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Background. We introduce the Gene Characterization Index, a bioinformatics method for scoring the extent to which a protein-
encoding gene is functionally described. Inherently a reflection of human perception, the Gene Characterization Index is applied
for assessing the characterization status of individual genes, thus serving the advancement of both genome annotation and
applied genomics research by rapid and unbiased identification of groups of uncharacterized genes for diverse applications such
as directed functional studies and delineation of novel drug targets. Methodology/Principal Findings. The scoring procedure is
based on a global survey of researchers, who assigned characterization scores from 1 (poor) to 10 (extensive) for a sample of
genes based on major online resources. By evaluating the survey as training data, we developed a bioinformatics procedure to
assign gene characterization scores to all genes in the human genome. We analyzed snapshots of functional genome annotation
over a period of 6 years to assess temporal changes reflected by the increase of the average Gene Characterization Index.
Applying the Gene Characterization Index to genes within pharmaceutically relevant classes, we confirmed known drug targets
as high-scoring genes and revealed potentially interesting novel targets with low characterization indexes. Removing known
drug targets and genes linked to sequence-related patent filings from the entirety of indexed genes, we identified sets of low-
scoring genes particularly suited for further experimental investigation. Conclusions/Significance. The Gene Characterization
Index is intended to serve as a tool to the scientific community and granting agencies for focusing resources and efforts on
unexplored areas of the genome. The Gene Characterization Index is available from .
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INTRODUCTION
Elucidation of the function(s) for each human protein-encoding

gene has been a prominent challenge in biomedical research after

the completed deciphering of the sequence of the human genome.

Systematic characterization projects have been launched, ranging

from the ENCODE project for detailed genome annotation [1] to

the phenome projects to identify phenotypes generated by

mutations of human gene orthologs in model organisms [2–4].

These efforts were undertaken, in part, to evoke new insights into

the functions of uncharacterized genes revealed through the

successful sequencing of the human genome. At the level of basic

human curiosity, scientists are drawn to these uncharacterized

genes, for it is the deciphering of the functions of these genes which

offers the greatest potential to gain fundamental insights into novel

biological processes; to peer into the unknown. The therapeutic

and financial benefits associated with successful identification of

genes that are suitable targets for pharmaceutical research and

informative biomarkers for treatment selection stands as another

strong motivator.

The arsenal of the modern molecular researcher, when directed

at specific genes, can elucidate properties that offer glimpses of

underlying functions. In the laboratory we can determine specific

phenotypic effects of a gene when disrupted in model organisms,

where the encoded protein localizes within the cell, the spatio-

temporal coordinates of gene activity, the function in cells or

model organisms through biological assays, and further techniques

ad infinitum. To unleash these often expensive and time-consuming

studies, researchers (and funding agencies) are usually motivated

by preliminary glimmers of functional knowledge. However, with

the goal of comprehensiveness, attempts to explore genome

function in an unbiased manner have been made. In the

ENCODE project, undertaken by a portion of the global research

community to systematically annotate functions for 1% of the

human genome, a portion of the genome was selected for study for

the glaring absence of knowledge about the genes in the region [1].

The Allan Brain Atlas [5] places a premium on the systematic

study of expression in the mouse brain of uncharacterized genes.

In the pharmaceutical industries, gaining insights into the

functions of uncharacterized genes can offer a direct and

meaningful path to successful drug target identification.
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Received November 9, 2007; Accepted December 16, 2007; Published January
23, 2008

Copyright: � 2008 Kemmer et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: Funding from the Canadian Institutes of Health Research and the
Michael Smith Foundation for Health Research. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: wyeth@cmmt.ubc.ca

. These authors contributed equally to this work.

PLoS ONE | www.plosone.org 1 January 2008 | Issue 1 | e1440



However, based on available methodologies, it has been

challenging to divide genes into classes depending on functional

knowledge and to extract sets of uncharacterized genes from the

genome. The characterization state of each gene exists in the eye

of the beholder; each scientist brings a distinct perspective to the

interpretation of the characterization status of a gene. While

scientists can select individual genes, judged as being scarcely

annotated based on available information in multiple data

repositories, no quantitative measurement of annotation status

exists widely applicable to sets of genes of particular interest to

further experimental study. However, previous studies have shown

that human opinion, based on specific sets of predictors, can be

quantified and predicted. In fact, researchers have surveyed the

perception of human beauty and developed computational

methods capable of accurately predicting consensus opinions by

collecting human ratings and developing machine learning

procedures based on those ratings [6,7].

