
J. Math. Biol. (2018) 76:1229–1248
https://doi.org/10.1007/s00285-017-1171-0 Mathematical Biology

Bounds for phylogenetic network space metrics

Andrew Francis1 · Katharina T. Huber2 ·
Vincent Moulton2 · Taoyang Wu2

Received: 20 March 2017 / Revised: 14 June 2017 / Published online: 23 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract Phylogenetic networks are a generalization of phylogenetic trees that allow
for representation of reticulate evolution. Recently, a space of unrooted phylogenetic
networks was introduced, where such a network is a connected graph in which every
vertex has degree 1 or 3 and whose leaf-set is a fixed set X of taxa. This space, denoted
N (X), is defined in terms of two operations on networks—the nearest neighbor inter-
change and triangle operations—which can be used to transform any network with
leaf set X into any other network with that leaf set. In particular, it gives rise to a metric
d onN (X) which is given by the smallest number of operations required to transform
one network in N (X) into another in N (X). The metric generalizes the well-known
NNI-metric on phylogenetic trees which has been intensively studied in the literature.
In this paper, we derive a bound for the metric d as well as a related metric dNNI
which arises when restricting d to the subset ofN (X) consisting of all networks with
2(|X | − 1 + i) vertices, i ≥ 1. We also introduce two new metrics on networks—the
SPR and TBR metrics—which generalize the metrics on phylogenetic trees with the
same name and give bounds for these newmetrics. We expect our results to eventually
have applications to the development and understanding of network search algorithms.
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1 Introduction

Phylogenetic networks are a generalization of phylogenetic trees that are used to
represent either non-tree-like evolutionary histories arising in organisms such as plants
and bacteria, or uncertainty in evolutionary histories (Huson et al. 2010; Steel 2016).
Here we are interested in unrooted binary phylogenetic networks on a finite set X
of taxa, or networks for short. These are connected graphs in which every vertex has
degree 1 or 3 and whose leaf-set is X (Gambette et al. 2012). An example of such
a network is presented in Fig. 1(i). Note that if a network is a tree (i.e. it has no
cycles), then it is also known as a phylogenetic tree. Networks can be generated from
biological data using software such as T-REX (Makarenkov 2001) and have been used,
for example, to study the origin of genomes in eukaryotes (Rivera and Lake 2004).

Recently, it has been shown that it is possible to transform any network on a set
X into any other network on the same set using a finite sequence of two types of
operations (Huber et al. 2016b). These operations are pictured in Fig. 1(ii) and (iii), and
are called nearest neighbor interchange (NNI) and triangle operations, respectively.
Note that the NNI operation generalizes the operation with the same name which
is used to compare phylogenetic trees (Robinson 1971). In light of this result, as
observed in Huber et al. (2016b), a space N (X) of phylogenetic networks on X may
be defined as follows. It is the graph with vertex set consisting of all networks on X ,
and edges corresponding to pairs of networks which differ by either oneNNI operation
or one triangle operation. Since we can transform any network inN (X) into any other
network in N (X) using a finite sequence of NNI and triangle operations, it follows
that the space N (X) is connected.

The space N (X) generalizes a discretized version of tree-space (Billera et al.
2001), the graph with vertex set consisting of all phylogenetic trees on X with edges
corresponding to pairs of trees which differ by one NNI operation. Indeed, it actually
contains tree-space (on X ) as a subspace as we shall now explain. For i ≥ 0, we

(ii)

v1

v2
v6

v3
v6

v2 v3

v1v4

v5

v4

v5

(iii)

v1

v2

v3

v2

v1
v3

1

5 3 2

4

(i)

Fig. 1 (i) Example of a phylogenetic network on the set X = {1, 2, 3, 4, 5}. This network is in tier 3,
because it has n = 14 vertices and � = 5 leaves, and 14 = 2(5 + 3 − 1). It has two blobs. (ii) An NNI
operation on adjacent degree three vertices, changing a path v1, v2, v3, v4 to v1, v3, v2, v4. (iii) The triangle
operation that shifts between tiers Ni (x) andNi+1(X), i ≥ 0
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Bounds for phylogenetic network space metrics 1231

let Ni (X) denote the set of all tier i networks on X , that is, all networks on X with
2(|X |−1+ i) vertices. A tier 3 example is shown in Fig. 1(i). Clearly the spaceN (X)

is the disjoint union of theNi (X) taken over i ≥ 0. Moreover,N0(X) is precisely the
set of phylogenetic trees on X , andN1(X) is the set of unicyclic networks on X (see,
e.g. Semple and Steel 2006). Each Ni (X) is a connected subgraph of N (X), where
the edges correspond only to NNI operations (Huber et al. 2016b), so that tree-space
is a subspace of N (X).

Tree-space is equipped with the NNI metric dNNI , which for any two trees T and
T ′ contained in it is defined to be the minimum number of NNI operations required to
transform T into T ′. The NNI metric has been intensively studied in the literature (see
e.g. DasGupta et al. 1997), and its properties have important consequences for tree
search algorithms. One such property is the diameter of tree space, where the diameter
�(D) of a metric D on a set Y is its maximum value taken over all pairs of elements
in Y . In Li et al. (1996) it is shown that, for � = |X | ≥ 3, the diameter of dNNI
satisfies

(� − 4)/2 log[(2√2/3e)(� − 2)] ≤ �(dNNI ) ≤ � log(�) + O(�).

The second bound improved on an O(�2) upper bound given by Robinson (1971).

Network spaces are equipped with metrics which naturally generalize the NNI-
metric on trees. In particular, for N , N ′ ∈ Ni (X) (or, more generally, N , N ′ ∈ N (X)),
we define the distance dNNI (N , N ′) (the distance dN (X)(N , N ′)) to be the minimal
number of NNI operations (respectively, NNI and triangle operations) to transform N
into N ′. In this paper, we focus on giving bounds on the diameter of dNNI ofNi (X), and
upper bounds for dN (X)(N , N ′) for any N , N ′ ∈ N (X). Note that dNNI is bounded
on Ni (X) (since |Ni (X)| is finite), whereas dN (X) can become arbitrarily large on
N (X). Hence it only makes sense to consider diameter bounds for the metric dNNI on
Ni (X). As with tree-space, we expect that our results could eventually prove useful
for network construction algorithms.

