [16]

CD11c-DNR mice
BM derived

monocyte-specific
manipulation

CD11c expression is upregulated
in microglia surrounding Aβ

plaques [31].
[32]
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Table 2. Marker molecules for immune cell subtype-specific analysis.

Marker Observation System Objective Limitation Reference

P2Y12 Immunohistochemistry Microglia-specific detection
In the disease conditions,

P2Y12 is downregulated in
microglia [33].

[34]

TMEM119 Immunohistochemistry Microglia-specific detection
In the disease conditions,

TMEM119 is downregulated in
microglia [35].

[17,18]

Il-69 Immunohistochemistry Hematogenous macrophage-specific
detection - [36]

CD45 Flow cytometry
Distinguishment between microglia

and BM-derived monocyte (low:
microglia; high: monocyte)

In the disease conditions,
CD45 is upregulated in

microglia [37].
[38–42]

CX3CR1
Flowcytometry Distinguishment between microglia

and BM-derived monocyte (low:
monocyte; high: microglia)

In the disease conditions,
CX3CR1 is downregulated in

microglia [37].

[39,43]

Immunohistochemistry [44]

CCR2 Flow cytometry
Distinguishment between microglia

and BM-derived monocyte (low:
microglia; high: monocyte)

- [43]

Ly6C Flow cytometry
Distinguishment between microglia

and BM-derived monocyte (low:
microglia; high: monocyte)

Ly6Chi monocytes give rise to
Ly6Clo monocytes [45,46].

[40,41,43]

Figure 1. Development and expression signature of microglia and circulating monocytes: Erythro-myeloid progenitors
(EMPs) from yolk sac invade into the CNS parenchyma during embryonic stage and differentiate into microglia. On the
other hand, hematopoietic stem cells (HSCs) from fetal liver or bone marrow differentiate into monocytes and circulate in
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the blood vessels. In the physiological conditions, microglia are a main macrophage in the CNS parenchyma, but some
diseases and injuries induce infiltration of circulating monocytes into the CNS parenchyma. We can distinguish between
microglia and infiltrating monocytes by the genes listed in the figure. The molecules shown in green are called homeostatic
microglial markers and are often considered as microglia specific. However, TMEM119, P2Y12, SIGLEC-H, and SALL1 are
down-regulated in microglia in diseased brains [33,47,48], and peripheral macrophages begin to express molecules such as
TMEM119, P2Y12, and SALL1 after infiltrating the brain parenchyma [49]. Therefore, it would be difficult to distinguish
microglia from monocytes by these markers in situations where peripheral monocytes are infiltrating. On the other hand,
HEXB has been suggested to be microglia-specific in both physiological and pathological conditions [50]. For signatures on
other types of macrophages, please refer to the reviews by Prinz et al. and Li et al. [6,19].

Many studies have focused on the removal of unwanted materials by phagocytes
and the effects of their disruption on the surrounding environment and cell functions.
At the same time, the significance of phagocytosis in phagocytes themselves, such as the
functional changes that occur after phagocytosis, has also been examined. Studies from this
perspective may reveal that phagocytosis has important biological implications beyond
the mere clearance of unwanted substances. Furthermore, examining changes in both
phagocytosing and phagocytosed cells may provide important insights into phagocytosis
as a therapeutic target. Therefore, in the last part of this review, we will discuss why
phagocytes phagocytose and the significance of this process.

2. Phagocytosis in the Intact Brain

Microglia have been reported to be involved in the development and progression
of neurodegenerative diseases by phagocytosing apoptotic cells, aggregated proteins,
and invading pathogens in the brain [7,10]. However, in the last decades or so, it has
been revealed that microglia exert their phagocytic ability not only in diseased brains
but also in healthy brains [7,10]. Further, the failure of phagocytosis by microglia under
the physiological conditions could lead to disruption of neural circuit homeostasis and
pathogenesis [7,10]. In this chapter, we outline the phagocytosis by microglia in the intact
brain, where there are few infiltrations of blood-derived monocytes. This information will
help our understanding of the role of microglial phagocytosis in the diseased brain.

Neuronal apoptosis and the removal of dead cell debris by microglia occur in the brain
throughout the lifetime of an individual [51–56]. Phagocytosis of apoptotic neurons by
microglia has been validated by visualization of microglia and apoptotic markers such as
condensed nuclei, phosphatidylserine, and Cleaved Caspase-3. Microglia uptake apoptotic
neurons with phagocytic cups, or pouches, during development [57,58] and adulthood [56].
More recently, it has been shown that microglia phagocytose apoptotic oligodendrocytes
in the cortical white matter during development, which is the initiation period of myelin
formation [59]. Microglia also phagocytose myelin debris in the cortex during aging and
under the physiological condition where demyelination and remyelination constantly
occur [60,61].

Microglia phagocytose not only apoptotic cells but also live cells. In the subventricular
zone, a neurogenic niche, microglia have been observed to surround, uptake, and digest
neural progenitor cells (NPCs) [51]. In addition, the number of NPCs in the cerebral cortex
increased when microglia were removed by clodronate administrated into the ventricle of
embryonic rats, indicating that phagocytosis of NPCs regulates neuronal density. Actually,
it has been confirmed that the number of neurons in the prefrontal cortex of autistic patients
is increased compared to control patients [62], so it is possible that deficient removal of
NPCs causes the increase in neuronal density and abnormal wiring of neural circuits.
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Among phagocytosis in the healthy brain, synaptic phagocytosis has been most
intensively studied. Microglial ability to reorganize neuronal circuits through synap-
tic phagocytosis is an attractive research target for neuroscientists. In the developing
brain, excess synapses are formed and then decrease, and the density remains constant
during adulthood. Microglial phagocytosis is involved in this developmental synaptic
decrease [63–65]. Furthermore, it has been shown that microglia contribute to the formation
of functional neural circuits by phagocytosing synapses with weak neural activity and
allowing synapses with strong neural activity to remain [64]. Indeed, inhibition of synaptic
phagocytosis by microglia alters synaptic density, leading to the development of autism
and epilepsy [66–68], and synaptic phagocytosis by microglia is defective in animal models
of autism [69]. In addition, the synaptic phagocytosis by microglia is likely to be involved
in synaptic plasticity associated with sensory stimulation and learning [70,71]. For more
details on the molecular mechanisms of synaptic phagocytosis by microglia, please refer to
the review published by Andoh et al. [72].

3. Phagocytosis by Microglia and Infiltrating Monocytes in the Diseased Brain

The immune response in the brain parenchyma of naïve adult mice is carried out
mainly by microglia, which account for approximately 98% of immune cells (CD45 positive
(CD45+)) in the brain [5]. Therefore, in the diseased brain, where circulating immune
cells can infiltrate the parenchyma, both microglia and blood-derived monocytes can exert
their phagocytic abilities simultaneously or complementarily in the same environment.
Therefore, in Chapter 3, we will discuss the different targets of phagocytosis in the diseased
brain: myelin debris, apoptotic cells, and tumor cells. Methods and criteria used to
distinguish between microglia and blood-derived monocytes are introduced in the text and
Tables 1 and 2. We will also mention the advantages and limitations of those methods in
the text and tables.

3.1. Myelin

In diseases with demyelination, such as MS, it has been suggested that myelin debris
is not removed and instead accumulates in the brain parenchyma after demyelination,
promotes inflammatory responses, and inhibits oligodendrocyte differentiation as well as
myelin formation [73–75]. Therefore, it has been suggested that the clearance of myelin
debris by phagocytes could be a therapeutic target for these diseases. In particular, since
circulating monocytes are known to infiltrate the parenchyma in MS, several studies have
examined whether microglia or macrophages phagocytose more myelin debris.