With the goal of establishing a quantitative and universal system

for measuring the annotation status of human genes, we developed

the Gene Characterization Index (GCI), a bioinformatics

procedure to quantitatively assign a characterization score to each

human gene relying on collected opinions from the global research

community. In this report, based on training data derived from a

reference collection of genes with assigned characterization scores

from over 50 scientists worldwide, we constructed a classification

function that successfully predicts the characterization of human

protein-encoding genes. By applying the method to well-studied

classes of genes followed by comparison to the depth of annotation

in the Gene Ontology (GO) system [8], we confirmed the accurate

prediction of the level of functional characterization by the GCI.

At the genome scale, we integrated GCI values across all human

protein-encoding genes to determine the characterization status of

the human genome. We found that the progress made by the

research community to assign functions to human genes after the

release of the first draft of the human genome in 2000 was well-

reflected by an increase of the average GCI score across the

genome over time.

At a finer grain, analyzing classes of pharmaceutically relevant

gene families such as G protein-coupled receptors, nuclear

receptors and ion channels, we revealed specific characteristics

of the different groups and highlighted opportunities for the

identification of hitherto overlooked novel drug targets within

those therapeutically relevant protein families with potentially

important roles in the treatment of various diseases.

The GCI is the first automated method for quantitatively

assessing the extent to which each gene is annotated. By applying

the GCI scoring system on a genome scale, we identified a large

portion of the human genome, likely including groups of genes

with potentially interesting applications, essentially neglected by

the scientific community. By drawing attention to these groups of

weakly annotated genes, the GCI could help advance genome

characterization in an unbiased manner. Translated to the single

gene level, our scoring system is intended to help direct funding

agencies to these neglected areas and to guide the level of analysis

that should be funded. It serves as a resource for focusing

experimental efforts and can provide both computational and

laboratory scientists with opportunities to demonstrate the novelty

of current findings and the utility of new methods.

RESULTS

Implementation of the Gene Characterization Index
To create a quantitative method for assigning characterization

scores to each human gene, a representative reference collection of

scores for a subset of genes was required. This collection served

both as training data for determining predictive characteristics for

a perceived characterization state, as well as test data for

determining the reliability of the predictive methods generated.

To create a broadly representative method, the reference

collection of gene characterization scores was created through a

global survey of life sciences researchers with diverse scientific

backgrounds. We asked 52 scientists worldwide to assess a sample

of genes and assign a score within a 10-point scale, with 1

indicating a completely uncharacterized gene and 10 a gene that is

fully described. As the GCI directly reflects the scores obtained in

the survey, the survey is described in detail.

Reference gene definition and annotation source
Both for the survey and the ultimate production of the GCI, it was

necessary to define a reference set of human genes. Such lists could

be obtained from a variety of sources, each with unique

characteristics. In addition to a list of genes, we desired a system

that provided diverse functional annotations, as these gene

characteristics constituted the variables that could be evaluated

and quantitated by a scoring function. We selected the Entrez

Gene database [9] as an appropriate data source, as it met the

above-mentioned requirements and was expected to maintain data

quality with regular updates. To retroactively measure the

progress of human genome annotation, we further required a

gene annotation source providing access to releases over a multi-

year period. For this purpose, we selected the GeneLynx database

[10], as it was the most accessible system with resources

comparable to Entrez Gene for which annotations could be

obtained from an extended time period. Finally, we selected the set

of ‘‘training’’ genes from release 1.2 of the GeneLynx database

(June 2003) in a 2-stage process to insure a balanced represen-

tation of genes with diverse characteristics. We randomly chose an

initial set of 90 genes from the subset of genes for which cDNA

sequences were available in GenBank [11]. In addition, to insure

the inclusion of genes with minimal functional characterization,

we included 10 genes represented only by expressed sequence tags

(ESTs).

Evaluator ratings
To gather scores for the reference genes we developed a web-

based survey system. Each participating scientist was assigned 10

genes (including 1 EST-only gene) and asked to provide a

characterization value. An optional guide to scoring was made

available to the evaluators to assist in determining scores (see

online Supplementary Material). Each gene was assessed by

multiple biologists to allow the determination of an average score.

We sought at least 3 independent scores for each gene in the

reference collection. As genes were randomly assigned, the actual

number of responses per gene varied, with a minimum of 3 and an

average of 4.6. Supplementary Table S1 describes the complete

list of reference genes that was used in the survey together with

average evaluator ratings for each gene. Supplementary Figure S1

shows the distribution of evaluator ratings.

