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This work highlights unexpected, not so well known responses of ionic liquids and ionic

liquid-containing systems, which are reported in a collective manner, as a short review.

Examples include: (i) Minima in the temperature dependence of the isobaric thermal

expansion coefficient of some ILs; (ii) Viscosity Minima in binary mixtures of IL+Molecular

solvents; (iii) Anomalies in the surface tension within a family of ILs; (iv) The constancy

among IL substitution of Cp/Vm at and around room temperature; (v) ILs as glass forming

liquids; (vi) Alternate odd-even side alkyl chain length effects; (vii) Absolute negative

pressures in ILs and IL-containing systems; (viii) Reversed-charged ionic liquid pairs; (ix)

LCST immiscibility behavior in IL + solvent systems.

Keywords: ionic liquids, unusual behavior, thermal expansion coefficient, viscosity, surface tension, odd-even

effects, reversed charge ILs, LCST

INTRODUCTION

Ionic Liquids (ILs) are constituted quasi-exclusively by anions and cations, melting at temperatures
that are much lower than those of their conventional, inorganic salts counterparts. For instance,
“table salt” (NaCl) melts at about 800◦C. In contrast, many ILs present melting points lower
than room temperature. Generally, ILs have a large liquid range and, some of them do not easily
crystallize on cooling, instead they supercool and undergo a glass transition.

Several high quality reviews (Welton, 1999, 2018; Plechkova and Seddon, 2008; Armand et al.,
2009; Hallett and Welton, 2011; Niedermeyer et al., 2012; Tariq et al., 2012; Chatel et al., 2014;
Hayes et al., 2015; Hunt et al., 2015; Podgoršek et al., 2016; Kar et al., 2019) are available. No review
focused on the unexpected behavior of ILs has been published, where a scrutiny of their not so well
known physical chemistry responses is made. This work constitutes a first attempt in this direction.

With the upsurge in the research activity around these novel salts during the last two decades,
peculiar, unique and interesting behavior of these complex materials have been revealed. ILs are
considered a link between molten salts and molecular solvents (Leal et al., 2009).

Lopes and Pádua (2006) usingMD simulations and Triolo et al. (2007) using experimental X-ray
data have demonstrated that ILs, even in their pure state, contain nanostructured organization at
a molecular level. In addition, this very distinct feature has been confirmed using experimental
thermodynamic approaches (Pereiro et al., 2013; Rocha et al., 2013). This phenomenon is
responsible for many of their peculiar behavior. Also, how a particular IL interacts with the
co-solvent is very unique and depends on the interactions between the IL and the chemical nature
of the other component: polar/apolar/associated fluids (Lopes et al., 2006; Pádua et al., 2007).
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The topics tackled in this contribution are not comprehensive.
Examples not herein presented include: their ability to form
halogen-bonds (Bernardes and Canongia Lopes, 2017; Saccone
et al., 2017; Cavallo et al., 2018; Lodeiro et al., 2018), the
formation of liquid crystals (Alvarez Fernandez and Kouwer,
2016; Goossens et al., 2016), the total miscibility in water of
fluorinated ILs (Pereiro et al., 2015; de Ferro et al., 2018), and
other unexpected behavior in respect to their physical properties
(Singh et al., 2015, 2017; Dzida et al., 2018; Rahman and Senapati,
2018). Zwitterionic liquids (Blesic et al., 2017; Ohno et al., 2018;
Wu et al., 2018), which fill the gap between small-ion ILs and
ILs with strong H-bonds, as well as hydrated ILs (Haberler et al.,
2012; Fujita et al., 2016), where H-bonds between one or both of
the ions and a small number of water molecules is sufficient to
produce new materials with superior properties, constitute other
examples of not so-well-known behavior.

MINIMA IN THE TEMPERATURE
DEPENDENCE OF THE ISOBARIC
THERMAL EXPANSION COEFFICIENT OF
SOME ILs

For most liquids the isobaric thermal expansion coefficient,
αp, is positive and increases with increasing temperature as it
has to diverge to a positive infinite value at the critical point.
The best well-known example of a distinct behavior is that of
water, in which αp at about atmospheric pressure is negative at
temperatures between 0 and 3.98◦C, meaning a contraction on
heating. At the temperature of maximum density, 3.98◦C, αp

reaches a null value, becoming positive for higher temperatures.
Despite this “anomaly,” the αp of water always increases with
increasing temperature. In this section, we highlight examples
of the anomalous behavior of αp with temperature increase for
some ionic liquids. The results discussed in this section are the
first examples of substances that show a minimum in αp as
temperature increases.

