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Abstract

High-throughput post-genomic studies are now routinely and promisingly investigated in biological and biomedical
research. The main statistical approach to select genes differentially expressed between two groups is to apply a t-test,
which is subject of criticism in the literature. Numerous alternatives have been developed based on different and innovative
variance modeling strategies. However, a critical issue is that selecting a different test usually leads to a different gene list. In
this context and given the current tendency to apply the t-test, identifying the most efficient approach in practice remains
crucial. To provide elements to answer, we conduct a comparison of eight tests representative of variance modeling
strategies in gene expression data: Welch’s t-test, ANOVA [1], Wilcoxon’s test, SAM [2], RVM [3], limma [4], VarMixt [5] and
SMVar [6]. Our comparison process relies on four steps (gene list analysis, simulations, spike-in data and re-sampling) to
formulate comprehensive and robust conclusions about test performance, in terms of statistical power, false-positive rate,
execution time and ease of use. Our results raise concerns about the ability of some methods to control the expected
number of false positives at a desirable level. Besides, two tests (limma and VarMixt) show significant improvement
compared to the t-test, in particular to deal with small sample sizes. In addition limma presents several practical advantages,
so we advocate its application to analyze gene expression data.
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Introduction

During the last decade, advances in Molecular Biology and

substantial improvements in microarray technology have led

biologists toward high-throughput genomic studies. In particular,

the simultaneous measurement of the expression levels of tens of

thousands of genes has become a mainstay of biological and

biomedical research.

The use of microarrays to discover genes differentially expressed

between two or more groups (patients versus controls for instance)

has found many applications. These include the identification of

disease biomarkers that may be important in the diagnosis of the

different types and subtypes of diseases, with several implications

in terms of prognostic and therapy [7,8].

A first approach to identify differentially expressed genes is

known as the Fold-Change estimation (FC). It evaluates the

average log-ratio between two groups and considers as differen-

tially expressed all genes that differ by more than an arbitrary cut-

off. So defined, FC lacks of a solid statistical footing [9]: it does not

take the variance of the samples into account. This point is

especially problematic since variability in gene expression

measurements is partially gene-specific, even after the variance

has been stabilized by data transformation [10,11].

Rather than applying a FC cutoff, one should prefer statistical

tests: they standardize differential expression by considering their

variance [9,12]. Furthermore, corresponding effect sizes, confi-

dence intervals and p-values are essential information for the

control of false-positives [13] and meta-analysis [14].

The t-test is certainly the most popular test and has been matter

of discussion. Computing a t-statistic can be problematic because

the variance estimates can be skewed by genes having a very low

variance. These genes are associated to a large t-statistic and falsely

selected as differentially expressed [2]. Another drawback comes

from its application on small sample sizes which implies low

statistical power [12]. Consequently, the efficacy of a t-test along

with the importance of variance modeling have been seriously

called into question [15]. It has led to the development of many

innovative alternatives, with hope of improved variance estimation

accuracy and power.

These alternatives appear very diverse at a first sight, but fall

into few nested categories relying on both statistical and biological

hypotheses: parametric or non-parametric modeling, frequentist or

Bayesian framework, homoscedastic hypothesis (same variance

between groups of samples) and gene-by-gene variance estimation.

Further propositions come from the field of machine-learning for

instance [16], but lie beyond the scope of our study.
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A disadvantage of having so many alternatives is that selecting a

different test usually identifies a different list of significant genes

since each strategy operates under specific assumptions [17].

Moreover, despite the wealth of available methods, the t-test

remains widely used in gene-expression studies, presumably

because of its simplicity and interpretability. Given the tendency

to use this method, identifying which approach is the most

appropriate to analyze gene expression data remains a crucial

issue. Nevertheless, if the development of new methodologies is still

an active topic of publication, only few studies have addressed

their comparison. This is probably due to the difficulty to

implement a realistic framework of comparison for which the

differentially expressed genes are known in advance.

In order to sidestep many problems, comparisons frequently

rely on the analysis of gene lists resulting from the application of

several methods [18] and simulations for which truly differentially

expressed genes are known [6]. More empirical alternatives

include the use of re-sampling methods (to compare genes from

small subsets of samples and those from the full dataset) [3,19], and

the use of spike-in data for which a set of genes are differentially

expressed by design [12,20]. Finally Jeffery et al. [18] explore an

indirect approach by assessing classification performance obtained

with genes resulting from the application of the methods to

compare. The heterogeneity of the strategies adopted in the

literature and the diversity of tests investigated make the

formulation of general conclusions difficult. In addition, to our

knowledge, no study has focused on the direct comparison of a

wide range of variance modeling strategies.