In vitro research has suggested that microglia have a higher capacity of myelin phago-
cytosis compared to macrophages at a single cell level. Mosley et al. used microglia and
macrophages (collected by peritoneal perfusion, no molecular marker information) isolated
from rats [76]. When the same amount of myelin was added, the amount of myelin phago-
cytosed was higher in microglia. The amount of myelin uptake by microglia monotonically
increased until 18 h after myelin addition, whereas the amount of myelin phagocytosed by
macrophages decreased after 6 h. Another study compared myelin phagocytosis by mi-
croglia isolated from the human surgical brain and by human blood-derived macrophages
in vitro (monocytes differentiated by Granulocyte-Macrophage Colony-Stimulating Factor
and Macrophage Colony-Stimulating Factor (M-CSF) treatment) [77]. The percentage of
cells that incorporated the myelin marker, myelin binding protein (MBP), was higher in
microglia than in macrophages.

Which phagocytoses more myelin debris at the individual level (i.e., per animal),
microglia or blood-derived monocytes? In vitro studies are useful for directly comparing
myelin phagocytosis by microglia and macrophages, but the results are difficult to interpret
because they do not reflect the situation in the actual pathology (e.g., the ratio of infiltrat-
ing macrophages to microglia and the distance between each cell and myelin). In vivo
validation has been performed mainly in the spinal cord; Kucharova et al. tested whether
microglia or macrophages phagocytose more myelin in vivo [28]. By transplanting bone-
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marrow-derived macrophages expressing beta-actin-EGFP (Iba1+ and F4/80+) into mice
with spinal cord injury, the authors were able to distinguish between microglia and infiltrat-
ing macrophages and calculated the percentage of cells that phagocytosed MBP. The results
showed that 1 week after spinal cord injury, the cell density was 111 ± 14.4 (/0.1 mm2) for
macrophages and 11.63 ± 2 (/0.1 mm2) for microglia. The percentage of cells that phago-
cytosed MBP (% cells containing phagocytosed MBP) was 27 ± 3% for macrophages and
45 ± 7% for microglia. Since the multiplication of these values was greater in macrophages,
the above results suggest that macrophages have a higher myelin phagocytosis capacity as
a whole.

A similar trend has been observed in rats; Rinner et al. compared the responsiveness
of microglia and bone-marrow-derived macrophages in a rat model of experimental au-
toimmune encephalitis (EAE) through the injection of MBP-responsive T cells [36]. Using
macrophage removal by irradiation, the authors distinguished resident microglia from
infiltrating macrophages. 5 days after EAE induction, in the spinal cord, the cell density of
macrophages was several times higher than that of microglia. The percentage of myelin
uptake by each cell was approximately 5% in infiltrating macrophages and approximately
30% in microglia. These results suggest that microglia have a higher myelin phagocytosis
capacity per cell. For phagocytes, spatial location with myelin is also an important factor
for efficient myelin phagocytosis. Yamasaki et al. examined the involvement of microglia
and monocyte-derived macrophages in the pathogenesis of EAE, focusing on the distance
between phagocytes and myelin debris [15]. They used CCR2-RFP::CX3CR1-GFP mice,
in which microglia and macrophages were labeled with GFP and RFP, respectively. The
interaction between myelin and each phagocyte was quantified by using serial block-face
scanning electron microscopy. A comparative analysis of microglia and macrophages lo-
cated near spinal cord axons showed that the percentage of cells that phagocytosed myelin
was higher in macrophages. In addition, the authors found that macrophages contacted
almost all of the axons that microglia were in contact with. Again, it seems that microglia
phagocytose more myelin at a single cell level, while macrophages phagocytose myelin
phagocytosis in the whole individual.

The temporal window of phagocytic capacity was also compared between microglia
and infiltrating macrophages after spinal cord injury [30]. In this study, lysozyme M EGFP-
knock-in mice were used, in which only bone-marrow-derived monocytes expressed GFP,
allowing to distinguish between microglia and macrophages. 1 day after injury, the periax-
onal phagocytes were mostly microglia, while 3 and 7 days after injury, they were mostly
macrophages. The phagocytic capacity of periaxonal microglia and macrophages was exam-
ined by analyzing the percentage of cells that incorporated autofluorescence into the cells:
Microglia reached a peak at 3 days after injury and then rapidly approached zero, whereas
nearly half of macrophages retained autofluorescence until 42 days after injury. Further-
more, the phagocytosis of myelin debris in vitro resulted in more cell death in macrophages
after myelin phagocytosis. The promoted cell death in infiltrating macrophages was also
confirmed in vivo. These results indicate that microglia can efficiently phagocytose and
digest myelin in the early stage of injury and prevent their own cell death. On the other
hand, infiltrating macrophages may continue to phagocytose myelin without being able to
digest it, thereby making themselves susceptible to cell death. It has been suggested that
microglia are involved in the death of macrophages in the demyelinating region. Plemel
et al. showed that infiltrating macrophages did not proliferate, and their density decreased
with time after EAE induction [37]. In the demyelinating region, microglia were activated
(promoted proliferation, increased CD45 expression, and decreased expression levels of
homeostatic markers such as CX3CR1) and surrounded macrophages. Furthermore, mi-
croglial depletion inhibited the macrophage reduction and promoted axonal loss. From
these results, the authors discussed that microglia may act in a neuroprotective manner by
suppressing the excessive inflammatory response via removal of infiltrating macrophages.

The above findings suggested that microglia tended to have higher myelin phagocytic
capacity in vitro, while macrophages tended to have higher myelin phagocytic capacity
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in vivo. This difference may be due to the divergence in experimental methods, but it
is important to consider all of these factors to determine the direction of future research.
For example, although microglia have a higher phagocytic capacity per cell, macrophages
efficiently phagocytose myelin in vivo due to their distance from the axon and persistence
of phagocytotic ability, so the promotion of microglial migration to the axon may be
effective in the removal of myelin debris.

Surrounding inflammatory mediators in the extracellular milieu also induce differ-
ences in the myelin phagocytic capacity of microglia and macrophages [78]. In MS, in-
creased expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-
4 (IL-4), and decreased expression of interleukin-10 (IL-10) have been confirmed [79,80].
Among these inflammatory mediators, TNF-α promotes myelin phagocytosis by microglia
but does not affect myelin phagocytosis by macrophages [80]. In addition, IFN-γ inhibits
myelin phagocytosis by macrophages while promoting myelin phagocytosis by microglia.
On the other hand, IL-4 and IL-10 promote the phagocytosis of myelin by both microglia
and macrophages [80]. The finding that microglia are more likely to phagocytose myelin
at the single-cell level [28,36] is consistent with increased expression of IFN-γ, TNF-α,
and IL-4, which promote phagocytosis by microglia. These cytokines may affect myelin
phagocytosis by altering receptor expression, metabolism, and cytoskeleton dynamics in mi-
croglia and macrophages. However, conflicting results have also been reported on whether
these cytokines enhance or inhibit the phagocytosis by microglia and macrophages [78].

