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Abstract

To investigate whether specific obesity/metabolism-related gene expression patterns affect the survival of patients with ovarian cancer. Clinical
and genomic data of 590 samples from the high-grade ovarian serous carcinoma (HGOSC) study of The Cancer Genome Atlas (TCGA) and 91
samples from the Australian Ovarian Cancer Study were downloaded from the International Cancer Genome Consortium (ICGC) portal. Cluster-
ing of mRNA microarray and reverse-phase protein array (RPPA) data was performed with 83 consensus driver genes and 144 obesity and lipid
metabolism-related genes. Association between different clusters and survival was analyzed with the Kaplan–Meier method and a Cox regres-
sion. Mutually exclusive, co-occurrence and network analyses were also carried out. Using RNA and RPPA data, it was possible to identify two
subsets of HGOSCs with similar clinical characteristics and cancer driver mutation profiles (e.g. TP53), but with different outcome. These differ-
ences depend more on up-regulation of specific obesity and lipid metabolism-related genes than on the number of gene mutations or copy
number alterations. It was also found that CD36 and TGF-ß are highly up-regulated at the protein levels in the cluster with the poorer outcome.
In contrast, BSCL2 is highly up-regulated in the cluster with better progression-free and overall survival. Different obesity/metabolism-related
gene expression patterns constitute a risk factor for prognosis independent of the therapy results in the Cox regression. Prognoses were condi-
tioned by the differential expression of obesity and lipid metabolism-related genes in HGOSCs with similar cancer driver mutation profiles, inde-
pendent of the initial therapeutic response.
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Introduction

Epidemiological evidence now points to the negative impact of obesity
on ovarian carcinogenesis [1, 2]. The low-grade chronic inflammatory
state characteristic of this condition not only acts as an inducing fac-
tor but can also control cancer cell behaviour and facilitate its adap-
tive evolution through the clinical course of the disease [3, 4]. Our
group and other researchers have recently provided evidence that
overweight and obese ovarian cancer patients have worse outcome
than leaner counterparts [5, 6]. These more unfavourable results can-
not be explained by differences in the completion rates of any stan-
dardized treatment (e.g. primary debulking versus neoadjuvant
chemotherapy) [6–8], nor by a higher incidence of adverse effects or
co-morbidities [9, 10]. Despite the facts, many clinicians continue to
argue that obesity does not constitute a risk factor and do not include
it among the key components that must be modified after completing

treatment to improve survival [4, 11]. The most important argu-
ment against considering obesity as a risk factor is that patients
with similar clinical profiles and responses to treatment, regardless
of their body mass index, have similar results [12]. Those in favour
of including obesity contend that obese and ill women represent
the most severe end of the spectrum in the clinical course of a
metabolic disease. In this context, there is a spectrum of condi-
tions that include lean but metabolically unhealthy women and
metabolically healthy but obese women. Both conditions are asso-
ciated with an earlier onset of metabolic diseases or cardiovascular
diseases [13].

Genetic and transcriptomic profiling of ovarian cancer samples
allows for identifying at least four cancer subtypes, but without being
able to relate them to a clinical course or prognosis. The analysis of
The Cancer Genome Atlas (TCGA) makes it obvious that the muta-
tional spectrum of ovarian cancer is limited, with most genetic events
occurring at the level of copy number variation [14]. Additionally, the
genetic profile of the primary tumour is different from site-specific
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metastatic foci, reflecting tumour heterogeneity and the influence of
the tumour microenvironment. To date, 83 driver genes have been
identified and are considered significant for ovarian carcinogenesis
and disease progression [15]. Using different combinations, several
authors have proposed prognosis signatures, none of them with obvi-
ous translation to the clinical setting. Intriguingly, tumours harbour-
ing similar mutations or driver gene expression patterns do not
behave similarly, some recurring earlier and others later. Some
remain sensitive, while others are completely resistant.

As has been performed with cancer, researchers have character-
ized the genetic profile of obesity and metabolic disease. A list of
genes associated with these morbidities have been defined by con-
sensus and serve as useful markers in identifying patients at risk,
independent of their current body mass index or phenotype [16, 17].
More importantly, some expression patterns have identified women
who behave as morbidly obese, although they are thin, and in turn,
metabolically healthy obese women who behave similarly to thin and
healthy counterparts. Based on this information, we decided to assess
whether such obesity and abnormal metabolism-related gene expres-
sion patterns affect the survival of ovarian cancer patients with the
same driver mutation profile.