We now summarize the contents of this paper. After presenting some preliminaries
in the next section, inSect. 3webegin by introducing a family of phylogenetic networks
thatwe call “echidna” networks.We then exploit properties of these networks inSect. 4,
together with results on graph grammars in Sleator et al. (1992), to give a lower bound
for the diameter of the metric dNNI on Ni (X) (see Theorem 2). An upper bound for
the same diameter is then derived in Sect. 5 (see Theorem 3). To derive this bound,
we exploit properties of Hamiltonian paths in the graph that arises from a network by
removing its leaves and their adjacent edges. Using our upper bound on dNNI , we also
derive an upper bound for dN (X)(N , N ′) for any N , N ′ ∈ N (X) (see Corollary 4).

In Sect. 6, we define SPR and TBR operations on networks. These operations
generalize the NNI operation, as well as the well-known subtree prune and regraft
(SPR) and tree bisection and reconnection (TBR) operations on trees (cf. Allen and
Steel 2001). The SPR and TBR operations allow parts of a network to be chopped
off and reconnected somewhere onto the resulting network, in contrast to the NNI
and triangle operations which are local in nature. In Sect. 7, we derive bounds for the
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diameter of the SPR and TBR metrics on the set on Ni (X). We conclude in Sect. 8
with a discussion of some possible future directions.

2 Preliminaries

For us, graphs contain no parallel edges (edges with the same pair of end vertices),
and no loops (edges with one vertex as both end vertices). This means that edges are
uniquely determined by a pair of vertices {v,w} with v �= w.

Suppose throughout that X is a finite set with |X | ≥ 3. A phylogenetic network on
leaf-set X (or a network (on X ), for short) is a connected graph in which every vertex
has degree 3 or degree 1, and in which the vertices of degree 1 are labelled by the
elements of X (e.g. Fig. 1(i)). This means that a phylogenetic network is essentially a
cubic graph (a graph in which every vertex has degree 3) with leaves attached. It also
means that phylogenetic networks for us are unrooted, so that edges have no implicit
direction.

Write V (N ) for the set of vertices in N and E(N ) for the set of edges of N . We
will reserve n for the number of vertices in the network, n := |V (N )|.

The concept of the tier of a network on X will be important for this paper, and
has been defined in Sect. 1 (following Huber et al. 2016b). It is also known as the
reticulation number of a network, because it is the number of edges one must remove
from it for it to become a phylogenetic tree on X (Lemma 3).

A cut-edge, or bridge, of a network is an edgewhose removal disconnects the graph.
A cut-edge is trivial if one of the connected components induced by the cut-edge is a
vertex andnon-trivialotherwise.A simplenetwork is onewhose cut-edges are all trivial
(so note, for instance, that trees on more than two leaves are not simple networks).
A blob is a maximal subgraph of a network that has no cut-edge (i.e. a “biconnected
component”, also known as a “block”), and that is not a vertex (Gambette et al. 2012).

There are several numbers associated with a network that will be widely used in
this paper. The first, n, has already been mentioned: n = |V (N )|. Others are the size
of the leaf-set, � := |X |, and the tier of the network, which is a non-negative integer
and which we will usually denote i . These three variables are related by the following
equation, as stated in the Introduction:

n = 2(� + i − 1).

In this paper we will consider networks that we call pseudo-Hamiltonian: networks
that contain a cycle that passes through every non-leaf vertex. Note that every pseudo-
Hamiltonian network is simple, but not vice versa. One can construct simple graphs
that are not pseudo-Hamiltonian, by for instance taking a cubic graph that is not
Hamiltonian, and adding some leaves to it.

The nearest-neighbour interchange (NNI) is a local operation, initially defined for
phylogenetic trees, that is important for moving around tree-space in search algo-
rithms. Such algorithms are vital for estimating phylogenetic trees using likelihood or
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parsimony methods. The NNI operation has also been defined as follows for phylo-
genetic networks (Huber et al. 2016b), since it is in a sense an operation on a pair of
adjacent degree 3 vertices in a graph (see Fig. 1(ii)).

Definition 1 (NNI) Let v1, v2, v3, v4 be a path in a network in which neither {v1, v3}
nor {v2, v4} is an edge. An NNI operation on this path replaces it with the path
v1, v3, v2, v4.

This replacement of a path has the effect of retaining the central edge {v2, v3},
while replacing edge {v1, v2} with the new edge {v1, v3} and edge {v3, v4} with the
new edge {v2, v4}.

We now briefly digress beyond a fixed tier and consider the wider network space
N (X). The triangle operation introduced in Huber et al. (2016b), allows movement
between tiers by inserting a 3-cycle at any degree-3 vertex (“blow-up”), or collapsing
a 3-cycle into a degree-3 vertex (“collapse”). See Fig. 1(iii).

Proposition 1 (Huber et al. 2016b) For each i ≥ 0, Ni (X) is connected by NNI
operations. Moreover, the space of networks N (X) is connected by NNI operations
together with triangle operations.

Because the space N (X) is connected, the distance dN (X) is well-defined, and
indeed is a metric (as is the NNI distance on tier i networks) (Huber et al. 2016b,
Theorem 5). As it turns out, a canonical extension of the notion of the subtree prune
and regraft (SPR) and tree-bisect and regraft (TBR) operations for trees to networks
(see Definitions 2 and 3 for precise details) allows us to establish the companion result
for Proposition 1.

Corollary 1 For each i ≥ 0, Ni (X) is connected by SPR operations, and by TBR
operations. Moreover, the space of networks N (X) is connected by SPR operations
together with triangle operations, and by TBR operations together with triangle oper-
ations.