It is possible that microglia and blood-derived monocytes affect each other’s phago-
cytic capacity. Greenhalgh et al. subjected CCR2-knockout (KO) mice to spinal cord injury
and verified the phenotype of microglia in the absence of monocyte recruitment to the
injury site [81]. Then, expression levels of pro-inflammatory cytokines and myelin phago-
cytosis by microglia were increased compared to those in wild type mice. Furthermore,
using co-cultures of microglia and macrophages, the authors showed that the presence
of macrophages suppressed myelin uptake by microglia, while the presence of microglia
enhanced myelin uptake by blood-derived monocytes. These findings using cultured cells
are consistent with the findings that macrophages phagocytose more myelin than microglia
in vivo.

Other environmental factors that may contribute to differences in myelin phagocytosis
between microglia and macrophages include the frequency and length of exposure to
myelin phagocytosis. For example, it has been reported that microglia phagocytose myelin
debris in the cortex, where constant myelin degeneration and remyelination occur under
physiological conditions and with aging [60,61]. Thus, in the onset of pathogenesis, it
is possible that microglia are already prepared for myelin phagocytosis and may have a
higher phagocytic capacity than macrophages that first encounter myelin debris.

Finally, the comparison of myelin phagocytosis by microglia and blood-derived
macrophages requires careful selection of validation methods. For example, flow cytometry
of spinal cord samples showed that microglia and monocytes were equal in number during
EAE onset, whereas the ratio of microglia to monocytes was 2:1 at the EAE peak [15].
However, as mentioned earlier, monocytes phagocytose more myelin than microglia in the
vicinity of spinal cord axons, and it is not possible to determine which cell’s phagocytosis
is dominant by simply comparing cell numbers (Figure 2).

3.2. Apoptotic Cells

Stroke is often accompanied by neuronal cell death, and the infiltration of blood-
derived monocytes into the brain parenchyma has been identified. Dead cells and their de-
bris that accumulate in the brain parenchyma elicit an excessive inflammatory response [82].
Therefore, early clearance of dead cells is essential for the restoration of brain homeostasis.
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Figure 2. Phagocytic capacities of microglia and infiltrating monocytes in the early phase of MS: Yamasaki et al. reported
that at the onset of EAE, the ratio of microglia to monocytes contacting demyelinated axons is about 1:2, monocytes locating
closer to axons than microglia [15]. The amount of myelin phagocytosis per cell is higher in microglia than monocytes [76,77],
but monocytes as a whole (i.e., per animal) phagocytose more myelin.

Ritzel et al. compared the properties of microglia and blood-derived monocytes
(CD11b+, CD45+, LyC6 high expression (LyC6high)) after ischemic stroke caused by middle
cerebral artery occlusion (MCAO) by using flow cytometry, which can separate the two
cell types on the basis of their CD45 expression level [40]. The number of microglia in
the brain parenchyma decreased from immediately after to 72 h after MCAO, while the
number of monocytes increased. Consistent with this result, approximately 90% of the cells
that were positive for BrdU, a proliferation marker, were monocytes. Furthermore, when
the phagocytosis of microglia and macrophages isolated 72 h after MCAO was verified by
the bead uptake assay, both the percentage of cells incorporating beads and the number of
beads taken up by single cells were higher in monocytes. Although the phagocytosis of
dead cells was not verified, it is possible that the phagocytosis by monocytes is dominant
after stroke.

The blood-derived monocytes that invade the brain parenchyma after stroke are either
inflammatory (CCR2+Ly6Chi) or responsible for tissue repair (CX3CR1+Ly6C low expres-
sion (Ly6Clo)). Garcia-Bonilla et al. examined the properties of infiltrating macrophages
from 1 to 28 days after MCAO by flow cytometry [43]. Three days after MCAO, there
were more CCR2+Ly6Chi and no CX3CR1+Ly6Clo cells, whereas the latter started to appear
14 days after MCAO. While CCR2-KO mice, in which the infiltration of CCR2+Ly6Chi cells
was suppressed, showed no accumulation of CX3CR1+Ly6Clo cells, the populations of
CX3CR1+Ly6Clo cells increased with time after MCAO in Nr4a1-KO mice, which lacked
CX3CR1+Ly6Clo cells. These results suggest that CCR2+Ly6Chi cells infiltrate in the early
stage after MCAO transforms into CX3CR1+Ly6Clo cells. Together with the above findings
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by Ritzel et al., it would be interesting if blood-derived monocytes with high phagocytic ac-
tivity infiltrate during the period when dead cells are abundant and change their properties
to tissue repair when the clearance of dead cells is completed.

However, it has been suggested that microglia are more involved in the phagocytosis
of dead cells in vivo [16]. Schilling et al. used bone marrow chimera mice to compare
the phagocytic ability of microglia and blood-derived monocytes after MCAO. Microglial
density increased from immediately after MCAO to 14 days later, while macrophage
infiltration increased from 2 days after MCAO and decreased after 7 days. At 7 days after
MCAO, when infiltration was most accelerated, the density of microglia was approximately
three times higher than that of macrophages. The density of microglia that took up neurons
was highest 1 day after MCAO and then decreased. Macrophages ingesting neurons were
found 4 to 10 days after MCAO, but the phagocytosis of dead cells was mainly performed
by microglia. This finding is consistent with previous studies showing that the order of
phagocyte accumulation in the infarcted area after MCAO is microglia followed by blood-
derived monocytes. Therefore, it is possible that microglia and blood-derived monocytes
are responsible for the removal of dead cells and tissue repair, respectively. The reason why
blood-derived monocytes seem to be less likely to phagocytose dead cells may simply be
that the timing of infiltration into the brain parenchyma is when the removal of dead cells
is almost complete. Another study examined the number of microglia and blood-derived
monocytes by flow cytometry in a rat MCAO model [42]. The results showed that after
1 day of MCAO, the ratio of the number of microglia to monocytes was 8:1, whereas after
3 days of MCAO, the number of monocytes increased, and the ratio of the number of
microglia to monocytes was 5:4 [42]. Together, it is likely that microglia are more numerous
than monocytes at the time of active dead cell removal immediately after MCAO (Figure 3).
However, Ritzel et al. reported that the ratio of the number of microglia to monocytes was
1:3 after 3 days of MCAO [40]. This difference might be caused by the difference in the
severity of MCAO or the threshold of markers in flow cytometry.

3.3. Tumor Cells

Brain tumors are a typical environment where microglia and peripheral macrophages
coexist. Tumor-associated macrophages and microglia, which are sometimes referred to
as TAMs, are the major cell types that form tumors and have been shown to promote
tumor growth. Therefore, it has been considered that controlling TAM function could
suppress tumor growth. Actually, it was shown that suppressing SIRPα-CD47 signaling,
which is a don’t eat me signal, and promoting tumor phagocytosis by TAMs could be a
therapeutic approach for various tumors [83]. However, this antitumor effect has been
thought to be mostly due to blood-derived monocytes infiltrating from the periphery,
and the contribution of resident microglia has not been clarified. Hutter et al. attempted
to elucidate this point by transplanting glioblastomas into CCR2RFP/wtCX3CR1GFP/wt

mice, in which microglia and macrophages can be distinguished by GFP or RFP expres-
sion [29]. Through the use of flow cytometry, these authors showed that the majority
of cell types comprising TAMs were microglia. Next, they enhanced tumor phagocyto-
sis by TAMs by treatment with anti-CD47 antibodies, which increased the percentage
of microglia and macrophages that infiltrated and phagocytosed tumors. Furthermore,
anti-CD47 antibody treatment increased microglial infiltration and tumor phagocytosis
even in CCRRFP/RFPCX3CR1GFP/wt mice in which macrophage infiltration into tumors
was absent. The survival of CCR2RFP/RFPCX3CR1GFP/wt mice was significantly prolonged
after treatment with anti-CD47 antibody, suggesting that tumor phagocytosis by microglia
contributes to recovery from brain tumors. By comparing these results with the tumor
phagocytosis and survival of macrophages in mice in which microglia were specifically
removed from the brain parenchyma, it will be possible to verify whether microglia or
macrophages are more likely to phagocytose tumors.
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Figure 3. Phagocytic capacities of microglia and infiltrating monocytes in ischemia: Rajan et al. reported that at 1 day after
MCAO, when neuronal cell death is active, the majority of phagocytes in the parenchyma are microglia [42]. As more time
passes, the infiltration of monocytes increases, and the ratio of microglia to monocyte becomes about 5:4.