GCI classifier selection
Once we had collected evaluator ratings for the reference genes,

we set out to train a predictor from those ratings through the

application of machine learning procedures including linear

models (LM), regression trees (RT), neural nets (NN), support

vector machines (SVM) [12] and multivariate additive regression

splines (MARS) [13]. For the implementation of universal

predictors of gene annotation status, we first selected sets of gene

Gene Characterization Index
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characteristics used as classifiers from the training data. As

indicated previously, we selected historical releases of the

GeneLynx database [10] as the source for annotation over an

extended time period. Similar to the more recent Entrez Gene [9],

GeneLynx provided links to a diverse array of online resources

with gene-specific information; these links were automatically

compiled from numerous systems. We treated the compilation of

resources for each gene as gene characteristics that could be

quantified. As those resources have changed over time, we

restricted the GCI training data to those resources that had been

recorded in GeneLynx since 2001. In addition to these core

GeneLynx annotations, we also considered gene-related articles

published prior to the survey; the article counts were based on

references in the Entrez Gene and SwissProt databases.

Initially, we compiled a total of 40 gene characteristics for the

reference genes (see Supplementary Table S2). We then created

each predictor vector by determining the total number of unique

attributes for each gene, followed by post-processing of each field,

including z-score normalization (see online Supplementary

Material). As a consequence, the list of 40 attributes was

subsequently reduced to 16 by removal of gene characteristics

not represented in all GeneLynx releases, and further by selection

of a single representative from highly correlated groups (Table 1

and 2). We considered attributes with a correlation of 0.7 or higher

similar, thus becoming candidates for removal.

Available attributes for use in the statistical model for defining

gene annotation state include single nucleotide polymorphisms

(SNPs) describing DNA sequence variations often linked to

disease, genomic sequences derived from GenBank [11], InterPro

[14], PRINTS [15] and PROSITE [16] domains assigning genes

to families, Gene Ontology (GO) annotations [8] using consistent

descriptions for gene function, reports in KEGG [17] integrating

genes into cellular pathways, associations in OMIM linking genes

to known diseases with a genetic component (http://www.ncbi.

nlm.nih.gov/omim/), RefSeq accessions [18] pointing to a gene’s

curated annotation level, SwissProt entries [19] providing

manually curated information on a gene’s protein product,

PubMed (http://www.pubmed.gov) literature references, PDB

[20] protein structure information, HomoloGene (http://www.

ncbi.nlm.nih.gov/HomoloGene/) linking genes to homologous

sequences in other species and descriptive annotations such as

gene name, symbol and functional description.

Model selection
Based on the performance observed and the clarity of the

underlying procedure, we selected a MARS model for the final

function. It is important to note that the selection of the statistical

approach had limited importance, as several methods performed

comparably well in the model validation step. The ultimate model

produced scores based on 6 attributes (Table 1). We explored

models using less attributes, but found that 6 attributes performed

best. Full documentation of the performance review and validation

can be found in the online Supplementary Material.

The MARS method assigned scores within +/21 of the average

reviewer score for 57% of reference genes and 81% of assigned

scores were within +/22 of the reviewer assigned scores (Figure 1).

However, for a few genes that scored greater than +/22 from the

mean, we conducted a manual review to assess the overall

annotation levels by enumerating available gene characteristics

possibly explaining the discrepancy between evaluator ratings and

computational predictions. For example, SOCS box-containing

WD protein SWiP-1 (WSB1) (Entrez Gene ID 26118), rated at 2.5

but was predicted at 5.3. This gene presented a moderate number

Table 1. Classification model attributes used by the MARS
model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Attribute Description

GBACC GenBank sequences

INTERPRO Interpro domains

KEGG KEGG pathways

MEDLINE MEDLINE references in Entrez Gene

OMIM OMIM references

SPID SwissProt protein links

doi:10.1371/journal.pone.0001440.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Table 2. Additional available classification model attributes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Attribute Description

DBSNP Single nucleotide polymorphisms

ENSEMBL EnsEMBL transcripts

GO Gene Ontology terms

HOMOLOGENE Non-human homologous sequences

NAME Gene symbols and alias symbols

PDB PDB protein structures

PRINTS PRINTS protein fingerprints

PROSITE Prosite references

REFSEQ RefSeq sequences

TREMBL TrEMBL links

doi:10.1371/journal.pone.0001440.t002..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Figure 1. GCI Model Cross-validation Performance. GCI Predictor
Performance–Leave-One-Out cross-validation results for the final GCI
predictor model utilizing the MARS method on z-score normalized data.
The X-axis displays average evaluator assigned scores, while the Y-axis
displays the predicted scores for each gene in the leave-one-out cross
validation analysis (the score assigned when the gene was not included
in the training data). As observed, the MARS model can assign scores
greater than 10 (in all further analysis such scores are rounded down to
10).
doi:10.1371/journal.pone.0001440.g001
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of associated publications in PubMed, contained mainly protein

domain-specific annotations and therefore, was scored low by

human evaluators. However, inclusion of WSB1 in the KEGG

database of cellular pathways, the OMIM database of disease

associations, the SwissProt protein database, as well as the

presence of a number of SNPs suggested a curated level of

functional annotation. As a consequence, we judged that the

predicted score more accurately reflected the functional under-

standing of the gene.