Consequently, we conduct a comparison study of eight tests

representative of variance modeling strategies in gene expression

data: Welch’s t-test, ANOVA [1], Wilcoxon’s test, SAM [2], RVM

[3], limma [4], VarMixt [5] and SMVar [6]. The comparison

process relies on four steps: gene list analysis, simulations, spike-in

data and re-sampling. Our aim is to benefit from the specificity of

each strategy, to make our results comparable to previous studies

and to ease the formulation of general, robust and reproducible

conclusions.

So defined, we follow a standard statistical framework. First, our

main focus concerns the issue of data reduction which relies on the

form of the test statistic and impact directly the resulting power. A

separate but important issue is calibration (i.e. the accuracy of

p-values) which can impact the false-positive rate (a). So at each

step of the process, tests are compared in terms of statistical power

assessed at the same false-positive rate. Control of the false-positive

rate to the desired value is checked for each test which is, to our

opinion, too rarely considered in the literature. Eventually, in

addition to an efficacy comparison, we find relevant to confront

each test in terms of practical consideration such as execution time

and ease of use.

Methods

Statistical background
Differential analysis consists in testing the null hypothesis (H0)

that the expected values of expression for a given gene are equal

between two groups of interest (1 and 2), against the alternative

hypothesis (H1) that they differ. Let Ygcr the level of expression

observed for gene g, replicate r, under group c; the general model

is then given by:

E(Ygcr)~mgc and Var(Ygcr)~s2
gc

So defined, the null hypothesis to test comes down to:

H0 : mg1~mg2

H1 : mg1=mg2

(

Given a statistical test, type-I error-rate a (resp. type-II error-rate

b) commonly refers to the probability to reject (resp. accept) H0,

H0 being true (resp. false). The statistical power of the test is then

defined as the ability to reject H0 when it is actually false:

Power(a)~PH1
(H0 rejected at the a level)

~1{PH1
(H0 not rejected at the a level)

~1{b

Type-I and II errors are inversely related: the smaller the risk of

one, the higher the risk of the other. Consequently the power

depends directly on a, and a valid comparison of several tests has

to be driven at the same type-I error-rate to overcome the issue of

calibration.

The type-I error-rate is often referred to as false-positive rate. It

differs from the false-discovery rate (FDR) in the sense that it

represents the rate that truly null features are called significant

whereas the FDR is the rate that significant features are truly null

[21].

Selection of the eight tests
This selection has focused on tests broadly applied in the

literature and representative of different variance modeling

strategies. The eight tests selected are described in detail in

Methods S1 and re-implemented in R to simplify their application.

The package is available on demand.

Briefly, most of the eight tests are parametric and estimate a

gene-by-gene variance: ANOVA (homoscedastic), Welch’s t-test

(heteroscedastic), RVM (homoscedastic), limma (homoscedastic

and based on a Bayesian framework) and SMVar (heteroscedastic

and based on structural model); we also select two non-parametric

approaches with the Wilcoxon’s test and the SAM test, which do

not rely on assumptions that the data are drawn from a given

probability distribution.

Besides, variances estimated on a set of genes are thought to

lead to an undesirable amount of false-positives. Attributing a

common variance to all the genes is clearly not a solution, even

when sample sizes are small. Several proposals make the

assumption that genes with the same expression level have

approximatively the same variance [22,23]. However this is not

realistic and also leads to false-positives [24]. We find VarMixt

more subtle: it makes the assumption that classes of genes can be

identified based on similar response to the various sources of

variability (mixture model); the variance of each homogeneous

class is then accurately estimated from a large set of observations;

the individual gene variance is then replaced by its ‘‘class’’

variance.

Comparison process
Gene list analysis. An intuitive first step to compare the tests

is to investigate the consistency between gene lists resulting from

the application of each test on real data. Here we apply this

approach to five publicly available data sets (Table 1) to assess the

overlap between gene lists and to identify similar behaviors among

the variance modeling strategies.

Should We Abandon the t-Test?
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In addition to the eight tests, we define a ‘‘control’’ test that

draws for each gene a p-value from a Uniform distribution

between 0 and 1. Then, we applied the tests to the five data-sets to

identify gene differentially expressed by setting a p-value threshold

of 0:05.