However, Chen et al. reported that microglia accounted for approximately 12% and
monocytes and macrophages together accounted for approximately 83% of cells in the
TAMs of a mouse glioblastoma model [41]. Thus, although the term “glioblastoma” is
widely used, the proportion of cell types in TAMs differs among the papers. This difference
may be due to various factors, such as the model used and the degree of tumor progression
at the time of analysis, and detailed validation will be required to determine whether
microglia, monocytes, or macrophages predominate in tumor phagocytosis.

In Sections 3.1–3.3, we discussed the comparison of the phagocytic capacity of mi-
croglia and blood-derived monocytes in diseases in which monocyte infiltration into the
brain parenchyma has been confirmed. In addition to these acute CNS diseases, it has been
suggested that blood-derived monocytes infiltrate the brain parenchyma in chronic dis-
eases such as Alzheimer’s disease (AD) and viral infections. However, due to the difficulty
in distinguishing between microglia and blood-derived monocytes, there is debate as to
whether or not blood-derived monocytes infiltrate the parenchyma. In the next section, we
introduce studies that examined phagocytosis by microglia and blood-derived monocytes
in AD or virus-infected brains.

3.4. Amyloid-β (Aβ)

In the cortex and hippocampus of AD brains, Aβ deposition leads to the formation
of Aβ plaques. These Aβ plaques are a pathological hallmark of AD, and aggregated Aβ

exerts cytotoxic effects, including ion channel blockage, calcium homeostasis disruption,
mitochondrial oxidative stress, and energy metabolism impairment [84,85]. Since microglia
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are the major phagocytes in the brain parenchyma, the phagocytosis of Aβ by microglia has
been considered important for the clearance of Aβ and thus for the treatment of AD [86].
However, there is some controversy as to whether microglia phagocytose Aβ. For example,
in vitro experiments have shown that microglia uptake Aβ [87,88], but microglia may
not have the ability to digest Aβ [89]. In vivo, although many studies have observed
microglial uptake of Aβ [88,90], it has been also indicated that microglia are not involved
in Aβ clearance because microglial depletion affected neither the number nor size of Aβ

plaque [23]. In addition to microglia, perivascular and meningeal macrophages have been
suggested to suppress Aβ deposition in the brain parenchyma by removing Aβ from the
blood and spinal fluid through phagocytosis [25,26]. It should be noted, however, that the
authors of the original articles argued that it is not possible to determine which state of Aβ

is being phagocytosed by microglia and monocytes: monomer, oligomer, fibril, or plaque.
This is because Aβ phagocytosis by microglia and monocytes has been verified by changes
in the number and size of Aβ plaques.

Several studies have reported the contribution of circulating monocytes and infiltrat-
ing macrophages to Aβ removal. Hawkes et al. took advantage of the fact that clodronate
administration to the lateral ventricles specifically eliminates perivascular macrophages
(defined by CD206 and CD163 expression) to examine the effect of macrophages on Aβ in
the leptomeninges and blood vessels [25]. The administration of clodronate to TgCRND8
mice, one of the mouse models of AD, significantly increased the amount of Aβ in cortical
blood vessels. In addition, when macrophage turnover was promoted by chitin, a com-
ponent of the cytoskeleton of crustaceans and insects, Aβ in cortical blood vessels was
significantly reduced. Fiala et al. compared the amount of Aβ phagocytosis by monocytes
and macrophages from the blood of healthy subjects and patients with AD and found
that cells from AD patients had a lower phagocytic capacity [91]. These results indicate
that macrophages are able to phagocytose Aβ and that impaired phagocytosis of Aβ by
macrophages may contribute to the development of AD.

Does the phagocytosis of Aβ in blood vessels by monocytes affect the deposition of Aβ

in the brain parenchyma? Michaud et al. observed the behavior of circulating monocytes
toward Aβ in blood vessels by in vivo two-photon live imaging [26]. The authors used
mice expressing GFP under the CX3CR1 promoter, a fractalkine receptor expressed on
immune cells, including monocytes and microglia, and detected monocytes circulating in
blood vessels by GFP. Interestingly, among arteries, veins, and veins with Aβ, circulating
monocytes were more likely to stay in veins with Aβ. The authors also found that circulat-
ing monocytes took up Aβ in the blood vessels. In addition, the contribution of circulating
monocytes (defined by low expression of Ly6C) was examined through the creation of
blood chimeras between APP/PS1 mice, a mouse model of AD, in which bone marrow was
removed by the administration of the antineoplastic drug busulfan/cyclophosphamide,
and Nr4a1-KO mice, in which circulating monocytes were absent. The results showed that
the area of Aβ plaques in the cortex and hippocampus was increased in the group of mice
with APP/PS1-Nr4a1-KO blood chimeras compared to the area in the group of mice with
APP/PS1-wild-type blood chimeras after bone marrow removal. These results suggest
that monocytes inhibit Aβ deposition in the brain parenchyma by phagocytosing Aβ in
blood vessels.

The role of microglia and blood-derived monocytes in the clearance of Aβ in the hip-
pocampus was examined [24]. When bone marrow cells from CAG-EGFP mice, in which
almost all the cells express EGFP, were intravenously administered to APP/PS1 mice
that had been irradiated to remove peripheral macrophages, GFP+ cells infiltrated the
hippocampus, accumulated around Aβ plaques, and phagocytosed Aβ. Furthermore, to
directly examine the role of blood-derived monocytes, APP/PS1 mice, a typical mouse
model of AD, were crossed with CD11b-HSVTK mice, which express thymidine kinase un-
der the CD11b promoter and can eliminate CD11b+ phagocytes in a ganciclovir-dependent
manner. Ganciclovir was administered into the ventricles of the crossed mice to suppress
the infiltration of myeloid cells into the brain parenchyma. This resulted in an increase
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in the number of Aβ plaques in the hippocampus, despite the microglial accumulation
around Aβ plaques. These results suggest that blood-derived monocytes are more capable
of phagocytosing Aβ than microglia. In their previous report, the authors claimed that
blood-derived monocytes differentiate into microglia because the GFP+ cells infiltrating
into the brain parenchyma by this method were Iba1+ and exhibited a ramified morphol-
ogy [24]. However, it is not accurate to conclude that GFP+ cells are microglia based on
these characteristics alone, and it should be noted that these authors have not verified the
expression of potential microglia-specific genes such as P2Y12 and TMEM119. Furthermore,
since irradiation itself promotes monocyte infiltration into the parenchyma [92,93], it is
possible that Aβ phagocytosis by blood-derived monocytes is overestimated.