Methods

Selection of driver and obesity/metabolism-
related genes

The list of 83 mutational cancer driver genes was retrieved from the
catalogue of driver mutations (2016.5) available at the website www.into

gen.org created by the Biomedical Genomics Group (Barcelona, Spain).

The list resulted from the mutational analysis of 316 samples of HGSOC
as part of the TCGA study and represents the most recurrently mutated

cancer driver genes in this histological subtype [14]. The obesity- and

abnormal metabolism-related gene list was built up by a curation

approach using different sources including the most recent report of
the human obesity gene map [17]. A total of 144 genes were included

on the list.

Download and analysis of TCGA and Australian
Ovarian Cancer Study data for high-grade serous
ovarian cancer

The latest data available for two cohorts, the TCGA (US-OVCA) and

Australian Ovarian Cancer Study (AUSY-OVCA), were downloaded in
March 2017 from the open-access Genomic Data Commons (por-

tal.gdc.cancer.gov) and the International Cancer Genome Consortium

(ICGC) data portals (dcc.icgc.org), respectively. We also obtained con-

trolled data access (DACO-1040139) from ICGC that allowed us to
download the raw data for a deeper and unbiased analysis. Only

HGSOC cases were included in the analyses. Using cBioPortal tools

[18], we first analyzed US-OVCA mutation data from whole-exome

sequencing, putative copy number alterations (from 590 cases deter-
mined using GISTIC 2.0), mRNA expression Z-scores (using a

threshold �2.0, Agilent microarray), protein expression Z-scores (us-
ing a �2.0 threshold measured by either a reverse-phase protein array

[RPPA] or mass spectrometry) and all available clinical data and

uploaded later to GenomeSpace portal (gsui.genomespace.org) for in-

silico multistep analysis using pipelines available in the gene pattern
platform version 3.9.9 (Broad Institute, MIT,USA) [19]. AUSY-OVCA

raw mRNA expression and clinical data (91 cases) were first analyzed

using ICGC tools (e.g. cohort comparison and oncogrid) and then
uploaded to the genome space platform for in-silico analysis with the

gene pattern tools. The data sets from both cohorts were pre-pro-

cessed and clustered by driver and obesity-related genes using non-

negative matrix factorization (NMF) [20]. The cophenetic correlation
coefficient and the average silhouette width calculation were used to

determine the most robust clusters. Differential expression analyses

were carried out using the comparative marker selection module

(genepattern) to calculate the significant differences in gene expres-
sion between classes. Array-based data, either for mRNA or protein

expression levels, were displayed in a heat map format using the

HeatMapViewer v14 module (genepattern) to facilitate pattern
identification.

The most robust NMF consensus clustering of copy number varia-

tions (579 samples, 73 copy number focal peak regions, https://doi.org/

10.7908/c1xs5ttz) mRNA (569 samples, using the 1500 most variable
genes, https://doi.org/10.7908/c1dn44h7), methylation (582 samples,

using the 2146 most variable genes, https://doi.org/10.7908/c1bv7g24),

and RPPA data (405 samples, using the 208 most variable proteins,

https://doi.org/10.7908/c1p55mzw) were retrieved from the Firehose
portal (gdac.broadinstitute.org, Broad Institute, MIT, USA) to externally

cross-validate the relevance and robustness of obesity/metabolism-related

gene clustering.

Survival analysis

Kaplan–Meier survival analysis was performed with JMP version 13

software (SAS Institute Inc., Cary, NC, USA); Significance was esti-

mated with the log rank test. The Cox proportional hazards regression
model and Wald tests were used to evaluate the relationship between

survival time and different clinical and molecular variables. Primary

therapy result was defined according RECIST criteria (complete remis-

sion/response, partial remission/response, stable disease, progressive)
after completion of the originally planned treatment (either primary

debulking surgery followed by chemotherapy or neoadjuvant

chemotherapy plus interval debulking surgery). Overall survival (OS)

was defined in the US-OVCA cohort as the interval from the date of ini-
tial surgical resection to the date of last known contact or death. Pro-

gression-free survival (PFS) was defined for the US-OVCA cohort as

the interval from the date of initial surgical resection to the date of pro-
gression, recurrence, or last known contact if the patient was alive and

had not recurred. Follow-up for the AUSY-OVCA began after treatment

was completed.