Proof Each NNI operation is an SPR operation, and hence also a TBR operation (this
is easy to check and is noted in Lemma 7), so the result follows immediately from
Proposition 1. �

Finally for this preliminary section, we reiterate that this paper is focussed on
movements within a single tier. The remarks about wider movement around the space
N (X) in Proposition 1 and Corollary 1 are included for context.

Write Sk for the symmetric group on the set {1, . . . , k}, for k ≥ 1. For the sake of
extremal cases, we set S0 to be trivial group consisting of the empty map from ∅ to
itself. Similarly, we adopt the convention that 0! = 1 and loga(0) = 0 for all a > 0.
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Fig. 2 Example of a
phylogenetic network G(S, π0)

in the echidna family with S =
(a1, a5, 0, a2, 0, 0, a4, a3, 0, a6)
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3 Echidna graphs

The first main result of this paper, provided in Sect. 4, is a lower bound on the diameter
of the space Ni (X) of tier i phylogenetic networks under NNI operations. To obtain
this bound, we will need a lower bound on the number of phylogenetic networks in tier
i . That lower bound is established in this section (Corollary 2), by counting the number
of distinct networks in a subset of Ni (X). This subset is the set of echidna graphs1,
which we will define shortly. Echidna graphs are useful for this purpose because they
can be counted through a bijection with a set of sequences S(p, q), defined as follows.

For integers p ≥ 1 and q ≥ 0, define S(p, q) to be the set of sequences of length
p + q whose entries are the symbols {a1, . . . , ap} and q copies of 0, and that begin
and end with a1 and ap respectively. Denote the kth entry of a sequence S ∈ S(p, q)

by S[k]. The number of such sequences is |S(p, q)| = (p+q−2)!
q! .

For � ≥ 3 and i ≥ 1, we use a sequence S ∈ S(�, i−1) and a permutation π ∈ Si−1
(if i > 1), to define a tier i networkG(S, π)with � leaves labelled {1, . . . , �} as follows.

Draw a circle and create � + i − 1 degree 2 vertices labelled clockwise by the
sequence elements S[k], for 1 ≤ k ≤ � + i − 1, to obtain a cycle C with vertices
S[1], . . . , S[� + i − 1]. Each vertex is thus labelled a j for some j = 1, . . . , � or
0. To each of the � vertices for which S[k] = a j �= 0, attach a leaf with label j .
Next, subdivide the edge {S[1], S[� + i − 1]} by i − 1 degree 2 vertices reading
anticlockwise from S[1] to S[� + i − 1]. Referring to the resulting graph also as C ,
draw i − 1 chords, that is, edges from the degree 2 vertices along the top of C (those
labelled 0) to the degree 2 vertices along the bottom ofC according to the permutation
π (using implied numbering from their positions in the sequence). Denote this graph
G(S, π). An example with π0 = id is shown in Fig. 2.

We call graphs constructed in this way echidna graphs, and for a given number of
leaves � and i ≥ 1, denote the set of such graphs by

G(�, i − 1) := {G(S, π) | S ∈ S(�, i − 1), π ∈ Si−1}.

Note that elements of G(�, i − 1) are tier i phylogenetic networks, and are also
pseudo-Hamiltonian graphs, as defined in Sect. 2.

1 Named for their resemblance to the Australian monotreme.
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In what follows, we will mostly restrict our attention to echidna graphs in which
the permutation in Si−1 is the identity map π0. We will show that different sequences
in S(�, i − 1) generate non-isomorphic graphs. We begin by noting some properties
of echidna graphs generated from different sequences.

Lemma 1 Write G = G(S, π0) and G ′ = G(S′, π0) in G(�, i − 1), for � ≥ 3
and i ≥ 1. Suppose S �= S′ and let k be the first position at which they differ, that is,
k ∈ {2, . . . , �+i−2} is such that S[k] �= S′[k] and S[ j] = S′[ j], for all 1 ≤ j ≤ k−1.
Suppose, without loss of generality, that S[k] �= 0 (noting that at least one of S[k] and
S′[k] must be non-zero), so that S[k] = aα for some α = 2, . . . , � − 1. In addition,
assume that dG(1, α) = dG ′(1, α). Then either

(A) S[k − 1] = S′[k − 1] = aβ for some β = 1, . . . , �. That is, the entry before aα in
S also corresponds to a leaf (namely β); or

(B) S[k − 1] = S′[k − 1] = 0 is the last zero entry in S (and therefore S′), and aα is
the second last entry in S′. That is, S′[� + i − 2] = S[k].

Proof Firstly, we can rule out the case that aα is the first entry in S after a1, namely
the case k = 2, as follows. If S[2] = aα then dG(1, α) = 3, and so dG ′(1, α) = 3 by
the assumption of the lemma. But by construction of the echidna graphs, the only way
two leaves can be 3 apart is if their corresponding terms are consecutive in the graph’s
defining sequence (excluding the case the two leaves are labelled 1 and �), and this
forces aα to also be the second entry of S′, a contradiction (since S and S′ differ at the
kth position).

Now suppose k > 2 and consider minimal paths from 1 to α in G and G ′. Suppose
that (A) does not hold, that is, that S[k − 1] = S′[k − 1] = 0. We need to show that
S[k − 1] is the last zero entry in S.