In light of the above papers, it is expected that blood-derived monocytes are more
capable of phagocytosing Aβ than microglia. Grathwohl et al. crossed APP/PS1 mice with
CD11b-HSVTK mice and achieved microglia-specific removal by adjusting the concentra-
tion of ganciclovir administered into the ventricle [23]. Ganciclovir administration did
not change the number or size of Aβ plaques in the cortex or hippocampus, suggesting
that microglia are not capable of clearing Aβ. The authors claimed that there was no
macrophage infiltration at the time and in the brain regions observed in this paper, and
they did not examine the contribution of blood-derived monocytes to the clearance of Aβ.
It should also be noted that the study did not examine whether ganciclovir administration
affects the survival and proliferation of blood-derived monocytes.

Microglia have been considered to exert neuroprotective function because they inhibit
Aβ expansion by surrounding and phagocytosing Aβ plaques [94]. Recently, however,
it has been suggested that the phagocytosis of Aβ by microglia even promotes the for-
mation of Aβ plaques [90], and the brain may prevent the formation of Aβ plaques by
delegating the phagocytosis of Aβ to blood-derived monocytes. What is the molecular basis
of the difference in Aβ phagocytosis between microglia and blood-derived monocytes?
Transforming growth factor β (TGF-β)-mothers against decapentaplegic homolog (Smad)
2/3 signaling has been reported to have opposing effects on microglia and blood-derived
monocytes in Aβ phagocytosis. Tichauer et al. showed that TGF-β1-Smad3 signaling
enhances Aβ phagocytosis by microglia using isolated microglial cultures [95]. To examine
the effect of TGF-β signaling in blood-derived monocytes on AD pathology, Town et al.
crossed mice expressing a dominant-negative form of TGF-β receptor II in immune cells
under the control of the CD11c promoter with Tg2576 mice [32]. The suppression of TGF-β
signaling in blood-derived monocytes (CD11b+, CD11c+, CD45+, LyC6low) reduced Aβ

deposition in the brain parenchyma and cerebral blood vessels by approximately 90%.
The KO of TGF-β receptor II also increased the number of blood-derived monocytes that
took up Aβ in the brain parenchyma. Similarly, in cultured monocytes, the KO of TGF-β
receptor II enhanced Aβ phagocytosis. Furthermore, the KO of TGF-β receptor II promoted
the activation of Smad1/5/8, suggesting that Smad1/5/8 is important in promoting Aβ

phagocytosis by blood-derived monocytes. A similar trend was observed in the inhibition
of TGF-β receptor I. However, since CD11c expression is upregulated in microglia sur-
rounding Aβ plaques [31], it should be noted that it is not possible to accurately distinguish
microglia from blood-derived monocytes depending on the expression of these markers.

Among the receptors involved in phagocytosis of Aβ, scavenger receptor class A
(SR-A) may explain the difference between microglia and blood-derived monocytes. For
example, Smad3 increases the expression of SR-A in microglia [95], and Smad2 signaling
decreases the expression of SR-A in macrophages (derived from human monocytes, no
molecular marker information). Smad3 is downregulated in Alzheimer’s patients and
aging mice [95–97]; it makes sense that blood-derived monocytes are more capable of
phagocytosing Aβ than microglia in the AD brain. However, the relationship between
Smad2/3 and the expression of SR-A should not be simplified, because there are many
conflicting results about the Smad2/3 activity in aging and AD [98].

Another important factor in determining whether microglia or monocytes are more
capable of phagocytosing and removing more Aβ from the brain parenchyma is how
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many monocytes infiltrate the brain. However, few papers have compared the num-
bers of microglia and monocytes in the brain parenchyma. This is because the methods
used to distinguish between microglia and monocytes, such as microglial removal and
post-irradiation bone marrow transplantation, promote the infiltration of peripheral cells
into the brain parenchyma [92,93]. Unger et al. attempted to distinguish microglia and
monocytes by the expression level of CD45 and TMEM119 in APP/PS1 mice [17]. In the
whole brain, the ratio of microglia to monocytes was 9:1, but in the hippocampus and
cortex, where Aβ aggregation was observed, the ratio of microglia to monocytes was
almost equal. Furthermore, the number of cells expressing CD68 (a lysosomal marker),
which is an indicator for phagocytosis prediction, was 1:3 for microglia and monocytes in
the hippocampus, implying that monocytes may be more capable of phagocytosing Aβ

(Figure 4). However, this finding needs to be verified in various other animal models of
AD. In addition, since CD45 expression is upregulated [37] and TMEM119 expression is
downregulated in microglia under the inflammatory condition [35], it should be noted
that whether the expression levels of these markers accurately distinguish microglia and
blood-derived monocytes needs to be interpreted carefully.

Figure 4. Phagocytic capacities of microglia and infiltrating monocytes in AD: Unger et al. has reported that in the vicinity
of Aβ plaque, the ratio of microglia to monocytes is about 1:1 [17]. However, when restricted to CD68-positive cells, the
ratio of microglia to monocyte was about 1:3. Microglia phagocytose not only Aβ but also synapses attached to Aβ, while
monocytes do not phagocytose synapses [34].
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As will be discussed in the following chapter on synapses, it has been shown that in
AD brains, microglia phagocytose synapses in addition to Aβ, which may accelerate the
deterioration of the pathology. On the other hand, the enhancement of Aβ phagocytosis by
monocytes has not been shown to cause synapse loss, suggesting that the promotion of
monocyte infiltration may be an effective treatment for AD.

3.5. Synapses

Microglia have been reported to phagocytose surplus synapses in the developing
lateral geniculate nucleus and hippocampus, thereby contributing to the refinement of
neural circuits and normal brain function [72]. In recent years, it has been confirmed that
microglia phagocytose synapses in brains affected by neurodegenerative diseases such as
AD and MS [72]. On the other hand, the infiltration of blood-derived monocytes into the
brain parenchyma has been observed in these diseases, and it is possible that blood-derived
monocytes also phagocytose synapses. Therefore, in this chapter, we will discuss the
different roles of microglia and blood-derived monocytes in synaptic phagocytosis.

Microglial phagocytosis of synapses in the brains of AD model mice was first reported
by Hong and colleagues [34]. The authors showed that synaptic phagocytosis by microglia
is facilitated by the deposition of C1q at synapses in the J20 mouse model of AD and
in mice treated with Aβ oligomers. Because Aβ binds to synaptic proteins [99,100], it
is possible that Aβ anchors synapses and C1q to facilitate synaptic phagocytosis by mi-
croglia. It was not made clear whether blood-derived monocytes infiltrate into the brain
parenchyma, but the authors confirmed that the cells expressing the complement receptors
for synaptic phagocytosis also expressed P2Y12, a potential microglia-specific marker,
suggesting that complement-dependent synaptic phagocytosis was mainly carried out by
microglia (Figure 4).