Gene interactions, mutually exclusive, co-
occurrence and network analysis

Gene and biological interaction analyses were carried out using the

open-access cBioPortal tools, following same methodology as described
by Ciriello et al. [21] and visualized using Cytoscape 3.5.1.
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Results

Patients expressing a subset of obesity/
metabolism-related genes have poorer survival
than those exhibiting the mirror pattern

Using NMF analysis of RNA microarray data, we robustly segregated
the US-OVCA (590 cases) and AUSY-OVCA (91 cases) cohorts into
two clusters based on our list of 144 selected obesity/metabolism-
related genes (cophenetic coef. 0.9947 for TCGA data and 0.97 for
AUSY data, respectively). The list of 144 genes and details of their
biological functions are provided in Table S1. Our clustering process
was externally validated by comparing it to published examples of
robust clustering accessible through the Firehose portal. Statistical
analyses are provided in Table S2. Ninety-eight genes of this list were
expressed significantly differently between clusters in the US-OVCA
cohort and 34 genes in the AUSY-OVCA (feature P < 0.05) (detailed
information is provided in Table S3). Among the genes consistently
and more significantly (P < 0.001) up-regulated in cluster 1 in both
cohorts were CD36, TGF-ß, LACTB, TLR4, MEF2C and PTPRE. On the
other hand, genes consistently up-regulated in cluster 2 were RXRG,

DVL1, MEF2B, BSCL2, and E2F1. Differences in gene expression pat-
terns between clusters are presented as heat maps in Figure 1A and
B. As shown in Figure 2, PFS and OS were significantly shorter in
cluster 1 than in cluster 2 in the US-OVCA cohort (PFS
P-value < 0.003 and OS P-value < 0.0001). Median PFS and OS for
clusters 1 and 2 were 16.1 and 19.2 months and 39.9 and
50.3 months, respectively. Similarly, PFS was significantly shorter in
cluster 1 than in cluster 2 in AUSY-OVCA cohort (PFS
P-value = 0.018), and OS showed a tendency towards longer survival
among members of cluster 2 (OS P-value = 0.09). The median PFS
and OS for cluster 1 compared with cluster 2 were 3.6 versus
6 months and 28.1 versus 35 months, respectively.

Given that changes in RNA expression levels do not necessarily
correlate with changes in protein levels, we sought to determine
whether RNA expression patterns match protein expression patterns,
given the relevance of the latter for diagnosis. Using NMF analysis of
RPPA data of 174 matched RNA samples, we confirmed the two clus-
ters already identified (cophenetic coef. 0.9867, see Fig. 3A). At the
protein level, there were 28 genes expressed differently, with statisti-
cal significance (all with P-value < 0.01). Among those considered
significant at the RNA expression level, CD36 and TGF-ß were also
up-regulated at protein levels in cluster 1 and BSCL2 in cluster 2,

Fig. 1 Heat map of NMF clustering of RNA expression microarray data of US-OVCA (TCGA data set [A]) and AUSY-OVCA (Australian Ovarian Cancer

Study [B]) cohorts based on obesity and lipid metabolism-related gene expression in primary tumour samples.
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respectively. As observed with RNA data, different outcome in terms
of PFS and OS were also found between clusters based on the expres-
sion patterns. As shown in Figure 3B, PFS was significantly shorter in
cluster 1 (PFS P-value < 0.007). The median PFS for cluster 1 com-
pared with cluster 2 was 14.8 versus 18.2 months, respectively.

HGOSCs harbouring cluster 1 obesity/
metabolism-related gene expression pattern
have poorer survival rates than cluster 2, despite
sharing the same cancer driver gene profile