To this end, let x be the vertex that is adjacent to S[k − 1] that is not equal to its
other neighbors S[k − 2] and S[k]. In addition, let c be the chord containing x and
S[k − 1]. Since the removal of x and S[k − 1] disconnects G into a graph in which 1
and α are in different components, it follows that a minimal path from 1 to α must go
through S[k − 1] or x . Therefore, either

dG(1, α) = dG(1, S[k − 1]) + dG(S[k − 1], α)

= dG(1, S[k − 1]) + 2, (1)

(since the distance from S[k − 1] to α is 2), or

dG(1, α) = dG(1, x) + dG(x, α)

= dG(1, x) + 3, (2)

(since the distance from x to α is 3, noting that α �= �). This can be seen because there
certainly is a path of length 3 from x to α (namely x, S[k − 1], aα, α), and in general
any path from x to α must contain at least four vertices, namely x , S[k ± 1], S[k], and
α.
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Fig. 3 The situation of case (B) in Lemma 1. All chords that are different from c (indicated by two vertical
parallel lines) are to the left of chord c in both graphs

By definition of k and the fact that x and S[k − 1] are in the chord c, it follows
that dG(1, S[k − 1]) = dG ′(1, S′[k − 1]) and dG(1, x) = dG ′(1, x), labelling x and c
in G ′ as in G (see Fig. 3). Indeed, in either graph, paths from 1 to S[k − 1] must go
through S[k − 2] or x , both of which are distance 1 from S[k − 1] (with an equivalent
statement for S′).

The only way S′[k − 1] could be distance 2 from α in G ′ is if aα = S′[k] or
S′[k − 2], both of which are ruled out by assumptions. This eliminates the possibility
that a minimal path from 1 to α in G ′ may go through S′[k − 1]. Since paths from
1 to α in G ′ must, as in G, go through either S′[k − 1] or x , we have from (2) that
dG ′(x, α) = 3.

Any path of length 3 from x to α in G ′ that goes up the chord c would similarly
force aα = S′[k] or S′[k − 2], both not possible. So the path of length 3 from x to α in
G ′ does not contain c. It also cannot go towards the leaf labelled 1 since that is further
from α. Therefore it goes towards the leaf labelled �, from x .

If there was another chord in G ′ coming after c, then any path from x to α going
up that chord would have distance at least 4: the path along the bottom from x to the
new chord; the chord itself; the path along the top from the top of the chord to aα; and
the edge to the leaf α itself.

Therefore, there is no chord coming after c in G ′, and so we are in situation (B): c
is the last chord, in the (k − 1)th position (so that S′[k − 1] is the last zero in S′, and
hence also in S), and the position of α in G ′ must be adjacent to that of the final leaf,
�. This situation is illustrated in Fig. 3. �

We are now able to prove our main result about echidna graphs: that distinct (non-
isomorphic) echidna graphs are generated by distinct sequences.

Theorem 1 Write G = G(S, π0) and G ′ = G(S′, π0) in G(�, i − 1) for � ≥ 3 and
i ≥ 1. If S �= S′ in S(�, i − 1), then G � G ′.

Proof Suppose k is the first position for which S[k] �= S′[k]. Then this position is
non-zero in at least one of S and S′, and so without loss of generality suppose that
S[k] = aα with α > 1.
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IfdG(1, α) �= dG ′(1, α), thenG � G ′, andwe are done. So suppose thatdG(1, α) =
dG ′(1, α).

By Lemma 1, either (A) or (B) holds.

If (A), then there exists some leaf β �= 1 such that S[k − 1] = S′[k − 1] = aβ .
But then dG(α, β) = 3, while dG ′(α, β) > 3, by definition of k and since dis-
tances between leaves can only be 3 if their corresponding terms are adjacent in the
sequence.

If (B), note that aα in G is not adjacent to a�, since if it were then S = S′ (aα is the
first point at which they differ). However aα in G ′ is adjacent to a�. This implies that
dG ′(α, �) = 3 < dG(α, �), and so the graphs are not isomorphic. �

Corollary 2 The number of tier i phylogenetic networks on X, with |X | = � ≥ 3 and
i ≥ 1, is

|Ni (X)| ≥ (� + i − 3)!
(i − 1)! .

Moreover, when i = 1 we have

|N1(X)| ≥ (� − 2)!2�−3.

Proof The number of distinct echidna graphs with π = π0 is at least the number of
sequences in S(�, i − 1), namely (�+i−3)!

(i−1)! , and the set of such echidna graphs is a
subset of the set of tier i phylogenetic networks.

For i = 1, we have

|N1(X)| = (� − 1)!2�−2 − (2� − 2)!
(� − 1)!2�−1 ≥ (� − 2)!2�−3,

where the first equality follows from Semple and Steel (2006, Theorem 3) and the
second inequality follows from

(2� − 2)!
(� − 1)!2�−1

1

(� − 1)!2�−2 ≤ 2� − 3

2� − 2
and

(� − 2)!2�−3

(� − 1)!2�−2 ≤ 1

2� − 2
.

�

Note, this result also holds for i = 0because there are (2�−5)!! trees and (2�−5)!! ≥
(� − 3)!.

Remark 1 It would be interesting to see whether the term (i−1)! can be removed from
the denominator of the general bound in Corollary 2 for i > 1. One way to achieve
this might be to count echidna networks for general π ∈ Si−1, but it seems that this is
not trivial.

123



1238 A. Francis et al.

4 A lower bound on the NNI diameter

In this section we provide a lower bound on the maximum distance between two tier i
phylogenetic networks under NNI operations (Theorem 2). Our strategy follows that
of Li et al. (1996), who construct bounds for a similar NNI diameter on tree-space.
The strategy involves first bounding the number of networks in a ball of given radius
around a network (Proposition 2), then using upper and lower bounds on the size of a
factorial (Lemma 2). For the former of these, we follow Li et al. (1996) in using the
concept of a “graph grammar”, from Sleator et al. (1992).

Proposition 2 The number of networks inNi (X) reachable in m or fewer NNI oper-
ations from any given network in Ni (X) is at most 62(�+i−1)+10m.

Proof Define a graph grammar by the three “productions” shown in Fig. 4 (to use the
language of Sleator et al. (1992)). There is one “triplet” production (see Fig. 4(i)) and
two “quartet” productions (see Fig. 4 (ii) and (iii)) .