Gene list similarities between tests are analyzed and visualized

using a Hierarchical Clustering (binary metric and the Ward’s

aggregation algorithm, R package stats) and Principal Component

Analysis (R package ade4 [25]). For more details please refer to

Methods S1 and Table S1.

Simulation study. The purpose of simulations is to estimate

power and false-positive rate on a large range of simulated data

sets, in order to compare the tests under simple and sometimes

extreme situations. We define a reference model (denoted M1),

frequently adopted in the literature and that matches the

assumptions of the t-test. Under M1, gene expressions for the

groups 1 and 2 are drawn from Gaussian distributions of same

variance (s~1):

Yg1r * N (mg1,s2)

Yg2r * N (mg2,s2)

(

Under H0: fmg1~mg2g while under H1: fmg2~mg1zdg, with

d~0:5.

Then, we propose three extensions of M1 (denoted M2, M3 and

M4) designed to be less to the t-test advantage. M2 is quite similar

but expression levels are now drawn from a Uniform distribution

of same parameters. M3 applies a mixture model on variances and

corresponds to the VarMixt hypothesis; genes are then divided

into three classes of variance. Under M4, 10% of the genes are

simulated with small variances (s2~0:05) since they can lead to an

increase of false-positive rate when the t-test is applied.

For each model we simulate 10,000 independent genes under

H0 to assess the false-positive rate attached to each test, and

10,000 under H1 to compute their respective power. False-positive

rate and power are both assessed at a p-value threshold of 0:05.

Sample size ranges from 5 to 100 samples per group. The

simulated data matrix is given Figure 1.

Spike-in data set. The Human Genome U133 data set is

used to test and validate microarray analysis methods (http://

www.affymetrix.com). The data set consists in 14 hybridizations of

42 spiked transcripts in a complex human background at

concentrations ranging from 0:125 pM to 512 pM. Each group

includes three replicates. We perform the 13 pairwise comparisons

for which ‘‘spike-in’’ genes have a true fold-change of two [5].

The whole data set contains 22,300 genes. The 42 spike-in

genes are designed to be differentially expressed (under H1) and

used for power estimation. To be able to compute the false-positive

rate, the 22,258 remaining genes are forced to be under H0 by

permutation of the group labels. False-positive rate and power are

both assessed at a p-value threshold of 0:05.

Re-sampling approach. The main idea is to assess the

ability of a test to select from small subsets of samples (n~5 and

n~10), genes determined as differentially expressed from the full

data set. The strategy can be summarized in four steps:

Step 1: From the 500 samples data set (Table 1) split into two

groups to compare, we define a set of differentially expressed genes

(p-valueƒ10{4 with the Welch’s t-test). This set is considered in

Step 3 as the ‘‘truth’’ to estimate power.

Step 2: n samples are drawn from each group and the eight tests

are performed on this subset of the initial data. We apply the

Benjamini and Hochberg correction at a 0:1 FDR level [31].

Step 3: From Step 2 we estimate power as the proportion of

genes defined as differentially expressed at Step 1 and detected at

Step 2.

Step 4: Steps 2 and 3 are iterated 1,000 times. Finally power is

averaged over the 1,000 iterations.

Results

Gene list analysis
Figure 2 represents PCAs and dendrograms resulting from gene list

analysis. The cumulative inertia explained by the two first axes of PCA

is about 80%. Both representations underline the same tendencies.

Table 1. Data sets used for the gene list analysis.

Data-set Groups Sample size Publication

Lymphoid
tumors

Disease staging 37 Lamant et al. 2007 [26]

Liver tumors TP53 mutation 65 Boyault et al. 2007 [27]

Head and
neck tumors

Gender 81 Rickman et al. 2008 [28]

Leukemia Gender 104 Soulier et al. 2006 [29]

Breast tumors ESR1 expression 500 Bertheau et al. 2007 [30]

The five data sets come from the Cartes d’Identité des Tumeurs (CIT, http://cit.
ligue-cancer.net) program and are publicly available. All the microarrays are
Affymetrix U133A microarrays with 22,283 genes.
doi:10.1371/journal.pone.0012336.t001

Figure 1. Data matrix resulting from simulations. Rows refer to
genes simulated under H0 and H1 , columns refer to samples of both
groups to compare.
doi:10.1371/journal.pone.0012336.g001
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As expected, gene lists resulting from the control-test are clearly

independent from the other ones, since it selects genes (differen-

tially expressed or not) uniformly. Then, the eight tests show

various behaviors. Six tests clusterize in two distinct groups: {t-test;

SMVar} and {VarMixt; limma; RVM; ANOVA}. The propor-

tion of common genes selected by two tests of the same cluster is

about 90%. On the other hand, Wilcoxon and SAM do not clearly

fall in one of the two main groups: Wilcoxon tends to consistently

lie between them, whereas SAM does not present a reproducible

behavior.