Several studies have shown that blood-derived monocytes that infiltrate the brain
parenchyma phagocytose Aβ in AD, but their involvement in synaptic phagocytosis is
unclear. Using primary cultures of cortical neurons, Li and colleagues showed that Aβ

fibrils and oligomers cause a loss of excitatory synapses and abnormalities in neurite
morphology [38]. They found that these neuronal abnormalities caused by Aβ can be
rescued by co-culturing neurons with bone-marrow-derived monocytes and bone-marrow-
derived macrophages (bone marrow cells differentiated by RPMI-1640, FBS, and M-CSF
treatment). They also showed that macrophages clear Aβ by phagocytosis and extracellular
secretion of enzymes and that the activation of macrophages by glatiramer acetate (GA)
promotes this clearance. Furthermore, a transplantation of blood-borne bone-marrow-
derived monocytes (CD115+ and CD45high) into APP/PS1 mice rescued the reduction in
the number of excitatory synapses in the olfactory cortex and hippocampus, indicating
that infiltrative macrophages have a neuroprotective function in vivo. Consistent with the
authors’ previous report that GA treatment promotes macrophage infiltration [101], GA
treatment in a mouse model of AD showed neuroprotective effects as well as monocyte
transplantation. Together with the results of in vitro and in vivo experiments, the authors
consider that the neuroprotective effect of blood-derived monocytes is due to both the
promotion of synaptogenesis and the inhibition of synapse loss through the clearance
of Aβ. Furthermore, the correlation between the degree of infiltration of blood-derived
monocytes and cognitive performance in a mouse model of AD supports the neuroprotec-
tive effects of blood-derived monocytes. Indeed, osteopontin, whose expression level is
increased in monocytes and macrophages by GA treatment, has been shown to promote
synaptogenesis [102,103]. These results suggest that blood-derived monocytes phagocytose
Aβ but not synapses and that the phagocytosis of blood-derived monocytes may be an
effective therapeutic target in AD. However, it should be noted that this study did not
confirm the infiltration of CD115+ monocytes into the parenchyma; Wang et al. concluded
that peripheral macrophages do not accumulate around Aβ plaques after parabiosis [104].
Furthermore, Di Liberto et al. showed that blood-derived monocytes can phagocytose
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synapses [18]. Thus, it is also possible that blood-derived monocytes phagocytose synapses
in AD brain.

Viral infection causes an infiltration of circulating monocytes into the brain parenchyma.
In a mouse model of West Nile virus (WNV) infection, Vasek et al. tested hippocampal-
dependent cognitive decline and the possibility of synapse loss in this model [39]. In the
hippocampus of WNV-infected mice, macrophage responses, such as increased Iba1 area
and CD68 expression, were observed. In addition, WNV infection increased the expression
of complement-pathway-related genes (C1qa and C3) in the hippocampus and decreased
synaptic density in the CA3 field due to increased presynaptic-specific phagocytosis by
microglia. Furthermore, viral infection increased the colocalization of presynapses with
C1qA, and the decrease in synaptic density was blocked by the KO of C3 and C3aR (the
receptor of C3a, the cleavage product of C3), indicating the involvement of complement
and subsequent synaptic phagocytosis by microglia. Importantly, flow cytometry revealed
that the number of macrophages (CX3CR1+, CD45high, and CD11bhigh) infiltrating the
brain parenchyma decreased to almost zero between 7 and 25 days after WNV infection,
when synaptic phagocytosis and synaptic density reduction were observed. Therefore,
the WNV-induced synaptic phagocytosis observed in the study was likely to be mainly
performed by microglia.

Synaptic phagocytosis has also been observed after Toxoplasma infections. Carrillo
et al. showed that hippocampal microglia and infiltrating monocytes in a mouse model of
Toxoplasma infection stripped and phagocytosed inhibitory presynaptic terminals around
the cell body [44]. Using CX3CR1-GFP mice, in which both microglia and circulating
monocytes express GFP, the authors found that there was a mixture of cells with high
and low GFP fluorescence intensity in the brain parenchyma. Interestingly, the cells that
surrounded the neuronal cell bodies had high GFP fluorescence. As Yamasaki et al. sug-
gested that cells with high GFP fluorescence intensity were resident microglia and those
with low fluorescence intensity were infiltrating monocytes (F4/80+, CCR2+) [15], it is
possible that microglia predominantly phagocytosed synapses after Toxoplasma infection.
Notably, microglia in the infected mice had enlarged cell bodies with thin processes, but the
infiltrating monocyte-like cells had few processes, suggesting the possibility that microglia
had higher surveilling ability. Since previous studies have reported that Toxoplasma infec-
tion activates the complement pathway [105,106], it is possible that Toxoplasma-induced
synaptic phagocytosis is also complement-dependent.

It has also been reported that infiltrating monocytes may phagocytose synapses. Di
Liberto et al. used a mouse déjà vu model to examine the interaction between CD8+ T
cells and phagocytes in synapse loss during viral infection [18]. The déjà vu model is an
animal model that exhibits pathological features (microglial activation and infiltration of
CD8+ T cells) similar to Rasmussen’s encephalitis, a rare central inflammatory disease.
Experimentally, the inflammatory response is elicited by administering weakened lym-
phocytic choriomeningitis virus to the cortex of neonatal mice and again intravenously
in adolescence. In the infected mice, the numbers of inhibitory pre- and postsynaptic
terminals formed in the deep cerebellar nuclei neurons were reduced. Around the cell
body of virus-infected neurons, activated Iba1+ phagocytes (with enlarged and shortened
processes) took up presynaptic proteins. Interestingly, some of the Iba1+ cells did not
express TMEM119, a potential microglia-specific marker, suggesting that blood-derived
monocytes may also phagocytose synapses. However, because TMEM119 expression was
reported to be reduced in microglia of diseased brains [35], it is difficult to distinguish
between microglia and monocytes based solely on the TMEM119 expression.

A similar experimental paradigm was performed using CX3CR1CreERT2/+ x R26-Stop-
RFPfl/+ mice, in which microglia and monocyte-derived cells could be distinguished by the
presence or absence of RFP expression [45]. This approach takes advantage of the fact that
temporary tamoxifen administration causes both microglia and monocytes to be labeled
with RFP, but the turnover of monocytes is faster than that of microglia, allowing RFP
to be identified only in microglia. The authors found that RFP-negative monocytes also
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surrounded the cell bodies of infected neurons. Furthermore, infection-induced synaptic
phagocytosis was not rescued in C3/C4-KO mice, suggesting that synaptic phagocyto-
sis in this mouse model is independent of the complement pathway. The authors also
demonstrated a molecular mechanism by which IFN-γ released from CD8+ T cells increases
CCL2 expression in neurons via STAT1, and phagocytes that receive CCL2 engulf synapses.
Although they did not compare the amount of synaptic phagocytosis between microglia
and blood-derived monocytes, since CCR2 is mainly expressed in blood-derived mono-
cytes [107], synaptic phagocytosis in the déjà vu model may be dominated by monocytes.
In fact, in this study, the depletion of monocytes through the administration of MC-21, an
anti-CCR2 antibody, restored motor function and synapse loss caused by viral infection,
suggesting that synaptic phagocytosis by monocytes contributes significantly to pathology.

Thus, the complement cascade would rather affect microglial engulfment of synapses
than that of blood-derived monocytes. Among the complement receptors, CR3 is the one
most associated with synaptic phagocytosis. As it is expressed in both microglia and
macrophages, the difference in complement-dependent synaptic phagocytosis between
the two may be due to the localization (e.g., more at the tip of the projection in microglia)
rather than the amount of CR3 expression. As mentioned above, in the study by Carrillo
et al. suggesting complement-dependent synaptic phagocytosis by Toxoplasma infection,
the infiltrating monocyte-like cells had few ramified processes and did not phagocytose
synapses, while the study by Di Liberto et al. suggested complement-independent synap-
tic phagocytosis in the déjà vu model; infiltrating monocytes had short processes and
phagocytosed synapses [18,44]. It is still speculative, but it is possible that complement-
dependent synaptic phagocytosis requires finely branched processes and the localization
of complement receptors there.