Conflicting results were reported earlier about the
temperature dependence of αp of ILs (Rebelo et al., 2004).
Later some reports for a small set of ILs have shown that it is
possible to obtain negative values for (∂αp/∂T)p (Rodríguez
and Brennecke, 2006; Sanmamed et al., 2007). Accurate
determinations of this property may be difficult since the
determination of αp from the temperature dependence of
density, ρ(T), can produce numerical artifacts (Cerdeirina et al.,
2001; Troncoso et al., 2010). Most often the density of ILs is
measured using a vibrating tube densimeter. Their high viscosity
may influence the determination of the density and, if viscosity
corrections are not taken into consideration, erroneous αp(T)
values may be obtained (Sanmamed et al., 2007).

Systematic studies on the measurements of density along
a homologous series and wide temperature and pressure
conditions are not commonly reported. In order to fill this
gap, the densities of a series of ILs in a wide temperature and
pressure range were reported. Tariq et al. (2010) have measured
the densities of imidazolium bistriflimide ILs, [CnC1im][Ntf2],
where n = 2–14 in the temperature range of 283–483K. This

dataset was the largest one both in terms of an extended
homologous series of ILs, as well as in a large temperature
interval, enabling the authors to study subtle specificities of their
thermal response. Nieto de Castro et al. (2010) have carried out
high-precision density measurements over broad temperature
(293–473K) and pressure (0.1–60 MPa) ranges on four
ILs, namely [C4C1im][Ntf2], [C4C1im][dca], [C2C1im][C2SO4],
and [Aliquat][dca].

It has been demonstrated (Tariq et al., 2010) that in the
[CnC1im][Ntf2] series, an increase in temperature results on a
small decrease in the values of αp. This inverse proportionality
between αp and T constitutes an anomalous behavior and is
observed at “low-temperature.” Since thermodynamics impose
that at the liquid–vapor critical point, a divergence to +∞ in αp

ought to occur, at some lower temperature a minimum in αp =

f(T) is obtained (Figure 1A).
Similarly, densities of four ILs in wide pressure and

temperature ranges were measured (Nieto de Castro et al.,
2010). Again, αp decreases as temperature increases in the low-T
range (Figure 1B). Navia et al. (2010a), Navia et al. (2010b) also
obtained data for a large set of ILs confirming negative (∂αp/∂T)p
values at low temperatures.

These works have shown that the temperature derivative
of the thermal expansion coefficient, (∂αp/∂T)p, of some ILs
changes sign at a temperature that depends both on pressure and
IL nature.

VISCOSITY MINIMA IN BINARY MIXTURES
OF IL + MOLECULAR SOLVENTS (MSs)

Most models for the viscosity of a mixture predict that the
mixture’s viscosity of two components with identical viscosities
is invariant along the whole composition range.

Aminimum in viscosity-composition plots of binary mixtures
is an unusual phenomenon, which has been observed for
some non-polar + polar systems (Kouris and Panaylotou, 1989;
Papanastaaiou and Ziogas, 1991; Laesecke et al., 2007). However,
the molecular reasoning behind this phenomenon is not very
well understood (Srinivas et al., 2001; Abraham et al., 2007) and
thereby it is hard to model the viscosity values of such mixtures
using existing mixing rules and predictive methods (Qunfang
and Yu-Chun, 1999). Such uncommon phenomenon has been
shown for the first time in systems containing ionic liquids (ILs)
+molecular solvents (MSs) (Tariq et al., 2015).

Tariq et al. (2015) selected four binary IL+MS systems
composed of a molecular solvent (2-amino-ethanol (2AE) or
3-amino-1-propanol (3AP)) and an IL (from the 1-alkyl-
3-methylimidazolium family ([Cnmim]+) using dicyanamide
([DCA]) or bistriflimide ([Ntf2]) as the anion). All the
components forming the four binary systems are completely
miscible in the entire composition range and show crossover
temperatures where the IL and MS viscosity values are
identical (Figure 2).