For each vertex of degree 3, label half-edges in N arbitrarily by 1,2,3. Any NNI
operation on a quartet in N involves at most five of the productions in Fig. 4: up to
two rotations of labels for each vertex, performed by the triplet production, to align
the labels with the quartet productions, plus one of the quartet productions. Thus, a
sequence of m NNI operations becomes a sequence of at most 5m productions in
the graph grammar. Now, applying Theorem 2.3 of Sleator et al. (1992), the number
of networks in Ni (X) reachable in m or fewer steps from any network in Ni (X) is
(c + 1)n+5rm , where c = 5 (the number of vertices on the left side of the gram-
mar), r = 2 (the largest number of vertices on the right side of any one production),
and n = 2(� + i − 1) (the number of vertices in the network). This completes the
proof. �

Note that the leaf labels in a phylogenetic network are “tags” in the sense of Sleator
et al. (1992), and by Sleator et al. (1992, Remark 3.4), this does not change the formula
in Sleator et al. (1992, Theorem 2.3) for (leaf-labelled) phylogenetic networks.

We will exploit Stirling’s well-known formula giving bounds on m!, stated below.

Lemma 2 (Stirling’s formula) For m ≥ 1,

√
2π

mm+ 1
2

em
≤ m! ≤ √

2π
mm+ 1

2

em−1 .

(ii)

1

2
3

(i)

3

12 1
1

1

1

2

2

2

2
3

3 3
3 1

1
2

23
3

1

12

23 3

(iii)

Fig. 4 The graph grammar of productions that implement NNI operations. The labels are on half edges
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Using Stirling’s formula, we have

Corollary 3 For |X | = � > 3, we have

|N1(X)| ≥ (� − 2)�− 3
2

e�−1 .

Proof This follows from Corollary 2 and the fact that 2�−3
√
2π > e holds for all

integer � greater than 3. 	


Theorem 2 The diameter �i of the set of tier i phylogenetic networks, i ≥ 1, is
bounded below by a term of order n log n. More precisely

�i ≥ 1

20

[
(n − 3) log6

(n
2

− 2
)

− (2i − 1) log6(i − 1) − (n − 2i) log6 e − 2n
]
.

Here we use log6(0) = 0.

Proof Assume first that i > 1. By Proposition 2, the number of networks reachable
in �i operations is at most 6n+10�i . But since this is the diameter, this is all networks.
Thus from Corollary 2, we have

6n+10�i ≥ ( n2 − 2)!
(i − 1)! . (3)

Using Lemma 2, withm = n
2 −2 for the numerator andm = i−1 for the denominator

of Eq. (3), this gives:

6n+10�i ≥
[√

2π
( n2 − 2)

n
2− 3

2

e
n
2−2

]
×

[
ei−2

(i − 1)i− 1
2

]

=
√
2π( n2 − 2)

n
2− 3

2

e
n
2−i (i − 1)i− 1

2

.

Taking logs base 6 and reorganising gives

�i ≥ 1

10

[
log6

√
2π + 1

2
(n − 3) log6

(n
2

− 2
)

− 1

2
(n − 2i) log6 e

−1

2
(2i − 1) log6(i − 1) − n

]

≥ 1

20

[
(n − 3) log6

(n
2

− 2
)

− (2i − 1) log6(i − 1) − (n − 2i) log6 e − 2n
]
,

as required. This completes the proof for i > 1. When i = 1, the theorem holds for
� = 3 in view of n = 6, and the case � > 3 can be established in a similar way to that
of i > 1 by using Corollary 3. �
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5 An upper bound on the NNI diameter

In this section we establish an upper bound on the NNI diameter of the space of
phylogenetic networks, by providing a schematicNNI path between any two networks.
The maximal length of this path is then an upper bound for the diameter of the space
(Theorem 3).

The path we construct is as follows: first convert N into a simple network, and then
into a pseudo-Hamiltonian network (defined in Sect. 2). Upper bounds for the number
of steps in these conversions are given in Lemmas 4 and 5 respectively. We then show
how to convert any pseudo-Hamiltonian network into any other in a bounded number
of steps (Lemma 6).

Finally we remark in Corollary 4 that this result can be used to bound the distance
between an arbitrary pair of networks in possibly different tiers.

We begin by deriving an upper bound on the number of non-trivial cut-edges for a
network in tier i .

Given a connected graph G with vertex set V and edge set E , we consider r(G) =
|E | − |V | + 1. Note that r(G), known as the cyclomatic number of G, is clearly the
number of edges that need to be removed from G in order to obtain a tree that is a
spanning tree for G. For a network N ∈ N (X), r(N ) is also known as the reticulation
number of N .

Lemma 3 Let N ∈ N (X) and i ≥ 0. Then N ∈ Ni (X) if and only if r(N ) = i .

Proof We show first that for any network N ∈ Ni (X) we have |E(N )| = 2�−3+3i .
Suppose N ∈ Ni (X). Then by Huber et al. (2016b, Theorem 3), we can obtain N by
first taking some phylogenetic tree (i.e. a network in tier 0) which has 2� − 3 edges,
then performing i triangle operations (which adds 3i edges) to obtain a network in
Ni (X), and then performing some sequence of NNI operations to get N (which does
not change the number of edges). Hence |E(N )| = 2� − 3 + 3i , as required.

Now, suppose that N ∈ N (X), with N ∈ Ni (X) for some i ≥ 0, then r(N ) =
|E(N )| − |V (N )| + 1 = (2� − 3 + 3i) − 2(� + i − 1) + 1 = i . Conversely, suppose
r(N ) = i . If N ∈ N j (X) some j ≥ 0, then i = r(N ) = |E(N )| − |V (N )| + 1 =
(2� − 3 + 3 j) − 2(� + j − 1) + 1 = j . �

Proposition 3 Let N ∈ Ni (X) for some i ≥ 0, with n vertices. The number of non-
trivial cut-edges in N is at most � + i − 3.