To determine the impact of different obesity/metabolism-related gene
expression patterns in the prognosis of ovarian cancer prognosis, we
carried out a second NMF clustering analysis of RPPA data, this time
using the most variable of the 83 cancer driver genes for HGOSC
(seeTable S4). Our hypothesis was that the differential expression of
cancer driver genes can serve to identify clusters associated with differ-
ent outcome. More importantly, such clusters combined with those
identified by differential expression of obesity-related genes cancelled
out the effect observed with each other. We found 64 genes that are

expressed with statistically significant differences sufficient to identify
two clusters (P-value < 0.01). Despite obtaining robust clustering, no
differences were found in terms of PFS or OS between the two clusters
(see Fig. S1). Unexpectedly, combining the two clustering did not can-
cel out the effect. On the contrary, it resulted in four clusters with dif-
ferent PFS. More importantly, the clusters harbouring a similar gene
up-regulation pattern, as seen with class 1 obesity/metabolism-related
gene clustering, showed shorter PFS (see Fig. 3C). To further confirm
this finding, we repeated the exercise adding our obesity/metabolism-
related gene expression patterns on top of the most robust RPPA clus-
tering so far published. This clustering included the 208 most variable
proteins in HGOSC (see Tables S5 and S6). Re-grouping the clusters
with the combination of patterns did not eliminate or dilute the associa-
tion of obesity-related gene expression patterns with ovarian cancer
prognosis. In fact, RPPA-derived clusters with up-regulation obesity/
metabolism-related genes, as seen in cluster 1, tended to have signifi-
cantly shorter PFS than those with a cluster 2 obesity/metabolism-
related gene expression pattern (see Fig. 3D).

All the cases in our RPPA clustering analysis were carriers of
TP53 mutations, one of the key cancer driver genes for HGOSC. As
Figure 4 shows, no differences were found in terms of PFS and OS

Fig. 2 Comparative analysis of progression-free survival (PFS) and overall survival (OS) of two clusters (named as C1 and C2) obtained after NMF

clustering of RNA expression microarray data of obesity and lipid metabolism-related genes of HGOSCs from the two cohorts.
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among different TP53 mutations. We did a network analysis to assess
and compare the strengths of the biological interactions of TP53
mutant gene to those of other cancer driver genes and the obesity/
metabolism-related genes included in our analyses. We intended to
weigh the relevance or impact of biological interactions determined
by either cancer driver or obesity/metabolism-related genes on cancer
behaviour and therapeutic outcome. On the one hand, the network
shown in Figure 5A contains 118 nodes, including our 68 cancer dri-
ver query genes and the 50 most frequently altered neighbour genes
(of a total of 3138). On the other hand, the network in Figure 5B con-
tains 146 nodes, including our 96 obesity/metabolism-related query
genes and the 50 most frequently altered neighbour genes (of a total
of 2267). These findings suggest a higher and more closely matched
number of TP53 mutant gene and obesity/metabolism-related genes,
with denser interactions between them than between TP53 mutant
cells and other cancer driver genes. Many of these interactions are

related to adaptive metabolism, acquisition of drug resistance, meta-
static and pro-survival signals. The co-occurrence and mutually
exclusive analyses are summarized in Table S7.

The up-regulation of obesity/metabolism-related
genes has an independent negative impact on
HGOSC prognosis: a reflection of environmental
influences on cancer behaviour

Table 1 summarizes the genetic and clinical characteristics of the
HGOSCs of the two clusters. No difference was observed in terms of
ethnicity or race between clusters. As shown, patients in cluster 1 share
similar numbers of mutations but a significantly lower average number
of gene copy alterations. Cluster 1 had a higher percentage of patients

Fig. 3 Heat map view and survival analyses of two clusters obtained after NMF analysis using RPPA expression (microarray and mass spectrometry)

data of obesity and lipid metabolism-related and cancer driver genes. (A) Heat map view of clusters obtained after NMF analysis of RPPA data of

obesity and lipid metabolism-related genes. (B) Comparative analysis of PFS between these two clusters, including only TP53 mutant samples. (C)
Stratification of PFS curves after overlapping clusters obtained by NMF analysis of obesity/metabolism-related gene RPPA expression on top of clus-

ters obtained by NMF analysis of cancer driver genes in HGOSCs. (D) Stratification of PFS curves after overlapping clusters obtained by NMF analy-

sis of obesity/metabolism-related gene RPPA expression on top of clusters obtained by best NMF clustering of global RPPA expression data in

HGOSCs.
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in stage IV, a lower number of cases achieving microscopic disease
after surgical debulking and a lower number of complete responses
after the completion of treatment (primary therapy result). To confirm
the independent effect of obesity/metabolism-related gene expression
patterns on outcome, a Cox model was built that included obesity/meta-
bolism-related gene RPPA clustering, primary therapy result (complete
response versus others), and stratified age. In the absence of clinical
data related to BMI/obesity in the TCGA cohort, age at diagnosis was
included in the model as indirect assessment of obesity and metabolic
disorders, as both conditions significantly increase with ageing and par-
ticularly after menopause. We also assessed ethnicity and race, both
were excluded from the model because of P-value ≥ 0.1. According to
the Cox model, patients exhibiting different obesity/metabolism-related
gene expression patterns had different outcome independent of their
primary therapy results or their age (P = 0.04). As expected, the pri-
mary therapy results constituted the most significant factor influencing
the complete model (P-value = 0.00002). In contrast, age did not con-
stitute an independent factor.