The η(T,x) plots presented in Figure 3 reveal that (i) there is
a viscosity minimum at low temperatures for IL-rich mixtures
and that (ii) the viscosity minimum is centered around the
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FIGURE 1 | (A) Thermal expansion coefficient, αp as a function of temperature and at atmospheric pressure for each member of the [CnC1 im][Ntf2] family (C14-C2

from top to bottom). The error bar corresponds to an average uncertainty for all fits. (Reprinted from Tariq et al., 2010 with permission from Elsevier) (B) αp for

[C4C1 im][Ntf2] as a function of temperature at different pressures. The top four unlabeled isobars in the right panel correspond to pressures of 0.1, 0.25, 0.5, and 1

MPa. The red lines represent the boundaries of the data presented by Navia et al. (2010a), Navia et al. (2010b) (isotherms between 293 and 353K and isobars

between 5 and 50 MPa). The green lines highlight the same boundaries for the set of data measured by Nieto de Castro et al. (2010). (Reprinted from Nieto de Castro

et al., 2010 with permission from Elsevier).

FIGURE 2 | Experimental viscosity data, η/mPa·s, of the three ILs ([C2mim][Ntf2], [C2mim][DCA], and [C4mim][DCA]) and two molecular solvents (2AE and 3AP)

studied in this work as a function of temperature. The right-hand plot shows the logarithm of viscosity as a function of the reciprocal of temperature. The circles

indicate the viscosity cross-over temperatures. (Reprinted from Tariq et al., 2015 with permission from Royal Society of Chemistry).

equimolar composition as one approaches the temperature
at which both components present identical viscosities. The
overall viscosity trend for these systems is similar along the
composition/temperature surface.

The origin of the viscosity minima is 2-fold: (i) it comes from
the different cohesive energies of both pure MSs and ILs and (ii)
from changes in the structure and interactions of the mixtures
compared to the pure components.

The molecular interactions between the molecules can be
revealed by comparison of the cohesive energies of the two
classes of components (obtained through vaporization enthalpies
at room temperature). The values of the vaporization enthalpies
of the MSs are in the range of 60–70 kJ mol−1 (Marsh et al.,
2004; Yaws, 2009; Acree and Chickos, 2010). In contrast, ILs

present vaporization enthalpies above 135 kJ mol−1 (Marsh et al.,
2004; Esperança et al., 2010). In the case of these MSs, the
cohesive energy is largely related to the intra-hydrogen bonding
between the functional groups of each molecule. In the case
of ILs, MD simulations (Santos et al., 2007; Shimizu et al.,
2010) have revealed that Coulomb forces play an important role,
contributing substantially for their enhanced cohesive energy.

H-bonds between the different ILs and MSs and the structural
differences between the mixture and the pure molecular
components originates a reduction on the viscosity of the
mixtures. Other type of uncommon behavior of IL containing
binary mixtures has been reported by Andrzejewska et al. (2009)
and Trivedi and Pandey (2011), where a maximum in the
viscosity has been found in mixtures of IL + polymers. It should
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FIGURE 3 | Experimental viscosity data, η/mPa·s, of four (ionic liquid plus molecular solvent) binary mixtures as a function of the ionic liquid mole fraction, xIL. The

curves represent different isotherms. The red circles denote for each system the isotherm closest to the viscosity crossover temperature. (Reprinted from Tariq et al.,

2015 with permission from Royal Society of Chemistry).

be noted that systems containing polymers are known to show
non-Newtonian behavior.

ANOMALIES IN THE SURFACE TENSION
WITHIN A FAMILY OF ILs

The values of the surface tension of most ILs fall in between
those of water and molecular solvents. One interesting trend
has been found in the 1-alkyl-3-methylimidazolium bistriflimide,
[CnC1im][Ntf2] family (Carvalho et al., 2008; Kolbeck et al.,
2010; Tariq et al., 2010; Haddad et al., 2018; Shimizu et al.,
2018). Carvalho et al. (2008) were the first to report that the
surface tension values of [CnC1im][Ntf2] series do not decrease
linearly with the alkyl chain length increase (n= 2–10), but rather
reach a plateau for long cation side alkyl chains. Later, Tariq
et al. (2010) measured the surface tension for C2-C14 within a
broad temperature range of 303–493K and Kolbeck et al. (2010)
measured it at room temperature for C1-C12. Both confirmed
these trends (Figure 4A).

The trend is not regular, and was checked out by three distinct
works: there is a substantial decrease in the surface tension value
from [C2C1im][Ntf2] to [C5C1im][Ntf2] and a relatively lower
decrease from [C6C1im][Ntf2] to [C12C1im][Ntf2]. Changes in
the ratio of prominence of non-polar to polar moieties of the

ILs at the surface are a consequence of the length of the alkyl
side chains. MD simulations and X-ray diffraction studies (Lopes
and Pádua, 2006; Triolo et al., 2007) have shown the creation
of a second nanostructured domain (formation of non-polar
continuous domains) for ILs with alkyl chain length equal or >6
carbon atoms.