Proof Without loss of generality, we may assume that i ≥ 1 as otherwise N is a
phylogenetic tree on X and that the result clearly holds. We consider the phylogenetic
tree T on X that is obtained by shrinking each blob in N down to a vertex. Note that
the number of non-trivial cut-edges in N is clearly at most the number of edges in T
minus �.

Now, it follows by Huber et al. (2016b, Lemma 6), that by shrinking a blob B
of N down to a vertex, we lose at least r(B) vertices. But r(N ) is the sum of the
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Fig. 5 Example of an NNI
operation on a cut-edge e that is
incident with a vertex in a blob

b

ae
ba

u w

v x

w

x

v

e

u

values r(B) taken over all blobs B in N . Hence, since r(N ) = i by Lemma 3 and
|V (N )| = 2(� + i − 1), the tree T has at most 2� + i − 2 vertices, and so it has at
most 2� + i − 3 edges. The proposition now follows immediately. �

Lemma 4 Suppose N ∈ Ni (X) and i ≥ 1. We can convert N into a simple network
by performing at most � + i − 3 NNI operations on N.

Proof Without loss of generality we may assume that N is not simple as otherwise the
lemma clearly holds. Since i > 0, N contains at least one blob. Let e be a non-trivial
cut-edge of N and let a, b ∈ V (N ) such that e = {a, b}. Furthermore, let u ∈ V (N )

such that u is adjacent with a and let w ∈ V (N ) − {a} such that w is adjacent with
b. Finally, let C denote the connected component of N containing a, obtained by
deleting the edge e. For the convenience of the reader, we depict in Fig. 5 the case that
C contains a cycle which shares a vertex with e and that the other vertex of e is not
contained in a cycle of N .

Since e is a cut-edge of N we can perform an NNI operation on the path u, a, b, w
to obtain a new network N ′. Since e has been incorporated into C in N ′ and no new
cut-edge has been created by that operation, it follows that N ′ has one cut-edge less
than N . Consequently, by performing at most the number of non-trivial cut-edges NNI
operations, we can convert N into a simple network.

The statement follows, by Proposition 3. �

We now give an algorithm to convert N into a pseudo-Hamiltonian network.

Lemma 5 Suppose N ∈ Ni (X) is simple, with i ≥ 1. We can convert N into a
pseudo-Hamiltonian network by performing at most n NNI operations on N.

Proof Suppose N is not pseudo-Hamiltonian. Since N is simple it must contain a blob
B, and every cut-edge of N is trivial. Choose a maximal length cycle C in B.

Choose a non-leaf vertex v that is not in C , but is adjacent to a vertex w ∈ V (C).
Since w has degree 3 there must exist a vertex w1 ∈ V (C) that is adjacent with w.
Note thatw1 and v can not be adjacent, since if they were, they would be in a cycle that
is longer than C , violating maximality (the path w1 to w could be extended by going
through v). Since v is not a leaf of N , we may choose another vertex v1 ∈ V (N )−{w}
that is adjacent to v. Again, since w has degree 3, and is contained in a cycle and
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adjacent to v (outside the cycle), the edge {w, v1} also is not contained in N . Hence,
we may apply an NNI operation on the path w1, w, v, v1 to obtain a new network N ′.

Note that N ′ is still a simple network, but the cycle C has been extended to create
a new cycle C ′ with one more vertex, namely v. To see that N ′ is still simple, let
v2 ∈ V (N ) − {w, v1} be the “other” vertex adjacent to v in N . Consider the edges
{v, v1} and {v, v2} in N . Because N is simple, at most one of v1 and v2 is a leaf, and
the other is (or both are) part of a path w, v, vi , . . . that begins and ends in a vertex in
the cycle C . If one of v1, v2 was a leaf attached to v in N , it remains a leaf in N ′, but
is now attached to the cycle C ′. For vi not a leaf, it is part of a path back to C in N ,
and remains part of a path back to C ′ in N ′ (a path that is now one vertex shorter).

It follows that a sequence of NNI operations can be performed, each increasing the
length of a maximal length cycle in the network by one vertex. This process ends,
since the number of vertices is finite, and it ends with a pseudo-Hamiltonian network.
The number of NNI operations taken is at most the number of vertices in N , which
completes the proof. �

In our final lemma before the main theorem, we bound the distance between any
two pseudo-Hamiltonian networks.

Lemma 6 Any two pseudo-Hamiltonian networks in Ni (X), i ≥ 1, are at most( n
2+i−1

2

)
NNI operations apart, where n = |V (N )|.

Proof Fix a pseudo-Hamiltonian cycle for each network. Both these cycles are of the
same length, namely n − � = � + 2(i − 1), and both have the same number, �, of
vertices adjacent to leaves.

The leaves of each network are labelled 1 to �; number the adjacent vertex of each
leaf by the same label. These vertices are on the pseudo-Hamiltonian cycle. Now, for
each network, and for each non-leaf edge that is not on the pseudo-Hamiltonian cycle
(that is, each chord ), number its end vertices by pairs {� + 1, � + 2}, . . . , {� + 2i −
3, �+2i−2}. This gives every vertex in each network a label (� leaves, � leaf-adjacent
vertices, and 2(i − 1) vertices contained in chords, for a total of 2(� + i − 1)).

For any two adjacent vertices v2, v3 on a pseudo-Hamiltonian cycle, performing an
NNI operation on the length three sub-path v1, v2, v3, v4 has the effect of swapping
the middle two adjacent vertices to give the sub-path v1, v3, v2, v4. Consequently, the
arrangement of the vertices labelled 1, . . . , � + 2(i − 1) on the pseudo-Hamiltonian
cycles can be sorted between the two networks by NNI operations in the number
of swaps of adjacent vertices in the cycle. This is bounded by the diameter of the
symmetric group on �+2(i −1), which is

(
�+2(i−1)

2

) = (n−�
2

)
, as required, noting that

n − � = n
2 + i − 1. �

We can now give an upper bound for the diameter of Ni (X).
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Theorem 3 The diameter �i of Ni (X), with i ≥ 1, is bounded above by a term of
order n2. More precisely, we have

�i ≤ 3n +
( n

2 + i − 1

2

)
− 2.