Few studies have verified the number of microglia and monocytes in the brain
parenchyma of animal models of viral infection. Vasek et al. measured the number
of these cells by flow cytometry of whole-brain samples of mice infected with WNV [39].
The numbers of microglia were approximately 200 × 102 (control), 160 × 102 (8 days after
infection), and 160 × 102 (25 days after infection), while the numbers of monocytes were
0 (control), 50 × 102 (8 days after infection), and 5 × 102 (25 days after infection). For
viral infection models, it should be noted that the degree of BBB disruption and the type
and amount of proinflammatory cytokines secreted by each model may differ, resulting in
different degrees of monocyte infiltration, which may determine whether monocytes can
phagocytose synapses.

4. Significance of Phagocytosis on Phagocytes

The mechanism by which microglia and blood-derived monocytes remove neurotoxic
substances has been the subject of accumulating research, with the expectation that it
will lead to the prevention and amelioration of brain diseases. Differences in phagocytic
mechanisms induced by different phagocytic targets and phagocytosis amounts can be
reflected in intracellular signaling within phagocytes, and thus may affect phagocyte
functions. Therefore, in Chapter 4, we will generalize a little and review the significance
of phagocytosis for phagocytes, to help understand the difference between microglia
and blood-derived monocytes (Figure 5). It possibly contributes to the manipulation
of phagocyte functions through the regulation of phagocytosis, and eventually to the
discovery of therapeutic targets. Further, in this chapter, we will discuss the possibility
that phagocytosis has significance beyond the mere removal of unwanted materials from
the CNS.
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Figure 5. Significance of phagocytosis: Phagocytes possibly depend on the energy produced by the degradation of
phagocytosed materials for their survival. It is also possible that phagocytes expose phagocytosed materials to the cell
surface to mimic the target of phagocytosis. It has been suggested that phagocytes network or interact with other cells via
presentation and exchange of phagocytosed materials.

4.1. Suppression of Inflammatory Response

Several studies have reported that inflammatory responses of macrophages are sup-
pressed after phagocytosis [108]. Most of these reports evaluated the inflammatory re-
sponse by treating LPS to macrophages co-cultured with myelin debris or apoptotic cells
and comparing the release of various cytokines. With these validation methods, however,
it is not possible to separate the recognition, uptake, and degradation of phagocytic targets.
Indeed, Kim and Ma showed that contact with apoptotic cells alone inhibited or promoted
the release of the pro-inflammatory cytokine IL-12 or the anti-inflammatory cytokine TGF-
β by macrophages, respectively [109]. Different approaches are needed to examine the
impact of intracellular degradation products resulting from phagocytosis on phagocyte
function, and such studies are presented below.

Bogie et al. showed that phosphatidylserine (PS), a phospholipid contained in myelin,
causes LXRs-dependent suppression of the release of pro-inflammatory cytokine IL-6 after
myelin phagocytosis by macrophages in vitro [110]. In a following report by the same
group, it was shown that myelin-derived PS causes PPARs-dependent suppression of
NO release from phagocytosing macrophages [111]. The authors further showed that
intravenous administration of PS-containing liposome to EAE model rats induced uptake
of PS by macrophages in the demyelinated area and alleviated the symptoms of EAE.
Furthermore, the authors examined in more detail the changes in macrophage properties
after myelin phagocytosis [112]. By analyzing cultured cells and MS patient brains, they
found that myelin uptake inhibited the release of pro-inflammatory cytokines, but it was
promoted with increasing myelin exposure time. SCD1, an enzyme that converts saturated
fatty acids to monounsaturated fatty acids, was suggested to be involved in the switch
from anti-inflammatory to inflammatory phenotype. In addition, monounsaturated fatty
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acids were found to promote the inflammatory response by inhibiting ABCA1-dependent
extracellular release of cholesterol.

It has been suggested that suppression of the inflammatory response of macrophages
is also caused by phagocytosis of apoptotic cells. Morioka et al. found that gene expression
levels of several solute carrier (SLCs) were increased and the glycolytic system was pro-
moted during the process of phagocytosis by macrophages [113]. It was also suggested
that among SLCs, SLC16A1, whose expression increases upon uptake of apoptotic cells,
promotes the release of lactate, a product of the glycolytic system, and changes the sur-
rounding macrophages into anti-inflammatory state. Zhang et al. found that fatty acids
derived from apoptotic cells altered the properties of macrophages [114]. Fatty acids in
macrophages, which increase with apoptotic cell phagocytosis, promoted mitochondrial
respiration and NAD+-dependent signaling cascades. This in turn contributes to cardiac
tissue repair by promoting the production and release of the anti-inflammatory cytokine
IL-10 through the activation of SIRT1 and binding of the transcription factor Pbx1 to the
IL-10 promoter.

4.2. Acquisition of Nutrients

Once transported to the digestive organelle lysosome, phagocytosed materials are
degraded by various enzymes [115]. This degradation reaction is accompanied by a heat
release reaction, which indicates that energy is produced in the cell after phagocytosis. It is
possible that phagocytes depend on the energy produced by the degradation reaction for
their survival. In particular, these cells move their cytoskeletons dynamically, for example,
during migration and in the formation of phagocytic cups [116], and they are expected
to consume a large amount of energy compared to nonphagocytic cells. Phagocytes may
phagocytose to obtain energy for further phagocytosis. Findings by Yurdagul et al. would
support this idea: They found that digestion of phagocytosed materials is important for
sustained phagocytosis by macrophages [117]. Macrophages metabolize dead cell-derived
arginine into ornithine and putrescine, and putrescine increases the expression of Dbl (Rac1
guanosine triphosphatase (GTP)-exchange factor). Dbl activates Rac1 and promotes actin-
dependent uptake of apoptotic cells. It has also been suggested that myelin phagocytosis
increases the expression level of CD36 in microglia and macrophages, promoting further
myelin phagocytosis [118]. Microglia continuously extend and retract their processes to
monitor the surrounding environment, and it would be interesting to investigate whether
the energy obtained from phagocytosis is also utilized in this constant surveillance.

4.3. Survival in Unfamiliar Environments

Miller et al. previously showed that Entamoeba histolytica invades the human body
and trogocytoses human cells [119]. In this paper, the authors found that Entamoeba
histolytica exposes fragments of human cells to the cell surface, thereby escaping lysis by
human serum [120]. Does this defense mechanism of coating oneself with phagocytosed
materials to survive in an environment composed of cells of different origins also work
in phagocytes? For example, microglia infiltrate into the brain parenchyma from the
yolk sac during embryonic development, and it is possible that microglia, which are
originally derived from the mesoderm, have some kind of defense or mimicry mechanism
to survive in the ectoderm-derived brain environment. It has been shown that microglia
phagocytose dead neurons during invasion and that the inhibition of neuronal cell death
suppresses microglial invasion into the brain parenchyma [121,122]. Taken together, these
results and those reported by Miller et al. raise the possibility that microglia can survive
in an ectoderm-derived environment by exposing phagocytosed dead cell debris to the
cell surface.