To summarize, homoscedastic (VarMixt, limma, RVM and

ANOVA), heteroscedastic (t-test and SMVar) variance modeling

strategies are well discriminated by a similarity analysis of gene

lists. It outlines the interesting property that similar modeling

strategies in theory imply similar results in practice.

Simulation study
First, we evaluate power according to sample size under the

simulation model M1 (Figure 3). On Figure 3-A, we notice little

difference between the tests (less than 0:08), particularly for large

samples as expected. Wilcoxon is not as good as the other tests in

most cases. SAM and ANOVA show equivalent performance to

the t-test. VarMixt, RVM and limma tend to provide an increase

in power, and SMVar slightly outperforms all the tests (Figures 3-

A and B).

As we know, these preliminary results are valid only if all the

tests meet the theoretical 5% false-positive rate when applying a

p-value threshold of 0:05. Table 2 gives the observed false-positive

rate for each test under small and large sample sizes and sheds

light on the fact that some tests clearly deviate from the 5% level

and return biased p-values. Observed deviations are more

accentuated for small sample sizes compared to large ones.

SMVar and RVM inflate the expected number of false-positives

whereas Wilcoxon and the t-test tend to be conservative; ANOVA,

SAM, limma and VarMixt show no deviation.

Regarding these observations, the tests inefficient to control the

false-positive rate at the expected 5% level have to be adjusted by a

time consuming Monte-Carlo procedure. Figures 3-C and D

present power results at adjusted and hence valid false-positive

rates. Differences are clearly reduced compared to Figures 3-A

and B which confirms that part of the difference in power observed

is due to actual difference in false-positive rate, particularly

concerning SMVar. After adjustment VarMixt, RVM and limma

tend to be the best tests although they provide an insignificant gain

compared to the t-test; Wilcoxon remains the less powerful.

ANOVA has performance comparable to the t-test which is

Figure 2. Gene list analysis. PCAs and dendrograms are generated based on the gene lists resulting from the application of the eight tests of
interest and the control-test. Here we show results for two data sets comparing ESR1 expression in breast cancer and gender in leukemia. Both
outline five clusters of tests.
doi:10.1371/journal.pone.0012336.g002
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interesting: under the same variance between the two groups, tests

that make the corresponding homoscedastic assumption (ANOVA)

do not show improved power compared to heteroscedastic ones

(Welch t-test).

Surprisingly, model M2 leads to the same conclusions (data not

shown). Here expression values follow a Uniform distribution

instead of a Gaussian one, which does not match the assumption of

parametric approaches. Compared to model M1, we were

expecting to note a more striking increase in power for Wilcoxon,

which is not observed. This result confirms that t-test and

assimilated approaches are quite robust to the Gaussian

assumption. Indeed the Central Limit Theorem implies that even

if expression values are not Gaussian, the t-statistic resulting from

the comparison of two groups is likely to be. It should be noticed

that the structural model of SMVar is not able to provide results

for the uniform model.

Finally models M3 and M4 also lead to the same conclusions,

with an overall loss of power (data not shown).

Spike-in data set
Spike-in data confirm observations and conclusions made on

the simulations. SMVar and RVM inflate the expected

number of false-positives whereas Wilcoxon and the t-test tend

to be conservative. Power values adjusted to a valid false-posi-

tive rate present more significant differences than in simula-

tions (Figure 4): with an average decrease of almost 0:6,

Wilcoxon is the less powerful and similar to the ‘‘control’’ test;

ANOVA shows equivalent performance than the t-test;

VarMixt, RVM, SMVar and limma provide a significant

increase in power with an average gain of 0:25. With

performance comparable to the best tests, SAM has a different

behavior than in simulations.