Recently, Shimizu et al. (2018) have been able to predict the
surface tension of the 1-alkyl-3-methylimidazolium bistriflimide
family by combining angle-resolved X-ray photoelectron
spectroscopy data and MD simulations results using the
Langmuir principle.

Haddad et al. (2018) have also used angstrom-resolution X-ray
methods to understand the reason behind the peculiar behavior
of the surface tension within the [CnC1im][Ntf2] homologous
series. They also found a distinct behavior for ILs with alkyl
chain length equal or longer than six carbon atoms due to
the formation of nanosegregated domains (polar/apolar) which
create alternating layers at the surface. This study clarifies the
liquid–air interface structure for a common homologous series
of ILs. By varying the cation’s alkyl chain length one can tune
the interactions’s importance, from long-range coulombic forces
to short-range van der Waals interactions. Such variation causes
the interface structure to turn from simple, to layered, to liquid
crystalline. The quantitative results obtained from this work may
constitute a reference for validating simulations and theory.
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An even more peculiar behavior of the surface tension within
a homologous series has been reported by Luís et al. (2016)
for [CnC1im] cation based ILs (where n = 2–12) combined
with perfluorobutanesulfonate anions. Instead of a plateau, a
minimum in the surface tension is observed for a cation alkyl side
chain of 8 (Figure 4B). The existence of three nanosegregated
domains (polar, apolar, and fluorinated) for the long cation’s alkyl
chain length is the main reason for this distinctive trend. More
specifically, it results from the competition between the diverse
domains for the gas-liquid interface. Their surface entropy is the
lowest when compared to conventional ILs.

THE CONSTANCY AMONG IL
SUBSTITUTION OF CP/VM AT AND
AROUND ROOM TEMPERATURE

The temperature dependence of the enthalpy is known as
heat capacity. Some heat capacity changes may indicate the
occurrence of a phase transition and enable to understand
variations in the structure of the compounds.

Zabransky et al. (1990) and Domalski and Hearing (1996)
compiled and analyzed, independently, the heat capacity data
for a huge number of substances. To the best of our
knowledge, group contribution methods and/or corresponding
state principal based methods are the approaches generally used
to estimate liquid heat capacities.

For ionic liquids, Strechan et al. (2008) and Gardas and
Coutinho (2008) demonstrated independently that there is a
linear relationship between the heat capacities and the molar
volumes of imidazolum, pyridinium, and pyrrolidinium based-
ILs (Figure 5). They have used the dataset of limited number of
ILs to establish this correlation and propose that the volumetric
heat capacity of ILs is almost invariant at 298.15 K.

Later, Paulechka et al. (2010) have refined this relation by
carefully selecting dataset of 19 ILs (for which the precise density
data was available) and measured their heat capacity with an

uncertainty of (±1%). They have also witnessed that there is
constancy among the volumetric heat capacities of ILs. The
average value at 298.15 K is:

Cp/Vm = 1.95± 0.02 (JK−1cm−3) (1)

This average value agrees well with those of Gardas and Coutinho
(2008). The difference between the experimental volumetric heat
capacities and this Cp/Vm value was found to be < ±5%.
Contrarily to molecular solvents, a simple rule exists to predict
the heat capacity of distinct ILs.

It has been demonstrated that Cp/Vm is basically independent
of the structure of the IL. Therefore, Paulechka et al. (2010)
concluded that ILs used for application as heat accumulators

FIGURE 5 | IL heat capacity as a function of the molar volume (T = 298.15K).

[Drawn using the data presented in Paulechka et al. (2010)].

FIGURE 4 | (A) Surface tension values vs. the size of the alkyl chain, n, for [CnC1 im][Ntf2] family from different authors measured at 293K showing clearly a break

around C5-C6. (B) Surface tension values as a function of the alkyl chain, n, for the [CnC1 im][C4F9SO3] family at 313K. (Reprinted with permission from Luís et al.,

2016. Copyright (2016) American Chemical Society).
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should be chosen on the basis of other parameters such as thermal
stability, viscosity, thermal conductivity, to name a few.