Discussion
In the present study, using two HGOSC cohorts, we demonstrated
that there are at least two subsets of patients with similar clinical
characteristics and cancer driver mutation profiles, but having differ-
ent outcome based on expression patterns of genes related to obesity
and lipid metabolism.

An additional finding of our analyses is the fact that the cancers
included in the clusters share common patterns of mutated genes,
including characteristic genes such as TP53 or BRCA. They also have
similar numbers of mutations and only vary in the number of copies
for such genes. By combining the clusters that are obtained with the
list of cancer driver genes and the list of genes related to obesity and
lipid metabolism, we obtained four clusters with different prognoses.
Those with similar patterns of cancer driver gene expression have
poorer prognoses when they express higher levels of a subset of
genes related to obesity or lipid metabolism (e.g. CD36 or TGF-ß).
Interestingly, those are the same clusters that exhibit lower averages

Fig. 4 Comparative analysis of PFS curves after NMF clustering using RNA expression microarray data of obesity and lipid metabolism genes in

HGOSCs carrying different TP53 mutations.
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of gene copy number variations. These findings lead us to propose
that once the chain of mutations necessary for a cancer to develop
has taken place, its subsequent behaviour and evolution depends
more on environmental influences to which the cancer cells must
adapt. Additionally, it seems that fewer copy number alterations of
cancer driver genes are required to modulate HGOSC behaviour when
obesity and lipid metabolism alterations are in place. Obesity causes
epigenetic changes that usually do not have a hereditary character,
but that condition future risks and morbidities in the subjects that are
exposed to it from an early age or for a prolonged period [22, 23].
Another environmental influence that conditions gene expression and
determines evolutionary adaptations in cancer cells is recurrent expo-
sure to chemotherapy. In fact, the evidence supporting the acquisition
of cross-resistance to chemotherapy agents with different mecha-
nisms of action is further substantiated [24]; a condition that does
not depend on mutations but rather on the differential expression of
genes linked to resistance, including TGF-ß [25, 26].

In vitro and in vivo studies support the adaptive capacity of cancer
cells depending on the location and environmental conditions where
they are exposed. In fact, ovarian cancer cells in response to such
scenarios undergo mesenchymal-epithelial transition (EMT), which

determines not only changes in the expression of adhesion mole-
cules, but also metabolic adaptations that allow them to survive in
conditions of hypoxia or nutrient shortage [27, 28]. This explains, for
example, the presence of cellular aggregates floating in ascites, a
defence and survival mechanism against adverse environmental con-
ditions [29]. There is now evidence that key mutations for ovarian
carcinogenesis, such as in TP53, are related not only to cell prolifera-
tion or survival, but also to metabolic adaptations, particularly related
to lipid metabolism. In fact, a hotspot and oncogenic mutation at the
death-binding domain (DBD) of TP53, at R273H residue, is associated
with a mevalonate signature that results in a greater metastatic capac-
ity in a syngeneic mouse model [30]. Herein, we also analyzed the
cluster allocation of cases harbouring this mutation and others similar
at the DBD (e.g. R175H, Y220C, I195T). Interestingly, most of them
(95%) allocated in the same cluster, with similar expression patterns
of lipid metabolism-related genes with no difference in PFS and OS.