Performance of the Gene Characterization Index
To assess the capacity of the GCI scoring model to successfully

predict gene annotation levels, we integrated characterization

scores across all predicted human genes and further compared

those scores to information content from the Gene Ontology (GO)

gene annotation system [8].

Genome-scale scoring and temporal annotation

changes
Since the release of the first draft of the human genome sequence

in 2000, concerted efforts of the scientific community have resulted

in the successful delineation and functional annotation of a large

body of predicted human genes. We reasoned that, following

genome evolution over the years since its release, we could follow

and quantify the expansion of functional knowledge via an

increase in the average GCI score over time. To compare

successive versions of the human genome, we applied the final

GCI scoring model to all genes present in either the Entrez Gene

database [9] for recent genome releases, or in the GeneLynx

database [10] for historical genome versions.

The histogram in Figure 2 shows the distribution of GCI scores

across all human genes taken at 3 different time points. In the

earliest version, 64% of all genes (20475 of 31987 genes) clustered

at the bottom of the scale with scores lower than 2.5, and less than

3% (885 genes) scored at 7.5 or higher, reflecting the scarce overall

annotation level of the human genome. Successive genome

releases showed an important decrease in the low-scoring group

of genes with 30.9% of scores (10308 of 33410 genes) under 2.5 for

the latest release in September 2007. Also apparent from the

histogram was the steady increase in high-scoring genes over time.

The portion of genes scoring above 7.5 rose from merely 2.8%

(885 of 31987 genes) in May 2001 to 8.3% (2588 of 31096 genes)

in April 2004 reaching 15.8% (5286 of 33410 genes) in the latest

release. Overall gene numbers fluctuated between successive

genome releases due to changing genome annotations and

transcript-to-gene mappings. To provide some perspective to the

reader, we assembled a subset of the highest and lowest scoring

genes from the September 2007 release presented in Tables 3 and

4.

Qualitative adaptation of scoring model
To qualitatively assess the increase in gene characterization over

time, we analyzed contributions of different annotation sources

assembled in Entrez Gene and GeneLynx to rising gene

annotation levels. We counted entries for each attribute selected

by the MARS model. Analyzing annotation changes between July

2006 and September 2007, it became apparent that the increase in

the number of PubMed references largely dominated all other

attributes, and thus, publications could be considered the most

important contributor to the recent advancement of gene

annotation levels (Table 5). In addition to publication in peer-

reviewed journals, recent expansion of the KEGG database of

cellular pathways contributed moderately to improved annotation.

While new disease associations recorded in the OMIM database

and new SwissProt entries contributed to increased annotation

levels, there was a decrease in the number of protein domain

family associations reported in InterPro likely reflecting a change

in genome annotation procedures.

After investigating characteristics of the more recent genome

annotation, we analyzed earlier developments directly following

the release of the first genome sequence drafts. Historical

annotation changes were reflected by changing attributes selected

by the MARS model in the GeneLynx database. While there had

been a steady increase in the number of PubMed references across

all time points, earlier releases were essentially marked by an

increased association of cDNAs-to-genes and the designation of

official gene names and symbols. Other characteristics of

functional gene annotation were the inclusion of SNPs, increases

in Gene Ontology annotations, InterPro domains, KEGG

pathways, and OMIM disease associations.

Comparison to Gene Ontology annotation levels
The Gene Ontology (GO) project is an effort to standardize gene

descriptions using a predefined vocabulary of functional terms [8],

and GO terms are now widely used to functionally annotate genes

and their protein products [21]. GO is a highly curated system that

uses 3 structured ontologies to describe genes in terms of their

associated molecular function, biological process and cellular component. As

gene annotation levels deepen, the hierarchy of specialized GO

terms extends, describing the gene in greater detail. Functional

comparison of sequences annotated with GO terms can be

performed based on semantic similarity measures like the ones

developed by Resnik [22].

For genes drawn from the latest genome release (September

2007) with GO annotations, we extracted the maximum

information content for each gene by using Resnik’s similarity

measure reflecting the granularity of the GO terms assigned to a

given gene. We then compared these raw information content

scores to the GCI scores obtained with our scoring model using

Pearson correlations. For the comparisons, we selected equal

numbers of genes from each bin of GCI scores (e.g. 1–1.4, 1.5–2.4,

etc.; see Figure 2 for bins) and calculated overall correlations.