4.4. Antigen Presentation

It has been shown that phagocytosis can be used as a tool for intercellular communi-
cation, and a representative example is antigen presentation. Dendritic cells are the most
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common type of cells that present antigens, but a number of papers have argued that
microglia and macrophages also have the potential to present antigens [123]. However,
it should be noted that most of the findings from these studies are based solely on the
presence or absence of expression of antigen presentation-related proteins such as MHC
class II. In a recently published paper, Mundt et al. examined the ability of dendritic cells,
B cells, microglia, and macrophages to present antigens using myelin debris [124]. The
authors tested the possibility that each cell type presents antigens by knocking out antigen-
presentation-related proteins specifically in these cell types, and they showed that dendritic
cells, but not microglia or macrophages, regulate T cell activation via antigen presentation.

Thus, microglia and macrophages may not be the major antigen-presenting cells,
but since microglia secrete extracellular vesicles, it is possible that they pass antigen-
encapsulating vesicles between neighboring cells to transmit information.

4.5. Networking

It was also shown that phagocytosed materials can be exchanged not only between
proximal cells but also between distal cells. For example, it has been suggested that mi-
croglia release phagocytosed tau and contribute to tau propagation [125]. This may function
as an alert to inform phagocytes in far brain regions of abnormalities occurring locally. On
the other hand, a study examining tau propagation by infiltrating macrophages in the brain
parenchyma of mice in which microglia were removed showed no change in the degree
of tau accumulation. Therefore, it was concluded that macrophages do not contribute to
tau propagation [126]. Since some studies reported that peripheral macrophage-derived
exosomes enter the brain parenchyma [127], it is likely that macrophages are capable of
releasing phagocytosed material. Microglia are also known to exocytose lysosomes [128],
and it is expected that the phagocytosed materials encapsulated in vesicles are exchanged.
There are still many unanswered questions about the existence and mechanism of signal
transduction by extracellularly released vesicles and whether it can occur between hetero-
geneous cells. In recent years, a variety of tools have been developed to examine contact-
and noncontact-dependent cell–cell interactions [129–131]; therefore, it is expected that the
study of cell–cell interactions via phagocytosis will be significantly developed.

Although many studies have shown that the metabolites of phagocytosis alter the
inflammatory properties of phagocytes, few studies supported the relationship between
phagocytosis and the survival, antigen presentation, and network formation of phagocytes,
as described in the latter part of this chapter. Further studies on the effects of phagocytosis
on phagocytes will not only elucidate the biological properties of phagocytes, but also
contribute to develop the method to manipulate the function of phagocytes, and thus to
the discovery of therapeutic targets.

5. Conclusions and Outlook

Many unanswered questions remain. One question of particular interest to us is why
circulating monocytes need to be recruited to the parenchyma despite the large numbers of
brain-resident macrophages, i.e., microglia. Infiltration of monocytes can be merely the
result of a breakdown of BBB. Another possibility is that recruiting cells that have different
phagocytic capacities (the expression of receptors required for the recognition of phagocytic
targets, amount of phagocytosis, digestive capacity, etc.) from microglia to the parenchyma
may be effective in removing unwanted materials. It may also be important that the
infiltrating monocytes reside in areas that are inherently isolated from the parenchyma and
are not exposed to cytokine storms caused by the damage or inflammation occurring in the
parenchyma. Indeed, as discussed in the section on Aβ phagocytosis, ambient cytokine
levels have been shown to affect the expression and function of phagocytic receptors.
Furthermore, the fate of monocytes that infiltrate the brain parenchyma is still unknown.
It is possible that after exerting their phagocytic activity in the brain parenchyma, the
monocytes may re-enter the circulatory system, but given the short lifespan of circulating
monocytes [19], they are more likely to die in the parenchyma. If this is the case, the impact
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of the processing mechanism of dead monocytes on pathogenesis will be an important
issue. Additionally, as mentioned in the last chapter, clarifying the changes in the properties
of phagocytes upon phagocytosis will help to predict the effects (both good and bad) of
phagocytosis manipulation as described above.

Finally, in this review, the phagocytic functions of microglia and infiltrating monocytes
in the CNS parenchyma were outlined for comparison. We also found that it is difficult
to make a general comparison of the magnitude of the contribution of each phagocyte to
the clearance of unwanted debris because the mechanism of phagocytosis is affected by
multiple factors, including the type of disease, the target of phagocytosis, and the timing
and ability of microglia and monocytes to exert their phagocytic abilities. In the future,
it is hoped that the phagocytic capacity of microglia and circulating monocytes will be
examined under the same conditions in the same animal and that the differences between
them will be clarified. Recently, induced-pluripotent-stem-cell-derived microglia [132–137]
and blood-derived microglia-like cells [138,139] were developed. If these technologies can
be applied to manipulate the CNS environment through efficient enhancement or inhibition
of phagocytosis, they will lead to the prevention and treatment of diseases such as those
described in this review.
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Abbreviations

Aβ amyloid-β
ABCA1 ATP-binding cassette transporter A1
AD Alzheimer’s disease
BAMs border-associated macrophages
BBB blood brain barrier
BM bone marrow
BrdU bromodeoxyuridine
C1q complement component 1q
C3 complement component 3
C3aR C3a anaphylatoxin receptor
C4 complement component 4
CAG CMV early enhancer/chicken β actin
CCL2 CC chemokine ligand 2
CCR2 CC chemokine receptor 2
CD8 cluster of differentiation 8
CD11b cluster of differentiation 11b
CD11c cluster of differentiation 11c
CD11c-DNR CD11c promoter–driven dominant-negative TGF-b receptor type II
CD36 cluster of differentiation 36
CD45 cluster of differentiation 45
CD47 cluster of differentiation 47
CD68 cluster of differentiation 68
CD93 cluster of differentiation 93
CD115 cluster of differentiation 115



Cells 2021, 10, 2555 21 of 27

CD163 cluster of differentiation 163
CD206 cluster of differentiation206
CNS central nervous system
CR3 complement component 3 receptor
CSF1R colony-stimulating factor 1 receptor
CX3CR1 CX3C chemokine receptor 1
EAE experimental autoimmune encephalitis
EMP erythro-myeloid progenitors
FBS fetal bovine serum
GA glatiramer acetate
GCV ganciclovir
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
GTP guanosine triphosphate
HexB hexosaminidase subunit beta
HSC hematopoietic stem cell
HSVTK herpes simplex virus thymidine kinase
Iba1 ionized calcium-binding adapter molecule 1
IFN-γ interferon-γ
IL-4 interleukin-4
IL-10 interleukin-10
IL-12 interleukin-12
KO knockout
Ly6C lymphocyte antigen 6 complex locus C
LPS Lipopolysaccharide
LXRs liver X receptors
MBP myelin binding protein
MCAO middle cerebral artery occlusion
M-CSF Macrophage Colony-Stimulating Factor
MERTK Mer tyrosine kinase
MS multiple sclerosis
NAD nicotinamide adenine dinucleotide
NPCs neural progenitor cells
Nr4a1 nuclear receptor subfamily 4 group A member 1
P2Y12 P2Y purinoceptor 12
Pbx1 PBX Homeobox 1
RPMI-1640 Roswell Park Memorial Institute-1640
Sall1 SAL-like 1
SCD1 stearoyl-CoA desaturase 1
Siglec-H sialic acid-binding immunoglobulin-like lectin H
SIRPα signal regulatory protein α

SIRT1 Sirtuin 1
SLCs solute carriers
Smad mothers against decapentaplegic homolog
SR-A scavenger receptor class A
STAT1 signal transducer and activator of transcription 1
TAMs tumor-associated macrophages and microglia
TGF-β transforming growth factor β
TMEM119 transmembrane protein 119
TNF-α tumor necrosis factor-α
WNV West Nile virus
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