
Age-related macular degeneration (AMD) is a complex 
multifactorial disease and a leading cause of irreversible 
blindness in the world [1]. A major AMD susceptibility 
locus on 10q26 has been found to harbor risk associated 
variants in ARMS2 (rs10490924) and HTRA1 (rs11200638) in 
multiple populations worldwide [1-4]. An insertion-deletion 
(indel) polymorphism (EU427539) that affects the stability of 
ARMS2 mRNA by the removal of a polyadenylation signal 
(443 bases) and insertion of a 54bp AU rich element in the 
3′-UTR (del443ins54), has also been identified in the 3′ end 
of the ARMS2 gene as increasing risk of AMD by several 
fold in both Caucasian [5] as well as Asian populations. 
Previous associations for this indel vary (from p=3.5×10−5 to 
p=8.4×10−34) in individuals of European origin [6-9], whereas, 

this has only been reported in two non-European cohorts 
consisting of Han Chinese [8] and Japanese populations [10].

We have previously reported a significant association of 
the A69S (rs10490924) and rs11200638 variants with AMD 
in both South Indian and Australian cohorts [11,12]. We now 
wished to determine the risk conferred by del443ins54 and its 
combined effect with both the A69S and rs11200638 variants 
with AMD susceptibility in two ethnically different cohorts 
from Southern India and Australia.

METHODS

The study protocols adhered to the tenets of the Declara-
tion of Helsinki and were approved by the Institutional 
Review Boards of the Royal Victorian Eye and Ear Hospital, 
Melbourne, Australia and L.V. Prasad Eye Institute, Hyder-
abad, India. The del443ins54 was screened in end stage AMD 
cases (mainly choroidal neovascular) and normal controls 
from cohorts in India (n=433) and Australia (n=1054). The 
detailed methods of clinical diagnosis along with the inclusion 
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Conclusions: These data provide an independent replication of the association of del443ins54 variant in two different 
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limit further genetic dissection of this region in AMD.
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and exclusion criteria have been previously reported [11,12]. 
Amplification was performed using forward (5′-TCT GTG 
CAG CTG GTG AAA TC-3′) and reverse (5′-TCC AGG GTG 
GTG TAA TCC AT-3′) primers at an annealing temperature 
of 61 °C. Amplicons were visualized on a 2% agarose gel and 
genotypes directly scored from the gels. Subsets of samples 
were further validated by bi-directional sequencing on an 
automated DNA sequencer (ABI 3100), using the BigDye 
chemistry as per manufacturer’s guidelines (both from 
Applied Biosystems, Foster City, CA). Genotyping results 
were independently validated by a second investigator who 
was masked to the phenotype data.

Allele and genotype frequencies were determined by 
the gene counting method and estimates of Hardy–Weinberg 
equilibrium were assessed. Odds ratios (OR) and 95% confi-
dence intervals (95%CI) were calculated to assess the risk 
conferred for each variant using the PLINK software [13]. 
Haplotypes were generated using various combinations of the 
A69S, the indel and rs11200638 variants and the estimated 
haplotype frequencies and linkage disequilibrium (LD) were 
assessed with the Haploview software (version 4.2) that uses 
the EM algorithm [14].

RESULTS

All statistical analyses were based on samples where geno-
typing was successful across all three A69S, del443ins54 
and rs11200638 genetic variants. Each variant was in Hardy–
Weinberg equilibrium in both the Indian and Australian 
cohorts (p>0.05). Allele frequencies for each of the risk vari-
ants (T allele of A69S, presence of the indel in del443ins54 
and the A allele of rs11200638) exhibited a relatively higher 
frequency (0.60–0.63) in the Indian cohort compared to the 
European cohorts (0.36–0.53) but lesser than that reported in 
Han Chinese (0.73–0.77) or the in the Japanese (0.86–0.88) 
populations (Table 1). The allele frequencies in the Australian 
cohort were similar (0.44) to those previously reported for 
other European cohorts (Table 1).

The frequency of the del443ins54 variant was signifi-
cantly higher among AMD cases than controls in both the 
Indian (p=1.74×10−13; OR=2.80, 95%CI, 2.12–3.70) and 
Australian (p=2.78×10−30; OR=3.15, 95%CI, 2.58–3.86), 
cohorts (Table 1). This increased risk was also observed with 
respect to the del443ins54 genotypes. These findings were 
similar for the A69S (ARMS2) and the rs11200638 (HTRA1) 
variants in both the Indian and Australian cohorts, respec-
tively (Table 2).