Figure 3. Power study from simulations (Gaussian model, M1). Power values are calculated at the 5% level and displayed according to the
sample size. Figures A and C represent power values. Red arrows highlight the effect of false-positive rate adjustment on power values. Figures B and
D represent power values relative to t-test. Figures A and B concern power values calculated at the actual false-positive rate. Figures C and D concern
power values calculated at the adjusted false-positive rate.
doi:10.1371/journal.pone.0012336.g003
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Re-sampling approach
This approach corroborates tendencies obtained with simula-

tions and spike-in data (Figure 5): limma, VarMixt and RVM

perform much better than other tests in identifying differentially

expressed genes, while SMVar is somewhat less efficient than the

three top-tests. ANOVA and the t-test still show equivalent

performance, although ANOVA presents here a slight but

significant improvement.

Wilcoxon and SAM were never able to detect genes determined

as differentially expressed. Indeed the calibration performed can

not reach p-value lower than 10{3 for small sample sizes. After the

Benjamini-Hochberg correction at a 0:1 FDR level (corresponding

here to a 10{6 p-value threshold), they do not detect any gene as

differentially expressed.

Practical comparison
Concerning time of execution and ease of use, the t-test and

ANOVA are the most efficient as they rely on standard statistical

considerations and have benefited of improved implementations.

On real high-throughput data, both take few seconds to treat tens

of thousands of genes. In terms of time of execution, limma

appears as efficient as the t-test and ANOVA, which is a

noteworthy point. SMVar, RVM and SAM run in longer but

still reasonable time (up to 8 minutes in our case). Varmixt turns

out to be the slowest approach (up to 80 minutes) as it relies on a

time consuming EM algorithm.

Discussion

Given the current tendency to apply the t-test to gene expression

data and the wealth of available alternatives, finding the most

appropriate approach to handle differential analysis is critical.

To address this problematic and provide some answers, we

develop a comparison process of eight tests for differential

expression. It is based on gene list analysis, simulations, spike-in

data and re-sampling, with the intention to benefit from the

specificity and advantages of each strategy.

Gene list analysis do not properly compare test performance

and hence lead to limited conclusions. However it is an

appropriate preliminary approach that focuses on similarities

between test results. An analysis of the consistency between gene

lists outlines general tendencies that can help in interpreting

differential analysis results. In our case, we observed comparable

results between tests based on similar variance modeling strategies.

The three other approaches (simulations, spike-in data and re-

sampling) propose a direct comparison of power values. Simula-

tions represent a convenient statistical framework as genes under

H0 and H1 are known in advance. In addition different hypotheses

on data structure can be specified under different simulation

models. Here, the three further models (M2, M3 and M4) lead

actually to the same conclusions than the reference Gaussian one

(M1). If simulations do not allow to observe significant differences

in power between the tests, they still reveal reproducible

tendencies. In addition, simulations turn out to be the gold

standard to check possible deviations from the expected false-

positive rate. However it is unclear whether simulated data sets

can sufficiently and realistically reflect the noise inherent in real

microarray data [32].

Table 2. False-positive rate study from simulations.

M1 M2 M3 M4

Sample size n~5 n~100 n~5 n~100 n~5 n~100 n~5 n~100

t-test. 3:8{4:6 4:5{5:4 4:0{4:8 4:6{5:5 3:8{4:6 4:7{5:6 3:9{4:7 4:4{5:3

ANOVA 4:5{5:2 4:5{5:4 4:7{5:6 4:6{5:5 4:5{5:4 4:7{5:6 4:5{5:3 4:4{5:3

Wilcoxon. 2:8{3:5 4:6{5:5 2:6{3:3 4:5{5:4 2:8{3:5 4:7{5:6 2:7{3:4 4:5{5:4

SAM 4:6{5:5 4:5{5:3 4:2{5:1 4:5{5:4 4:7{5:6 4:7{5:6 4:3{5:2 4:4{5:3

RVMm 5:7{6:7 4:5{5:4 5:6{6:5 4:5{5:4 5:4{6:3 4:7{5:6 5:3{6:2 4:7{5:5

limma 4:6{5:5 4:6{5:5 4:2{5:1 4:5{5:4 4:7{5:6 4:7{5:6 4:4{5:3 4:3{5:1

SMVarm 7:0{8:1 4:7{5:6 { { 5:9{6:8 4:8{5:7 4:6{5:5 4:5{5:3

VarMixt 4:7{5:5 4:6{5:5 4:3{5:2 4:6{5:5 4:8{5:6 4:6{5:5 4:5{5:4 4:5{5:3

For small and large samples, this table presents the 95% confidence-interval of false-positive rate obtained by applying a threshold of 0:05 to the p-values. Up triangles
m (resp. down triangles .) indicate an increase (resp. a decrease) of the false-positive rate compared to the expected level of 5%. Two triangles inform of a deviation in
both small and large sample sizes.
doi:10.1371/journal.pone.0012336.t002