ILs AS GLASS FORMING MATERIALS

ILs have low melting points (Tm) when compared to
conventional inorganic salts. This fact gives them the status
of a unique class of ionic materials composed almost solely
of cations and anions that exist in the liquid state at or near
room-temperature. Many ILs that do exist in the liquid state

FIGURE 6 | Glass transition temperatures (Tg) for the [CnC1 im][Ntf2] (black

circles) and [CnCn im][Ntf2] (red squares) series as a function of n (number of

carbon atoms in one alkyl side chain); [C1C1 im][Ntf2] (gray circle). (Reprinted

from (Rodrigues and Santos, 2016) with permission from John Wiley

and Sons).

never crystallize and thus do not show any melting point,
instead, on cooling they show a glass transition (Tg). Most ILs
(Valderrama et al., 2017) show a glass transition temperature in
the 150–250 K range.

It is easier to accurately determine melting points (typically
for ILs a good (±5K) uncertainty is obtained) than those of
vitrification—large discrepancies (up to 20%) have been found in
reported Tg values. Glass transitions do not occur at a specified
fixed temperature as they are not first-order changes (Brandrup
et al., 1999), and are kinetically dependent. The dependence of Tg
of ILs on the scan rate has thoroughly been investigated (Goḿez
et al., 2013; Tao et al., 2017).

Blokhin et al. (2006) and Rodrigues and Santos (2016) have
continuously presented high quality thermal properties data of
ILs and the latter demonstrated how the nanostructuration of
[CnC1im][NTf2] and [CnCnim][NTf2] family influences their
glass and melting temperatures. The work demonstrates a
variation of the Tg behavior at the critical alkyl size, when n = 6
(Figure 6). Tg increases as the alkyl side chain of the imidazolium
cation grows, mainly due to the enhancement of the van der
Waals interactions. For alkyl chains longer than n = 6, a plateau
in the Tg values after nano-structuration is observed.

Some works have tackled the prediction of the Tg of ILs
(Mirkhani et al., 2012; Valderrama et al., 2017). Other studies
have identified difficulties behind observing IL’s crystallization
(Serra et al., 2017; Ferreira et al., 2019).

Lima et al. (2018) have measured the Tg and Tm of a
pyrrolodinium based-IL, [C4C1Pyrr][Ntf2], from atmospheric
pressure up to an extremely high pressure of 2 GPa using X-ray
diffraction and Raman scattering techniques. They have found
that Tg and Tm both follow similar pressure dependences.

At atmospheric pressure, most compounds seem to follow the
well-known “2/3 golden rule” meaning that the ratio of glass

FIGURE 7 | (A) Melting points vs. glass transition temperatures for PILs reported by Belieres and Angell (2007). (Reprinted with permission from Belieres and Angell,

2007. Copyright (2007) American Chemical Society) (B) Tg values as a function of molar volume (Vm) for PILs reported by Xu and Angell (2003). The line through the

points is a guide to the eye. [From Xu and Angell (2003). Reprinted with permission from AAAS].

Frontiers in Chemistry | www.frontiersin.org 6 June 2019 | Volume 7 | Article 450

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Esperança et al. Anomolous Behaviour of ILs

transition temperature (Tg) to that of melting (Tm), Tg/Tm, for
all compounds should be around 0.66. Belieres and Angell (2007)
have collected data for several protic ionic liquids (PILs) and
showed that similar to other materials, most of the PILs fall in the
2/3 line (Figure 7A). However, there are outliers that can reach a
ratio as high as 3/4. Xu and Angell (2003) have discussed the Tg
dependence on the molar volume (Figure 7B). Recently, Ferreira
et al. (2019) and Serra et al. (2017) have shown that many of the
aprotic ILs show high Tg/Tm values that are close to the 3

4 value.

ALTERNATE ODD-EVEN SIDE ALKYL
CHAIN LENGTH EFFECTS

Whenever the thermophysical characterization of the members
of a family of ILs within a homologous series is performed,
odd members are often neglected (Tariq et al., 2009). The main
difficulty in the synthesis of ILs with alkyl chains, Cn, where n is
an odd number, is the high cost of their chemical precursors.

Adamová et al. (2011) have measured the densities of a series
of alkyltrioctylphosphonium chloride, [P8 8 8 n]Cl based ILs
and found that the density values show a clear odd-even chain
length alternation effect (Figure 8A). There are two independent
trends: one for the odd and another one for the even-numbered

compounds. This was observed up to n = 9. Data analyzed in
terms of their molar volume, Vm = M/ρ, presents remarkably
this see-saw effect (Figure 8B).