Comparing all GCI scores to the GO molecular function category

Figure 2. Genome-wide GCI Score Distribution. Histogram displaying
the frequency of scores observed in the analysis of genes at 3 different
time points after the release of the first draft of the human genome
sequence. Genes based only on predictions and/or EST sequences have
been removed (,3000 genes in 2007 data).
doi:10.1371/journal.pone.0001440.g002
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using Resnik scores, we observed a Pearson correlation coefficient

of 0.59. We also combined bins into larger groups representing

increasing annotation levels (low ,2.5, medium low 2.5–4.9,

medium high 5.0–7.4 and high 7.5–10.0) and examined

differences between GCI and GO (Figure 3). Genes with higher

scores agreed best with the Resnik scores for GO molecular functions,

while genes with low scores showed weaker correspondence. No

strong correlations were observed for GO biological process and

cellular compartment categories (data not shown). The positive

correlation between Resnik scores of GO molecular function and

GCI scores further validated our automated scoring model as an

accurate reflection of the depth of gene annotation levels.

Application of the Gene Characterization Index
Analysis of drug target gene families Using the predictions of

functional gene annotation levels from the GCI scoring system, we

investigated the properties of annotation for a variety of gene sets

relevant in medicine and drug development. Over the past few

decades, 3 gene families have stood out as the most common drug

targets: G protein-coupled receptors (GPCRs), nuclear receptors

(NRs), and ion channel proteins (ICs) [23]. We extracted all gene

members of these families from appropriate resources and, using

DrugBank as a resource for drug data and protein target

information [24], divided them into known drug targets and

non-drug targets. By analyzing each family for its annotation

Table 3. Sets of genes with extreme characterization scores: sampling of well-characterized genes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gene Name Symbol GCI Gene ID Description

Lamin A/C LMNA 10.0 4000 Lamin-A/C (70 kDa lamin) (Renal carcinoma
antigen NY-REN-32)

Collagen, type II, alpha 1 COL2A1 10.0 1280 Collagen, type II, alpha 1 (primary osteoarthritis,
spondyloepiphyseal dysplasia, congenital)

Phosphatase and tensin homolog PTEN 10.0 5728 Phosphatase and tensin homolog (mutated in
multiple advanced cancers)

Tumor protein p53 TP53 10.0 7157 Cellular tumor antigen p53 (Tumor suppressor
p53) (Phosphoprotein p53) (Antigen NY-CO-13)

Fibroblast growth factor receptor 2 FGFR2 10.0 2263 Fibroblast growth factor receptor 2 (bacteria-
expressed kinase, keratinocyte growth factor
receptor, craniofacial dysostosis 1, Crouzon
syndrome, Pfeiffer syndrome, Jackson-Weiss
syndrome)

Titin TTN 10.0 7273 Titin (EC 2.7.11.1) (Connectin)
(Rhabdomyosarcoma antigen MU-RMS- 40.14)

Peroxisome proliferator-activated receptor
gamma

PPARG 10.0 5468 Peroxisome proliferator-activated receptor
gamma (PPAR-gamma)

Paired box 6 PAX6 10.0 5080 Paired box protein Pax-6 (Oculorhombin)
(Aniridia type II protein)

Melanocortin 1 receptor MC1R 10.0 4157 Melanocortin 1 receptor (alpha melanocyte
stimulating hormone receptor)

V-Ki-ras2 Kirsten rat sarcoma viral oncogene
homolog

KRAS 10.0 3845 GTPase KRas precursor (K-Ras 2) (Ki-Ras) (c-K-ras)
(c-Ki-ras)

doi:10.1371/journal.pone.0001440.t003..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Table 4. Sets of genes with extreme characterization scores: sampling of scarcely characterized genes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gene Name Symbol GCI Gene ID Description

KIAA1833-like 1.5 377711 LOC377711 KIAA1833-like

LOC730919 1.5 730919 Hypothetical protein LOC730919

Family with sequence
similarity 24, member A

FAM24A 1.5 118670 FAM24A family with sequence similarity 24, member A

Chromosome 1 open reading
frame 192

C1orf192 1.5 257177 C1orf192 chromosome 1 open reading frame 192

LOC284428 1.5 284428 LOC284428 similar to methyl-CpG binding domain protein 3-like 2

LOC388910 1.5 388910 RP3-474I12.5 hypothetical LOC388910

Family with sequence similarity
90, member A3

FAM90A3 1.5 389611 FAM90A3 family with sequence similarity 90, member A3

LOC400723 1.5 400723 Hypothetical LOC400723

LOC400856 1.5 400856 Hypothetical gene supported by AK123815

LOC440776 1.5 440776 Hypothetical LOC440776

doi:10.1371/journal.pone.0001440.t004..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.
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status, we uncovered family-specific characteristics and revealed

potential opportunities to study neglected members of these

biologically relevant gene classes, as well as to discover new drug

targets.