Proof By Lemmas 5.2 and 5.3, any network in tier i ≥ 1 can be transformed into
a pseudo-Hamiltonian network in at most n

2 − 1 + n steps: n
2 − 1 = � + i − 3 to

become simple and n to become pseudo-Hamiltonian. So given any two networks in
Ni (X), they can be both made pseudo-Hamiltonian in a total of 3n − 2 steps, and, by

Lemma 6, one can be transformed to the other in
( n
2+i−1

2

)
steps. �

Note that the same bound for i = 0 follows immediately from Li et al. (1996)
(where the bound is better than in this statement, being essentially � log �).

We can use Theorem 3 to find an upper bound for the distance between any pair of
networks in N (X), irrespective of tier.

Corollary 4 Let N , N ′ ∈ N (X), with N ∈ Ni (X) and N ′ ∈ N j (X). Supposewithout
loss of generality that 0 ≤ i ≤ j .

Then

dN (X)(N , N ′) ≤ 6� + 7 j − i − 8 +
(

� + 2 j − 2

2

)
.

Proof By performing j−i triangle operations starting with N we can create a network
N ′′ in tier j . The distance from N ′′ to N ′ is bounded above by the diameter bound
� j given in Theorem 3 (in which n is the number of vertices of a network in tier j ,
namely n = 2(� + j − 1)). Hence, the distance from N to N ′ is at most j − i + � j ,
and

j − i + � j ≤ j − i + 3n +
( n

2 + j − 1

2

)
− 2

= j − i + 6(� + j − 1) +
(

(� + j − 1) + j − 1

2

)
− 2

= 6� + 7 j − i − 8 +
(

� + 2 j − 2

2

)

as required. �

6 SPR and TBR operations

In this section, we define “subtree prune and regraft” (SPR) and “tree bisection and
regraft” (TBR) operations on network spaceNi (X), i ≥ 1.We extend the results of the
previous sections on NNI operations to these operations on network space in Sect. 7.
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v1
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e′

v1
u

v2
w

e′

Fig. 6 Example of an SPR operation. The operation is applied on e

To state these definitions for some network N ∈ N (X), let v,w ∈ V (N ) such that v
is of degree 3. Assume that e = {v,w} is an edge in N , but that {v1, v2} is not an edge
in N , where v1, v2 are the vertices other than w incident to v in N (Fig. 6).

Definition 2 (SPR operation) An SPR operation on e first removes e from N and
then suppresses v (the degree of v is now 2). Next, it attaches a new edge {w, u} to
w, where u is a vertex subdividing an edge e′ of N not adjacent to e. In case e is a
cut-edge of N then we also require that e′ is contained in the connected component
not containing w.

Definition 3 (TBR operation) Assume that w is such that the degree of w is also 3
and that {w1, w2} is not an edge in N where w1, w2 ∈ V (N ) − {v} are the other
two vertices in N incident with w. A TBR operation on e = {v,w} deletes the edge,
suppressing the resulting degree 2 vertices v andw, and adds a new edge on N between
a subdivision vertex of an edge e1 and a subdivision vertex of a further edge e2 of
N . In case e is again a cut-edge of N , we also require that e1 and e2 are contained in
distinct connected components.

Note that in Batagelj (1981) similar operations are defined on cubic graphs (see
generating rules P1–P10).

It is straightforward to check that in network space each SPR operation is a TBR
operation. Moreover, each NNI operation is also an SPR operation by noting that an
NNI operation on a path v1, v2, v3, v4 results in a network that can be obtained from
an SPR operation on {v3, v4}. So we state the following without proof.

Lemma 7 NNI ⊆ SPR ⊆ TBR.

Wewill write d� for the distance under the operation�, for� ∈ {NNI, SPR, TBR}.
Note that these are distances within a tier, since each operation � is an operation that
remains in a fixed tier. We have already noted in Sect. 2 that dNNI is a metric and,
in view of the last lemma, it is straight-forward to check that the same also holds for
dSPR and dTBR .

In fact any TBR operation can be done by just two SPR operations, giving the
following relationship among corresponding distances:
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Lemma 8 The SPR distance dSPR(N , N ′) ≤ 2dTBR(N , N ′), the TBR distance, for
networks N , N ′ ∈ Ni (X).

Proof Each TBR operation on an edge e of a network N ∈ N (X) can be performed
by a pair of SPR operations where in the first SPR operation the role of v is played by
one of the two vertices incident with e and, in the second, that role is played by the
other vertex incident with e. �

7 Upper and lower bounds on the SPR and TBR diameters ofNi (X)

We write N�
i (X) for the space of networks in tier i under the operation � ∈

{NNI, SPR, TBR}, and write ��
i (n) for the diameter of N�

i (X) with n = |X |.
When i = 0, N0(X) is the set of phylogenetic trees on X and Ding et al. (2011,

Theorem 1.1) obtained the following bounds for �TBR
0 and �SPR

0 :

n

2
− √

2n ≤ �TBR
0 (n) ≤ �SPR

0 (n) ≤ n − 1

2
−

√
n − 2

2
√
2

for n ≥ 6. Therefore in this section we focus on the bounds for i ≥ 1.

The number of SPR operations from any given network N in tier i ≥ 2 can be given
an upper bound as follows.

First, there is the number of edges one may choose for the operation. The number
of edges is half the total degree, which is 3n − 2� (each vertex has degree 3 except
the leaves, which have degree 1). Note, 3n − 2� = 2(n + i − 1), and so the number
of edges is n + i − 1.

Each edge e has two end vertices that may be chosen to be detached, and then one
may regraft e on to any edge except e itself and the edges still incident to it: n + i − 4
choices.