Homozygosity of the indel and the other variants were 
strongly associated with an increased risk of AMD in both 
the Indian and Australian cohorts. Combined homozygosities 

at the A69S and the rs11200638 along with the indel variant 
did not alter the risk of AMD significantly either in the 
Indian (OR=7.69, 95%CI, 4.07–14.51) or Australian cohorts 
(OR=10.61, 95%CI, 7.05–15.96).

The measure of linkage disequilibrium (LD) between the 
A69S, del443ins54 and rs11200638 variants were remarkably 
high across this 10q26 region with relatively higher values 
in the Australian (D’=0.99; r2=0.98) compared to the Indian 
(D’=0.87; r2=0.71) cohorts (Figure 1). Two major haplotypes 
(frequency >5%) were identified across the three variants 
with “T-Indel-A” being the risk haplotype and “G-WT 
(wild-type)-G” being protective in the Indian and Australian 
cohorts, respectively (Table 3). Different pairwise haplotype 
combinations with either the ‘T’ or ‘A’ allele at A69S in pres-
ence of the del443ins54 or its wild-type form along with the 
‘G’ or ‘A’ allele of rs11200638, did not substantially alter the p 
values or ORs observed for either the risk or protective haplo-
types as opposed to when all three variants were assessed 
together, reinforcing the observation of the high LD between 
variants in these two genes (Table 3).

DISCUSSION

These data provide an independent replication of the associa-
tion of the ARMS2 del443ins54 variant in two cohorts, and 
to the best of our knowledge for the first time among South 
Indians with AMD. The strong association of the del443ins54 
along with the A69S and rs11200638 variants in the Indian 
and Australian cohorts were consistent with that observed 
in other populations [6-10]. Haplotype analysis with these 
three variants indicated that inclusion of del443ins54 in the 
haplotype neither increased nor decreased the risk of AMD 
in either cohort (Table 3).

The ARMS2 and HTRA1 genes are in high LD in Euro-
pean populations and thus dissecting out the role of one gene 
over the other has proved difficult. The advantage of under-
taking a comparative analysis of genetic variants in popula-
tions of differing ethnicities expands the genetic diversity 
available and may provide the opportunity of identifying a 
more defined but associated region for further study. The 
current study highlighted similar degrees of associations 
across these three variants despite a relatively lower LD 
between the A69S, del443ins54 and rs11200638 variants 
in the Indian compared to the Australian cohort. However, 
it did confirm the presence of stratification differences 
between ethnicities with the allele frequency of the Indel of 
del443ins54 in South Indians being higher at 0.63 in cases 
compared to that in European populations (0.36–0.53) but 
lower than other Asian populations (0.73–0.88). The allele 
frequency in cases is similar to that previously shown by 

http://www.molvis.org/molvis/v19/822
http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638


Molecular Vision 2013; 19:822-828 <http://www.molvis.org/molvis/v19/822> © 2013 Molecular Vision 

824

Ta
b

l
e
 1

. R
is

k
 a

l
l

e
l

e
 f

R
e

q
u

e
n

c
ie

s o
f 

T
h

e
 A

RM
S2

 (a
69

s 
a

n
d

 d
e

l
44

3i
n

s5
4)

 a
n

d
 H

TR
A1

 s
n

Ps
 in

 d
if

fe
R

e
n

T
 P

o
Pu

l
a

T
io

n
s.

Po
pu

la
-

tio
n 

(N
=C

as
es

, 
C

on
tr

ol
s)

rs
10

49
09

24
 (A

69
S;

 “
T

” 
ri

sk
 a

lle
le

)
de

l4
43

in
s5

4 
(I

nd
el

)
rs

11
20

06
38

 (“
A”

 r
is

k 
al

le
le

)

C
as

e
C

on
tr

ol
P 

va
lu

e
O

R
 

(9
5%

C
I)

C
as

es
C

on
tr

ol
s

P 
va

lu
e

O
R

(9
5%

C
I)

C
as

es
C

on
tr

ol
s

P 
va

lu
e

O
R

 
(9

5%
C

I)
G

er
m

an
 (7

60
, 

54
9)

5
0.