G protein-coupled receptors GPCRs, targeted by nearly

one third of currently marketed drugs [23], are diverse in structure

and function, and, with their broad evolutionary conservation, are

considered the oldest cellular machineries devoted to signal

transduction. From the G Protein-Coupled Receptor Data Base

(http://www.gpcr.org/) [25] and GO annotations, we extracted a

set of 750 GPCRs for further analysis. Applying annotations from

DrugBank, we divided the set into GPCRs of FDA-approved drug

targets (79) and receptors previously not targeted by

pharmaceuticals (671) and applied the GCI scoring system. As

apparent from Figure 4A, over 80% of drug target GPCRs

presented deep annotation levels and scored between 8.5 and 10.0.

This group included highly relevant drug targets such as the

angiotensin receptor (AGTR1), serotonin receptor (HTR2A), and

endothelin receptor (EDNRB). However, analyzing GPCRs not

targeted by small molecule drugs revealed that the majority had

remained weakly characterized with GCI scores for over 60% of

genes ranging from 1.5 to 5.4 highlighting opportunity for further

study and development of new targets within this highly relevant

gene family. For example, G protein-coupled receptor 137C

(GPR137C, Entrez Gene ID 283554, GCI = 3.23), a weakly

annotated GPCR, is linked to a single PubMed publication

associating the gene’s transcription to a gastric cancer gene

expression profile [26]. Another example is the 7 transmembrane

helix receptor LOC440683 (Entrez Gene ID 440683) scoring at

2.16 with reported rhodopsin-like receptor activity and no further

functional information associated. It should be noted, however,

that the group of low-scoring GPCRs could be partly accounted

for by the inclusion of olfactory receptors, a subclass with limited

therapeutic potential. Comparing the non-drug target group of

GPCRs with the GenBank patented sequence repository showed

that 537 genes (80%) had patents associated with them.

Nuclear receptors Based on GO annotations and the

Nuclear Receptor Database (http://www.receptors.org/NR/)

[27], we extracted 50 NRs for further analysis. This second

largest group of current drug targets functions as ligand-activated

transcription factors and regulate core cellular processes such as

cell growth and differentiation, inflammatory responses and

metabolism. Their important role in physiology and the ability

to regulate their functional activity with synthetic small molecules

has rendered this gene family a favorite target for drug discovery

[28]. Subjecting NRs to the same analysis as GPCRs, we found

that 22 of 23 drug target NRs presented GCI scores of 7.5 and

above (Figure 4A). Similarly, the distribution of GCI scores for all

27 non-targeted NRs was high (average GCI = 7.8) reflecting the

intense scrutiny given to these proteins. Across all NRs, a single

gene obtained a low GCI score at 2.9. This gene (Entrez Gene ID

55566), coding for the estrogen receptor-like p65 protein and

linked to colorectal cancer through 2 PubMed publications, lacked

additional functional annotation making it a particularly

interesting candidate for further study. As shown for GPCRs,

Table 5. Individual contribution of attributes to rising
annotation levels.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Attributes July 2006 Sept 2007 Change (%)

MEDLINE 229728 338417 +47.3

GBACC 190077 227822 +19.9

KEGG 8444 9618 +13.9

OMIM 14135 15586 +10.3

SPID 14306 15631 +9.3

INTERPRO 51087 44759 212.4

(GBACC = GenBank accession, SPID = SwissProt identifier).
doi:10.1371/journal.pone.0001440.t005..
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Figure 3. Resnik Scores for Depth of GO Gene Annotation Correspond with GCI Scores. The Resnik score describes the granularity of annotations
attached to each gene. There is an overall Pearson correlation of 0.6 between GCI and Resnik scores. The distribution plot shows the distribution of
Resnik scores for ranges of GCI scores.
doi:10.1371/journal.pone.0001440.g003
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the majority of the non-drug target NRs (24) had patents

associated with them.

Ion channels ICs constitute the third major class of current

drug targets including ligand- and voltage-gated ion channels. The

family of ligand-gated ion channels (LGICs) comprises several

superfamilies and their physiological activity controls information

flow in the brain, thus becoming a relevant class of targets for

drugs treating disorders such as epilepsy and anxiety [29]. From

the Ligand-Gated Ion Channel database (http://www.ebi.ac.uk/

compneur-srv/LGICdb/LGICdb.php) [30] we extracted 66

genes, of which 21 coded for FDA-approved drug targets.