Thus there are at most

2(n + i − 1)(n + i − 4)

networks reachable from any network in Ni (X) by applying one SPR operation.

Setting d = �SPR
i (n), following the previous logic of Sect. 4, we have that the

number of networks inNi (X) is at most (2(n + i − 1)(n + i − 4))d , and so we have

(2(n + i − 1)(n + i − 4))d ≥
√
2π( 12n − 2)

1
2 n− 3

2

e
1
2 n−i (i − 1)i− 1

2

using the calculation in the proof of Theorem 2. Taking natural logs:

d [ln 2 + ln(n + i − 1) + ln(n + i − 4)] ≥ 1

2
(n − 3) ln

(n
2

− 2
)

−1

2
(2i − 1) ln(i − 1) − 1

2
(n − 2i).
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Therefore,

�SPR
i (n) ≥ (n − 3) ln

( n
2 − 2

) − (2i − 1) ln(i − 1) − (n − 2i)

2(ln 2 + ln(n + i − 1) + ln(n + i − 4))

≥ (n − 3) ln
( n
2 − 2

) − (2i − 1) ln(i − 1) − (n − 2i)

4 ln 2(n + i)
.

This lower bound on the diameter �SPR
i gives us one for the TBR diameter:

Proposition 4 For i ≥ 1 and n ≥ 6, we have

�TBR
i (n) ≥ 1

2
�SPR

i (n) ≥ (n − 3) ln
( n
2 − 2

) − (2i − 1) ln(i − 1) − (n − 2i)

8 ln 2(n + i)
.

Here we use ln 0 = 0.

Proof The first inequality follows from Lemma 8. The secondary inequality follows
from the argument before the proposition for i > 1. When i = 1, it holds for n = 6,
and the case n > 6 (and hence � > 3) can be established in a similar way to that of
i > 1 by using Corollary 3. �

To obtain upper bounds for �SPR
i and �TBR

i , we can similarly follow our approach
from the NNI case.

Tomove from a phylogenetic network N ∈ Ni (X) to another network N ′ ∈ Ni (X),
first, convert the phylogenetic networks into pseudo-Hamiltonian forms, N1 and N ′

1.
This takes at most 2n operations for each network, since that is how many NNI
operations it takes (Lemmas 4 and 5). Combining Lemmas 6 and 7, at most n2 SPR
operations are needed to transform N1 to N ′

1.

This gives an upper bound for the SPR diameter of

�SPR
i (n) ≤ n2 + 4n.

Since each SPR operation is also a TBR operation (Lemma 7), the number of
TBR operations between any two networks is at most the maximum number of SPR
operations. That is, dTBR ≤ dSPR , which gives an upper bound on �TBR

i . These upper
bounds are summarized as follows:

Proposition 5

�TBR
i (n) ≤ �SPR

i (n) ≤ n2 + 4n.

Both upper bounds in Proposition 5 could be improved by an improvement on the
upper bound for the number of SPR moves required to move between two pseudo-
Hamiltonian networks. Whether that bound of n2 can be improved is a question that
may be of independent interest.
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8 Discussion

In this paper, we have presented upper and lower bounds for the diameter of the metric
d� onN�

i (X),� ∈ {NNI, SPR, TBR}. It would be interesting to know if these bounds
can be improved upon and how close they are to being sharp.We suspect that the lower
bound given in Theorem 2 could be improved by finding a larger lower bound for the
number of networks in Ni (X) than the one given in Corollary 2, but have not been
able to show this.

It would also be of interest to obtain a deeper understanding of the relationship
between the structure of the space N (X) under d� and the subspace obtained by
restricting d� toN�

i (X), i ≥ 0. For example, it is clear thatN�
i (X) is not an isometric

subspace ofN (X) under the metric d� for i ≥ 1, by virtue of the following example.
Take a network N in tier i , and use the triangle operation to blow up a vertex v, giving
a new network N ′ in tier i + 1. Now repeat this operation on N but this time use the
triangle operation on a different vertex w �= v, to get a different network N ′′ in tier
i + 1. The distance between N ′ and N ′′ in N (X) is 2, through two judicious uses
of the triangle operation. But the distance between them staying within tier i + 1 is
strictly greater than 2, regardless of which operation of NNI, SPR or TBR is used.

In this paper we have considered unrooted networks. However, it would be very
interesting to see how our results could be extended to rooted networks. Some results
concerning spaces of rooted networks are presented in Radice (2011) and in Nakhleh
(2010). However, it is still necessary to define operation-basedmetrics on these spaces,
and previouswork on spaces of level-1 rooted networks inHuber et al. (2016a) suggests
that this could be quite technical. Moreover, to find diameter bounds on the resulting
space of rootednetworkmetrics such as the onegiven inTheorem2, itmaybenecessary
either to introduce a new approach for dealing with graph grammars arising from
directed graphs (which are not considered in Sleator et al. 1992), or to avoid this
method of proof completely.

There are also some interesting computational questions concerning the metrics
d�. For example, what is the computational complexity of computing d�? Note that
the NNI, SPR and TBR distance are all NP-complete to compute (cf. DasGupta et al.
1997; Hickey et al. 2008; Allen and Steel 2001). In light of this fact, it is likely that the
metric d� is also NP-complete to compute. One way to show this could be to prove
that N�

0 (X) (i.e. tree-space) is an isometric subgraph of N�(X) under d�, which is
a special case of the problem mentioned above.

In this paper we have considered discrete spaces of networks. However, it would
be interesting to define and study continuous variants of these spaces. Continuous
tree-spaces have been defined and studied by Billera et al. (2001), and arise since real-
valued edge-lengths are often assigned to phylogenetic trees. How should we formally
define continuous spaces of networks with edge-weights and metrics on these spaces,
and what are their properties? Note that recently a definition for a continuous space
of unrooted networks has been proposed in Devadoss and Petti (2016), and shown to
have interesting geometric properties.
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