Adamova et al. (2014) have carried out Ab initio calculations
and MD simulations to understand the molecular reasoning
behind these effects. Simulation runs revealed that the type of
conformation/packing of the liquid (transoid conformations of
the cation and head-to-head packing) are responsible for the
observed alternation effects. The unexpected results first seen for
the [P8 8 8 n]Cl series, enabled the authors to reveal a similar
trend for another IL family, [CnC1im][NTf2]. Moreover, this see-
saw effect, already known for the solid phase of linear alkanes and
alkanols, was also seen in their liquid phase molar volume.

Very recently, it has been shown (Belchior et al., 2018)
that diluted solutions of [CnC1im]Cl (n = 2–14) used to form
aqueous biphasic systems (ABS) with salts also exhibit such
odd/even effects. The odd/even effect was observed in the
Setschenow salting-out coefficients (ks) for systems containing
water, [CnC1im]Cl and K2CO3 (Figure 9A). The salting-out
ability depends on the molar volume of the IL, and therefore the
alternation odd-even volume pattern is reflected in the ks values.
This is more prominently seen for ILs with alkyl side chain length
up to n = 6. As for the CMC values of the [CnC1im]Cl series

FIGURE 8 | (A) Experimental densities of [P888n]Cl ionic liquids at 303.15K, where n = 3,5,7, and 9 (green circles), n = 4,6,8,10,12, and 14 (blue triangles).

(Reprinted from Adamová et al., 2011 with permission from Royal Society of Chemistry) (B) See-saw, even/odd alternation effect in the form of deviations (residuals)

between experimental and fitted molar volume (V) data as a function of n, at four different temperatures. (Reprinted from Adamová et al., 2011 with permission from

Royal Society of Chemistry).

FIGURE 9 | (A) Setschenow constant, ks, as a function of the carbon number at the longest alkyl chain, n, in [CnC1 im]Cl, for the ABS formed with the salt K2CO3.

(Reprinted from Belchior et al., 2018 with the permission of AIP Publishing) (B) Degree of ionization as a function of the carbon number at the cation alkyl chain, n, in

[CnC1 im]Cl. (Reprinted from Belchior et al., 2018 with the permission of AIP Publishing).
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this effect was not observed. In contrast, it was also shown that
an odd-even effect occurs for properties, such as, the degree of
ionization (Figure 9B), the molar conductivity, and the molar
conductivity at infinite dilution.

FIGURE 10 | The Berthelot cycle used to obtain tensioning in the IL samples

inside a glass capillary: liquid at L-V equilibrium (A); the liquid fills in the entire

internal volume at Tfill (B); the liquid is forced along an isochore (constant

volume) creating higher, positive pressures (C); if the liquid adheres extremely

well to the glass capillary walls, at point (D) the liquid is experiencing an

isotropic, bulk tension (absolute negative pressure metastable state). At Tcav

(cavitation temperature) it will collapse at point (E), relaxing back to its stable

condition located along its vapor pressure curve at (F). (Reprinted from Silva

et al., 2018).

In addition to the above-discussed cases, odd/even effects
have also been encountered in several other IL properties,
such as, viscosities (Rocha et al., 2013), entropy and enthalpy
of vaporization (Rocha et al., 2012, 2014), glass forming
behavior (Leys et al., 2014), and diffusion coefficients
(Yang et al., 2016).

ABSOLUTE NEGATIVE PRESSURES IN ILs
AND IL-CONTAINING SYSTEMS

Liquids can be mechanically stretched. If this is performed in
an isotropic fashion it is possible to obtain absolute negative
pressures. Most of the focus of negative pressure experiments was
placed on water samples and only very recently some results for
pure ionic liquids appeared. The results show that a variety of
commonly used ionic liquids (ILs) can be stretched successfully
to tensions of about −100 MPa in Pyrex glass capillaries of
internal volume of ∼0.05 cm3 (Silva et al., 2018). These results
contrast with the ones obtained for water, in which the maximum
stretching of samples of similar size was around −35 MPa
(Visak et al., 2002, 2003).

The main reasons for achieving such enormous absolute
negative pressures in ionic liquids appears to be a consequence
of distinct properties, namely almost null volatility, increased
viscosity compared to common liquids, low surface tension,
enhanced wettability toward pyrex glass, and easiness
to supercool.