Comparable to NRs, 86% of drug target LGICs scored above

7.5, whereas the distribution of GCI scores for non-drug target

LGICs was more widely distributed with 38% of genes scoring

below 7.5 (Figure 4A). Several low-scoring, non-drug target LGICs

coded for weakly annotated subunits of well-known receptor

complexes: the alpha 4 subunit of the glycine receptor (GLRA4,

Entrez Gene ID 441509, GCI = 1.5), the rho3 subunit of the

gamma-aminobutyric acid (GABA) receptor (GABRR3, Entrez

Gene ID 200959, GCI = 3.3), and several subunits of the type 3

Figure 4. A. Distribution of GCI Scores for Genes in Selected Protein Families and Classes. 750 G Protein-Coupled Recptors: 79 DTG, 671 NDTG; 50
Nuclear Receptors: 23 DTG, 27 NDTG; 66 Ligand-Gated Ion Channels: 21 DTG, 45 NDTG; 111 Potassium Ion Channels: 14 DTG, 97 NDTG. B. Genome-
wide GCI Score Distribution for Drug Targets, Patented and All Other Genes. Based on genome release July 2006: 1095 drug targets, 14237 patented,
14913 non-target, non-patented genes. 10867 non-targeted, non-patented genes were highly uncharacterized with GCI scores ,3.5.
doi:10.1371/journal.pone.0001440.g004
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receptor for 5-hydroxytryptamine (serotonin). It should be noted

that the pool of non-drug target LGICs may include subunits of

receptor complexes already targeted by small molecule

compounds, as illustrated by the GABAA receptor gamma 2

subunit (GABRG2), with a GCI score of 10.0 and no current

records in DrugBank. The gene’s mutated isoforms have been

implicated in epilepsy [31] and, as a subunit of the type A GABA

receptor, this gene is part of a protein complex heavily targeted by

pharmaceuticals. However, weakly annotated subunits of already

targeted protein complexes may present opportunities for the

development of novel drugs targeting new sets of targets within

protein complexes with known therapeutic potential. As for

GPCRs and NRs, the large majority of non-drug target genes

(89%) were associated with patents.

Another important class of ICs, Potassium Ion Channels (KICs),

associated with action potentials and intercellular signaling,

perform a wide variety of functions in both excitable and non-

excitable cells and thus, have been recognized as potential drug

targets [32]. From the KChannelDB (http://www.receptors.org/

KCN/), we extracted 111 KIC genes, 14 of which were targeted

by small molecule drugs according to DrugBank. Applying the

GCI scoring system to the drug targets, we observed that 9 of 14

KICs obtained scores at 7.5 and above, and that no gene scored

below 5.5 (Figure 4A). The analysis of the non-drug target KICs

yielded a somewhat different distribution with almost half of the

genes (47%) scoring at medium high levels (5.5–7.4), and an

important portion (22%) in the range of moderate to weak

annotation levels (,5.5). Several of these moderately annotated

genes were members of a group of potassium channels containing

tetramerisation domains. Non-targeted KICs, and thus interesting

for further study, included the potassium channel subfamily T

member 1 (KCNT1, Entrez Gene ID 57582, GCI = 4.8) and

member 2 (KCNT2, Entrez Gene ID 343450, GCI = 5.0), the

potassium channel subfamily K member 18 (KCNK18, Entrez

Gene ID 338567, GCI = 4.2), the potassium voltage-gated channel

shaker-related subfamily member 7 (KCNA7, Entrez Gene ID

3743, GCI = 5.7), and the KCNE1-like membrane protein

(KCNE1L, Entrez Gene ID 23630, GCI = 6.4). Similar to the

rates for other drug target gene families examined, we observed

that 88 of 97 (91%) non-drug target KICs were associated to

patents in GenBank.

Genome-wide analysis of drug target and patented

genes To expand the analysis of GCI distributions to the

whole genome, we extracted the entire set of drug targets from

DrugBank (1095 proteins) and all patented genes reported in

NCBI’s patent nucleotide sequence database (14295 genes).

Figure 4B illustrates the genome-wide distribution of GCI scores

for the different gene classes. Similar to the distribution pattern

observed for specific drug target gene families, drug target genes in

the genome clustered at the high end of the scoring scale with over

75% having GCI scores above 7.5. Patented genes were scattered

across the range of scores with a smaller fractions at the low end

(i.e., 1.9% receiving scores ,2.4). Removing all drug target and

patented genes from the genome, we applied the GCI scoring

model to the remaining 14913 genes. Tellingly, over 70% of the

non-patented non-target genes were highly unexplored with GCI

scores ,3.5. The remainder of genes was distributed across the

entire scale with decreasing numbers for increasing scores.