42
4

0.
19

3
2.

8 
x1

0-2
9

2.
86

(2
.3

8-
3.

44
)

0.
42

4
0.

19
3

4.
1 

x1
0-2

9
2.

85
(2

.3
7-

3.
43

)
0.

42
6

0.
19

9
6.

9 
x 

10
-2

9
2.

85
(2

.3
7-

3.
42

)
C

au
ca

si
an

 (8
19

, 
32

9)
6

0.
41

2
0.

24
8

1.
89

 x
 1

0-1
3

2.
13

 
(1

.74
-2

.6
1)

0.
40

9
0.

24
8

3.
62

 x
 1

0-1
3

2.
1 

(1
.7

1-
2.

57
)

N
A

N
A

N
A

N
A

C
au

ca
si

an
 (2

91
, 

19
1)

7
0.

36
0.

23
3.

31
 x

 1
0-5

1.
86

0.
36

0.
23

3.
46

 x
 1

0-5
1.

85
0.

36
0.

24
6.

41
 x

 1
0-5

1.
8

U
ta

h 
(7

05
, 6

50
)8

0.
38

0.
2

8.
61

 x
 1

0-2
6

N
A

0.
39

0.
2

1.
9 

x 
10

-2
6

N
A

0.
41

0.
22

3.
64

 x
 1

0-2
6

N
A

N
or

th
er

n 
Eu

ro
-

pe
an

 (4
42

, 4
34

)8
0.

52
0.

24
4.

87
 x

 
10

-3
4

N
A

0.
53

0.
25

8.
35

x1
0-3

4
N

A
0.

53
0.

25
2.

52
 x

 1
0-3

4
N

A

Ita
lia

n 
(1

59
, 2

86
)9

N
A

N
A

N
A

N
A

0.
51

0.
24

2.
7x

10
-1

5
3.

25
 

(2
.3

6-
4.

41
)

N
A

N
A

N
A

N
A

H
an

 C
hi

ne
se

 (1
38

, 
59

1)
8

0.
74

0.
49

1.
15

 x
 1

0-1
3

N
A

0.
73

0.
49

6.
03

 x
 1

0-1
3

N
A

0.
77

0.
52

5.
10

 x
 1

0-1
3

N
A

Ja
pa

ne
se

 (5
6,

 7
7)

10
0.

86
0.

62
N

A
N

A
0.

87
5

0.
66

N
A

N
A

N
A

N
A

N
A

N
A

A
us

tr
al

ia
n 

(6
24

,4
30

)*
0.

44
5

0.
20

2
1.

97
x1

0-3
0

3.
14

(2
.5

8-
3.

86
)

0.
44

6
0.

19
9

2.
78

x1
0-3

0
3.

15
 

(2
.5

8-
3.

86
)

0.
44

1
0.

20
2

1.
43

x1
0-2

9
3.

11
(2

.5
4-

3.
80

)
So

ut
h 

In
di

an
 (2

27
, 

20
6)

*
0.

63
0.

36
1.

85
x1

0-1
5

3.
06

 
(2

.3
1-

4.
04

)
0.

63
0.

38
1.7

4x
10

-1
3

2.
8 

(2
.1

2-
3.

70
)

0.
6

0.
35

9.1
1x

10
-1

1
2.

76
 

(2
.0

2-
3.

77
)

*D
at

a 
fr

om
 th

e 
cu

rr
en

t s
tu

dy
 ; 

N
A

 =
 D

at
a 

no
t a

va
ila

bl
e

http://www.molvis.org/molvis/v19/822
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=10490924
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11200638


Molecular Vision 2013; 19:822-828 <http://www.molvis.org/molvis/v19/822> © 2013 Molecular Vision 

825

Table 2. GenoTyPe counTs of The ARMS2 and HTRA1 snPs in The indian and ausTRalian cohoRTs

Population SNP (gene) Genotypes
Genotype counts

P value Odds ratios (95% CI)
Cases Controls

Australian

rs10490924 (ARMS2)
GG 189 271 - Ref
GT 282 138 <0.0001 2.93 (2.22 - 3.86)
TT 145 16 <0.0001 12.99 (7.51 - 22.49)