Recent work by Silva et al. (2018) has shown that it is possible
to use pulsed field gradient NMR spectroscopy to describe the
change on the fluid molecular dynamics (transport response

FIGURE 11 | Relative cation’s self-diffusion coefficients vs. temperature in positive, negative, and null pressure regimes. (Reprinted from Silva et al., 2018).
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functions) of liquid salts under homogeneous negative pressure
regimes (down to about −20 MPa). The experiments followed
the thermodynamic Berthelot cycle (Figure 10) in order to pre-
pressurize the samples and create the conditions to further enter,
by cooling the sample, into negative pressure regimes. Negative
pressures have been accurately estimated by using experimental
values of thermal-pressure coefficients of each liquid at the

FIGURE 12 | The conceptual transfer of two neutrons and two protons to

obtain charge-inverted ionic pairs—the 1-alkyl-3-methylimidazolium chloride

and its isoelectronic and isostructural counterpart, the potassium

1-alkyl-3-methylcyclopentadienyl.

relevant-temperatures of the corresponding isochore. A marked
augment in both anions’ and cations’ self-diffusion coefficients
is observed as one enters the metastable negative pressure
region as compared to the saturated liquid conditions. Figure 11
shows the ratio between the cation’s diffusion under isochoric
conditions and the cation’s diffusion under isobaric conditions.
The vertical dotted line indicates the filling temperature of
the samples, and consequently, data at higher temperatures
represent the positive pressure regime while data below this
temperature characterize the negative pressure region. It is
important to note that for temperatures below 25.5◦C (p ∼

−150 bar), the liquid salt has already cavitated to the L-V
condition and, therefore, the ratio in D’s was restored to 1.0. The
results show a markedly decrease of the self-diffusion coefficient
upon applied positive pressure and a steep increase in it for
regimes of negative pressure. It is worth to note that a mild
volumetric expansion of about 0.6–0.7% (1V/V%) per each 1p
= −100 bar of applied negative pressure can be estimated. This
contrasts with the increase in the self-diffusion coefficients of
about 5% per each 1p = −100 bar, representing an almost
10-fold increase as compared to the volume expansion of the
ionic liquid.

REVERSED-CHARGED IONIC LIQUID
PAIRS

It is well-known that salts based on the halides’ anions show
much lower melting temperatures than those in which their
isoelectronic alkyl metals counterparts are present as cations.
For instance, already-known salts based on potassium are

FIGURE 13 | (A) Phase-separation temperature vs. water content in mixtures of amino acid based ILs. (Reprinted from Fukumoto and Ohno, 2007 with permission

from John Wiley and Sons) (B) Cloud point data for different ([N11 n2OH][Ntf2] + ether) binary mixtures. Each panel depicts a given ether molecule: A = tert-butyl

methyl ether; B = sec-butyl methyl ether; C = n-butyl methyl ether; D = tert-amyl methyl ether; E = cyclopentyl methyl ether and tert-butyl ethyl ether; F = diethyl

ether. Each marker/color represents a different choline cation in the ionic liquid: blue triangles = [N1122OH ]
+ = C2ch; red squares = [N1152OH ]

+ = C5ch; green

rhombs = [N1182OH]
+ = C8ch. The arabic numerals indicate the number of phases present on each side of the boundaries defined by the cloud point data.

(Reprinted from Costa et al., 2013 with permission from Royal Society of Chemistry).
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not members of the ionic liquids family, whereas many with
chloride are.

It was recently shown (Cruz et al., 2018, 2019) that using alkali
metal cations with distinctive 1-alkyl-3-methylcyclopentadienyl
anions it is possible to generate ILs. More specifically, if one
uses the same isoelectronic concept as we do for alkali metals
vs. halides (e.g., K+ vs. Cl−), it is possible to recognize the 1-
alkyl-3-methylcyclopentadienyl anion as the isoelectronic and
isostructural counterpart of the 1-alkyl-3-methylimidazolium
cation (Figure 12). Conceptually, one simply has to transfer
one proton and one neutron from each of the two nitrogen
atoms of the imidazolium ring to the nucleus of the chloride
anion. Differential scanning calorimetry has been used to show
that K[C4C1Cp] and K[C6C1Cp] melt without decomposition
at around 90◦C. Molecular Dynamics (MD) simulations were
used to understand the structural differences between these
two IL families. The marked structural differences between the
K[CnC1Cp] and [CnC1im]Cl series is a consequence of the
charge-reversion among ion pairs. In the case of these alkali
metal based ILs, peculiarities of metal coordination chemistry
enables the creation of new structural features. In conclusion,
charge-inverted salts can also present low melting temperatures.
This fact opens the door for the synthesis of new families
of ILs.