We identified CD36 and BSCL2 as two significant genes defining
cluster allocation and different outcome. CD36 plays a role in the reg-
ulation of angiogenesis and in fatty acid uptake by cancer cells pro-
moting cell migration and proliferation [31, 32]. Ovarian cancer cells
commonly metastasize to adipose tissue (e.g. omentum). A key

Fig. 5 Graphical representation of network analysis and main biological interactions of cancer driver and obesity/metabolism-related genes in relation

to TP53 mutant in HGOSCs. Circles with wider black lines indicate the query genes, and those delimited by thin black lines highlight the more

altered neighbour genes.
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feature of peritumoural adipocytes is their loss of lipid content
observed both in vitro and in human tumours. The free fatty acids
(FFAs) released by adipocytes after lipolysis induced by tumour

secretions are transferred and stored in tumour cells as triglycerides
in lipid droplets, a process dependent on CD36 expression levels
[33]. FFAs can be released over time from lipid droplets through an

Table 1 Clinical and molecular characteristics of two clusters

obtained after NMF analysis using obesity and lipid metabolism

gene expression data from TCGA

NMF Clustering by
Obesity-related
Genes

P-value
Cluster 1 Cluster 2

n 186 352

Age (years) 58.8 � 11.2 59.9 � 11.8 NS

Stage 0.02

I 2 (1.1%) 14 (4%) NS

II 7 (3.8%) 19 (5.4%)

III 137 (73.7%) 275 (78.1%) 0.03

IV 36 (19.4%) 41 (11.57%)

NA 4 (2.2%) 3 (0.9%)

Mutation count 49.5 � 2.5 48.1 � 2 NS

Copy number
alterations

0.49 � 0.18 0.59 � 0.18 <0.0001

Histological grade

G1 0 (0%) 4 (1.2%) NS

G2 26 (14%) 41 (11.8%)

G3 156 (83.9%) 296 (84.8%)

Gx 3 (1.6%) 5 (1.4%)

NA 1 (0.5%) 3 (0.9%)

Primary diagnosis

Tumour resection 143 (76.9%) 287 (81.5%) NS

Fine needle
aspiration biopsy

4 (2.2%) 6 (1.7%)

Cytology (e.g.
Peritoneal or
pleural fluid)

27 (14.5%) 44 (12.5%)

Incisional Biopsy 5 (2.7%) 7 (2%)

Excisional Biopsy 4 (2.2%) 1 (0.3%)

Other methods 0 (0%) 1 (0.3%)

NA 3 (1.6%) 6 (1.7%)

Table 1. Continued

NMF Clustering by
Obesity-related
Genes

P-value
Cluster 1 Cluster 2

n 186 352

Residual disease after surgery

No macroscopic
disease

16 (8.6%) 87 (24.7%) <0.0001

1–10 mm 96 (51.6%) 134 (38.1%)

11–20 mm 14 (7.5%) 19 (5.4%)

>20 mm 38 (20.4%) 61 (17.3%)

NA 22 (11.8%) 51 (14.5%)

Primary optimal
debulking (<1 cm)

112 (60.2%) 221 (62.8%) NS

Chemotherapy (Chemo)

Adjuvant 115 (61.8%) 235 (73.9%) NS

Progression 27 (14.5%) 30 (9.4%)

Recurrence 22 (11.8%) 47 (14.8%)

Other 2 (1.1%) 6 (1.9%)

NA 20 (10.8%) 35 (10%)

≥three rescue
chemo lines

17 (10.2%) 30 (9.5%) NS

Primary therapy result

Complete
remission/
response

93 (50%) 203 (57.8%) 0.002

Partial remission/
response

33 (17.7%) 27 (7.7%)

Stable disease 11 (5.9%) 16 (4.6%)

Progressive disease 16 (8.6%) 19 (5.4%)

NA 33 (17.7%) 86 (24.5%)

Disease Status

Disease-Free 32 (17.2%) 96 (27.3%) 0.008

Recurred/
progressed

116 (62.4%) 210 (59.7%)

NA 38 (20.4%) 46 (13.1%)
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adipose triglyceride lipase-dependent (ATGL-dependent) lipolitic path-
way. The released FFAs are then used for fatty acid b-oxidation (FAO),
an active process in cancer cells, but not in normal epithelial cells,
and regulated by co-culture with adipocytes. However, in co-
cultivated cells, FAO is uncoupled from ATP production, leading to
AMPK/acetyl-CoA carboxylase activation, a circle that maintains this
state of metabolic remodelling [33]. Recently, it has been shown that
higher expression of CD36/fatty acid translocase and elevated free
fatty acid (FFA) levels is associated with hepatocellular progression
via induction of EMT. Although obesity is manifested as elevated FFA
levels, the degree of EMT was not associated with the body mass
index of the patients with HCC, highlighting the specific roles of CD36
and FFA uptake [34]. In contrast to CD36, BSCL2 encodes for multi-
pass transmembrane protein seipin, a regulator of lipid catabolism
essential for adipocyte differentiation. BSCL2 may also play a tissue-
autonomous role in controlling lipid storage in adipocytes and in pre-
venting ectopic lipid droplet formation in non-adipose tissue, among
others in cancer cells [35].