Indel -EU427539 (ARMS2)
Wt/Wt 190 269 - Ref

Wt/Indel 306 137 <0.0001 3.16 (2.41 - 4.16)
Indel/Indel 119 15 <0.0001 11.23 (6.36 – 19.82)

rs11200638 (HTRA1)
GG 194 271 - Ref
GA 292 138 <0.0001 2.96 (2.25 – 3.89)
AA 130 17 <0.0001 10.68 (6.24 – 18.29)

Indian

rs10490924 (ARMS2)
GG 39 85 - Ref
GT 84 94 0.004 1.95 (1.21 – 3.15)
TT 99 26 <0.0001 8.30 (4.67 – 14.74)

Indel -EU427539 (ARMS2)
Wt/Wt 44 84 - Ref

Wt/Indel 79 88 0.017 1.71 (1.16 – 2.75)
Indel/Indel 104 34 <0.0001 5.84 (3.43 – 9.94)

rs11200638 (HTRA1)
GG 44 61 - Ref
GA 70 67 0.01 1.45 (0.87 – 2.42)
AA 84 17 <0.0001 6.85 (3.58 – 13.12)

Figure 1. Linkage disequilibrium plots showing the three variants 
in the Australian and Indian cohorts. The D’ and r2 values between 
the SNPs are indicated inside the quadrants for the Australian (A 
and B) and the Indian (C and D), respectively.
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us in the assessment of the A69S (0.63) and the rs11200638 
(0.60) variants of the ARMS2 and HTRA1 genes respec-
tively, in the South Indian cohort. Evidence of population 
stratification has also been observed in AMD studies of the 
protective CFHR3–1 deletion, with the highest frequencies 
of the deleted allele being present in African populations 
(16%–20%) compared to Asians (<2%) [15,16].

The potential role of the ARMS2 and HTRA1 gene in 
AMD is still unclear but functional dissection of the effect 
of the rs11200638 promoter variant in the HTRA1 gene has 
revealed that this variant resides within a putative tran-
scription binding site for the factors AP2α and SRF (serum 
response factor) [3,4]. Initial investigation of the influence of 
the homozygous risk genotype on HTRA1 expression levels 
revealed consistently higher levels of expression with the AA 
genotype compared to the GG genotype [3,4]. In contrast, 
other studies of the rs11200638 variant have revealed no 
functional effect on HTRA1 expression [2,6,17].

Analysis of the chromosome 10q26 risk haplotype inclu-
sive of the ARMS2 del443ins54 indel found decreased ARMS2 
expression and almost 3.0 fold increase in HTRA1 expression 
[18]. Interestingly, a subsequent study has shown that while 
the ARMS2 risk del443ins54 results in decrease in mRNA 
transcription levels of the ARMS2 gene, a non risk associ-
ated variant (rs2736911) also leads to significantly reduced 
ARMS2 transcript levels suggesting that ARMS2 protein 
deficiency alone is unlikely to be pathogenic in AMD [17]. 
A functional role for ARMS2 in mitochondrial homeostasis 
has also been suggested and the biology concerning mito-
chondrial dysfunction and the effects on age supports this 
notion [2,5]. However, subsequent immunofluorescence and 
immunoblot experiments localized ARMS2 in retinal epithe-
lial ARPE-19 cells and COS7 transfected cells to the cytosol 
rather than the mitochondria suggesting that ARMS2 may 
not confer risk to AMD through the mitochondrial pathway 
[19]. Studies concerning the effects of AMD risk variants on 
HTRA1 expression are equivocal and further investigations 
on the functional role of these variants are required.

In conclusion, we provide convincing evidence for the 
association of the del443ins54 variant with AMD, despite 
differences in allele, genotype and haplotype frequencies and 
LD across the 10q26 region reflecting population stratifica-
tion differences in two different ethnicities. AMD, a complex 
multi-factorial disease is associated with multiple genomic 
regions with varying magnitudes of effect and the relevance 
of genetic associations differ between populations. Further, 
elucidation of the genetic basis of this disease through the 
analysis of individuals from different ethnic groups has the 
potential to provide useful insights into the genetic diversity 

of risk and protective variants within a gene as well as their 
contributions to disease. Also, meaningful genetic dissec-
tion of the ARMS2 and HTRA1 gene in this region will 
require much larger patient cohorts than have currently been 
assessed, or through the identification of other ethnic popula-
tions which show relatively lower levels of LD over this 10q26 
region.
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