Figure 4. Spike-in data set. Power values are calculated at the 5%
level and displayed according to six of the 13 pairwise comparisons.
doi:10.1371/journal.pone.0012336.g004
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More empirical alternatives include the use of spike-in data and

re-sampling. Spike-in genes can represent gene expression better

than simulations. In our case it confirms conclusions from

simulations with more significant differences in power. Regarding

the Affymetrix data set we used, a criticism of this approach could

be that the small number of actual spike-in genes does not allow a

very accurate power estimation. Moreover variation across

technical replicates is likely to be lower than that typically

observed across true biological replicates, and many biological

effects of interest may be smaller than two-fold [12].

In this context, a re-sampling approach takes advantage of the

complexity found in real data. Differentially expressed genes are

not known but determined from a large data set (500 samples in

our case); power is then evaluated on a subset of the data. Results

are comparable to those obtained with simulations and spike-in

data. However this approach can be considered as limited in that it

assumes that gene lists generated on the full dataset are correct;

besides it is fastidious to implement and extremely time

consuming.

By applying four distinct comparison strategies with specific

advantages and drawbacks: (i) we ensure to offset the limitations

of each strategy and (ii) we provide robust conclusions on test

performance.

We applied this comparison process to eight tests representative

of different variance modeling strategies. Results are summarized

in Table 3. A first important result concerns the control of the

false-positive rate, which is often disregarded in the literature.

Under H0, distribution of p-values is supposed to be uniform and

the false-positive rate resulting from a p-value threshold of 0:05
should be controlled at 5%. Deviation from this major assumption

may indicate biased p-values. In both simulations and spike-in

data, some tests deviate from the expected false-positive rate,

which partly explains some differences in power (namely SMVar,

RVM and Wilcoxon). For the purpose of our study, we performed

a Monte-Carlo based adjustment of the false-positive rate to

formulate comparable conclusions across all the tests. However in

practice this adjustment remains fastidious to implement. In

consequence, we strongly advocate to avoid using these tests until

a proper corrected version is made available.

Overall, Wilcoxon and SAM show weak performance. One of

our simulation model (M2) clearly outlines the robustness of

parametric tests to the Gaussian assumption. Concerning SAM,

our results do not allow to formulate clear conclusions and reflect

existing doubts about its efficacy [18,33].

Compared to the t-test, limma and VarMixt consistently show

real improvement, in particular on small sample sizes. Limma has

often been discussed in the biostatistical field and its good

performance has been reported [12,18,24]. Surprisingly VarMixt

does not appear as weak as similar methods evaluated by

Kooperberg et al. [24]. Presumably it benefits from a more

realistic mixture model on variances, less likely to generate false-

positives.

If limma and VarMixt are equivalent regarding both power and

false-positive rate, in practice limma presents several further

advantages in terms of execution time. In addition, limma can be

generalized to more than two groups which makes it relevant to

many broader situations.

To conclude, we have developed a comprehensive process to

compare statistical tests dedicated to differential analysis. This

approach can be used as the basis to evaluate performance of

methods developed in the near future. In addition, to answer our

initial question ‘‘Should we abandon the t-test’’, limma provides a

Figure 5. Re-sampling approach. Power values are calculated at a 0.1 FDR level and displayed according to the sample size.
doi:10.1371/journal.pone.0012336.g005

Should We Abandon the t-Test?

PLoS ONE | www.plosone.org 7 September 2010 | Volume 5 | Issue 9 | e12336



substantial improvement compared to the t-test, particularly for

small samples. However the t-test remains easy to apply through a

wide-range of genomic analysis tools whereas limma can appear

more difficult to implement at a first sight. To promote its

application we make available on demand a simplified R version of

limma dedicated to the analysis of two groups of samples.

Supporting Information

Methods S1 A detailed description of (i) the eight tests included

in the study and (ii) the gene list analysis process.

Found at: doi:10.1371/journal.pone.0012336.s001 (0.09 MB

PDF)

Table S1 Example of binary matrix. For a given test, the genes

identified as differentially expressed (‘‘1’’) and not differentially

expressed (‘‘0’’) at a given p-value threshold are reported in the

binary matrix.

Found at: doi:10.1371/journal.pone.0012336.s002 (0.01 MB

PDF)
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