Originally, we argued and provided molecular and clinical evi-
dence to support that obese and overweight women affected by
HGOSC have poorer outcome [6]. A key determinant is the higher
expression of leptin and its OB-Rb receptor, which in turn prompts
EMT and cell plasticity, leading to drug resistance and metastasis.
These findings were externally validated by assessing the TCGA
cohort, in which patients exhibiting higher levels of leptin at mRNA
levels also had shorter PFS and OS. Herein, leptin was also included
in the list of genes evaluated and remains as a significant gene for
cluster allocation using RNA microarray data. Unfortunately, insuffi-
cient or no information was found to confirm its role when using
RPPA mass spectrometry or microarray data at TCGA. We still argue
that obesity is a risk factor to be considered in the comprehensive
treatment of HGOSC—a matter that many of us, as clinicians, forget
to consider, particularly during chemotherapy and follow-up. In fact,
we recently realized that the HGOSCs with poorer outcome in our
own cohort were those patients with abnormal BMI or significantly
higher weight during those stages. However, we also identified
patients with normal or below normal BMI and with adverse out-
come. These patients exhibited haematologic and biochemical
parameters suggestive of sustained inflammation or abnormal levels
of cholesterol (manuscript in preparation). Regrettably, both avail-
able collaborative data sets (TCGA and Australian Ovarian Cancer
Study) have not included in clinical data collection information on
BMI/obesity or diabetes to validate our current findings.

Based on our mutually exclusive, co-occurrence and networking
analysis, we show that obesity and lipid metabolism genes interact clo-
sely and densely with cancer driver genes, particularly TP53 mutants,
determining the final biological effects and outcome. Reinartz et al.
recently constructed a network of autocrine and paracrine signalling
pathways comprising 358 common and 58 patient-specific signalling
mediators and their receptors using different transcriptome-derived
data sets [36]. Through the meta-analysis of the RNA microarray data
of 1018 patients, they established clinical correlations for several com-
ponents with different cellular origins and targets. As we demonstrated
with our cohorts, they show obvious associations between earlier
recurrences and the expression of STAT-3-inducing cytokines, TGFb/

BMP-triggered pathways, secretory macrophage-derived phospholi-
pase PLA2 G7, its product arachidonic acid (AA) and signalling path-
ways controlled by the AA metabolites PGE2, PGI2, and LTB4. More
recently, Ke Ch et al. did a metabolomic analysis to assess the meta-
bolic changes in response to advanced HGOSC, surgery and recurrence
[37]. Among their findings, primary HGSOCs were characterized by
abnormal lipid metabolism and energy disorders. More importantly,
recurrent cases showed increased amino acid and lipid metabolism
compared with the same cases at the time of diagnosis.

Taken together, it seems that metabolic adaptations are critical for
cancer cells in terms of adapting to environmental conditions and
evolving. Particularly, lipid metabolism seems to play a main role for
ovarian cancer progression [38]. From a clinical perspective, those
women with these metabolic disorders (obese or not) present them-
selves, at the moment of diagnosis, with a disease whose distribution
and characteristics make it more difficult to achieve the optimal
cytoreduction, a handicap, that if such disorder is maintained after
completing its treatment, by certainty, it will negatively impact in the
final outcome. No doubt, these proposals deserve further research
and consideration to provide proper, comprehensive and potentially
more successful cancer treatment. We strongly believe that the future
clinical data collections might include these parameters, before,
through and after treatment, and during the follow-up to confirm or
discard the relevance of metabolic abnormalities (e.g. obesity or lipid
metabolism disorders) in ovarian cancer biology and prognosis. In
addition, our efforts must not be limited to earlier and correct diagno-
sis, optimal debulking and offering better chemotherapy. We should
also consider patient characteristics, such as weight, adiposity, use of
other medications (e.g. statins, metformin), diet and life style, all con-
ditions that influence global gene expression and biological interac-
tions among the different cell components present in the tumour
microenvironment [39–41].
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