LCST Immiscibility Behavior in IL + Solvent
Systems
The liquid-liquid lower critical solution temperature (LCST) type
of phase diagram rarely occurs. However, it is an important
type of demixing that is the basis of several key applications
(Albertsson, 1986). It means that phase separation occurs upon
temperature increase, with the system attaining a higher order (as
compared to the separated components). The closed-loop phase
diagram (a temperature-composition island of immiscibility) is
even rarer and appears as a result of a very subtle balance between
enthalpic and entropic contributions to the Gibbs energy of a
system as temperature is changed. It is characterized by a LCST
at a given temperature followed by an upper critical solution
temperature (UCST) at a higher temperature.

LCST-type of immiscibility was typically only found in
some aqueous or (polymer + solvent) solutions. For the
first time, Lachwa et al. (2005) have encountered both
LCST and closed-loop type of behavior in binary and quasi-
binary liquid solutions of alkylmethylimidazolium bistriflimide,
[Cnmim][Ntf2], with chloroform or with (chloroform +

carbon tetrachloride) mixtures. This study revealed the tunable
character of the liquid–liquid phase diagrams involving ILs.
Two variables were taken into account, first, in the solutions
with chloroform, the number of the carbon atoms in the IL’s
cation alkyl side chain were varied and secondly the chain
length was kept constant at n = 5, but the composition of
the mixed solvent was altered by adding carbon tetrachloride
to chloroform. This work has demonstrated the extreme
sensitivity of the phase diagrams upon small changes of

two variables: long IL alkyl chain lengths promote better
solubility; whereas addition of more CCl4 to the CHCl3 worsens
the solubility.

Fukumoto and Ohno (2007) have presented another example
of LCST behavior, which was related to the solutions of amino
acid-based ILs and water (Figure 13A). The LCST temperatures
of the solutions were tuned by changing the length of the alkyl
side chains of either the phosphonium cation or the triflate-
aminoacid anion. Longer alkyl chains lower the temperature
of the phase separation due to enhanced hydrophobicity. The
insertion of four methylene groups to one cation’s alkyl side
chain brings the LCST down from room temperature to the
freezing temperature of water. The anion chain addition of
only one –CH2- group lowers the LCST by about 15◦C.
Insertion of a phenyl group with a CH2 group attached to
it also reduces the LCST by about 15◦C. The tuning of
the LCST behavior has immense potential in extraction and
separation processes.

Other cases of LCST behavior within solutions of ILs
and polymer as two component systems were demonstrated
independently by Ueki and Watanabe (2007) and Lee and
Lodge (2011). Alkyl-methylimidazolium bistriflimide ILs,
[Cnmim][NTf2], mixed with poly(benzyl-methacrylate) (Ueki
and Watanabe, 2007) or poly(n-butyl methacrylate) (Lee and
Lodge, 2011) show that the increase of the cation chain length,
either in the pure IL or through a mixture of cations with
different chains, provokes an opposite effect as compared to
similar aqueous solutions. Thereby, longer alkyl chains exhibit
better solubility and higher LCST. The authors related the
improved solubility to the enhancement of the dispersive
forces between the (longer) cation alkyl chains and the
polymer chains.

Recently, Costa et al. (2013) have reported for the first
time functionalized IL + ether systems exhibiting a LCST
behavior. Investigating the phase behavior of binary mixtures
of three N-alkyl-N,N-dimethyl-N-hydroxyethylammonium
bis(trifluoromethane)sulfonylimide ILs, [N11 n2OH][Ntf2],
with nine distinct ethers at atmospheric pressure, they have
found that most systems exhibit unusual LCST-type of phase
separation (Figure 13B). By increasing the alkyl side chain of
the cholinium-derived cation, an enhancement of the mutual
solubilities of ILs and ethers is attained. The availability of
the oxygen atom of the ether molecule to perform hydrogen
bonding with the IL cation and the size/ramification of the alkyl
groups of the ether molecule are the key factors that control the
solubility of these systems. This LCST behavior is a consequence
of the disruption of the H-bond network between the hydroxyl
group of the cholinium based cation and the oxygen atom of the
ether molecule.

Other works also report systems showing LCST behavior
containing mixtures of ILs with polymers, water, supramolecular
compounds and other solvents and are summarized in a
recent review (Qiao et al., 2017) which highlights their
potential applications.
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CONCLUDING REMARK

We have highlighted some unexpected features of ionic liquids
and ionic liquid-containing systems which are not so well-known
of the scientific community.
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