Effect of patent filing on gene characterization Since

applications for patents on DNA sequences became common

practice in the early 1990’s [33], critics have raised a number of

objections against the patenting of biological material. The debate

has remained vivid to the current day [34,35]. The question

whether, and to what extent, patenting of genes impacts academic

science has remained a topic of controversy. To follow functional

annotation progress of patented versus non-patented genes since

2001, we applied the GCI scoring system to all patented and non-

patented genes and followed the fate of the different groups up to

September 2007, 6 years after the release of the first draft of the

human genome sequence. From NCBI’s patented sequence

database, we extracted 11278 patented genes, applied the GCI

scoring system based on both GeneLynx release 0.9 (May 2001)

and Entrez Gene release September 2007 and compared the GCI

score distribution for the 2 time points. In the same way, we

extracted 20867 non-patented genes from GeneLynx 0.9 and

19331 non-patented genes from Entrez Gene September 2007 and

compared the score distributions between the 2 genome releases. It

should be noted that there have been fluctuations in the mappings

of cDNAs to genes in successive genome releases accounting for

the slight variations in the number of genes in the different groups

between 2001 and 2007. For patented genes in 2001, 93% of GCI

scores spanned across the low to medium part of the scale

(GCI,7.5), with merely 7% clustering at the high end (GCI$7.5)

(Figure 5). In 2007, however, the centre of the distribution was

shifted from low (GCI = 1.5–2.4) to medium high scores

(GCI = 6.5–7.4), with over 36% of genes ranking above 7.4. In

2007, there were only 1.3% of patented genes left scoring below

3.5. By dividing the genes into bins, it became apparent that over

40% of patented genes had climbed up the scale from the low GCI

bin, with the highest increase for the high GCI bin (Table 6).

The evolution for the GCI distribution for non-patented genes

was markedly different. As illustrated in Figure 5, in 2001 over

90% of all non-patented genes clustered at scores below 3.5, with

less than 1% reaching the high end of the scale (GCI$7.5). In

September 2007, this distribution had not notably changed with

over 75% of genes remaining at the low end of the scale

(GCI,3.5). The majority of genes that had left the low GCI bin

had moved to the medium GCI bin, and not to the high GCI bin

as observed for patented genes (Table 6). Also, a fraction of the

genes originally in the low score bin had been removed all together

(1535 genes), likely due to genome reannotations.

Figure 5. Evolution of Patented versus Non-Patented Genes between
2001 and 2007. Histogram presenting substantial differences in
annotation progress between patented and non-patented genes.
Fluctuating gene numbers due to changes in genome annotations
and transcript mappings.
doi:10.1371/journal.pone.0001440.g005
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Accessing the Gene Characterization Index
Users may access the GCI at http://www.cisreg.ca/gci/, where

they can search for the functional characterization level of their

favorite gene, browse for genes with specific annotation levels,

choose random genes and further explore the system. After

searching with the gene name, Entrez Gene ID or free text, the

GCI scoring system returns the GCI score for the searched gene,

as well as links to various data sources underlying the computed

score (Figure 6). It is also possible to search for genes in bulk,

where the GCI scoring system accepts lists of genes with Entrez

Gene IDs and returns scores for all genes from the list. For

scientists interested in comparing their own perception to the

automated scores, they may perform a blinded test. A randomly

selected set of 10 genes will be displayed and the user may assign

their own scores. After assignments are submitted, a comparison

report is generated. Scores submitted through this process will be

used as training data for future releases of GCI (to reflect temporal

shifts in human perception of what constitutes a well-characterized

gene). Finally, users may download the entire set of scores, as well

as access the data and Supplementary Material described in this

manuscript.

DISCUSSION
We have introduced a novel bioinformatics procedure to

quantitate the functional characterization of each protein-

encoding human gene. Based on a reference collection of

characterization scores assigned by diverse life scientists, we

trained a classification function to predict scores depending on

functional annotations in the Entrez Gene database. Using a

MARS classifier that performed well in cross-validation, we were

able to assign characterization scores to all human genes.

As a first assessment of the performance of the GCI scoring

system, we assigned scores to all accessible genes in consecutive

releases of the human genome and followed GCI score distribution

and attribute selection of the MARS model. We could show that

the GCI scoring function mirrored an increase in genome

annotation performed by the research community through a shift

of score distributions to deeper annotation levels. The changing

weight assigned by the GCI scoring system to different attributes

over time reflected befittingly the evolution of the human genome.

While early releases were marked by predictions of fluctuating

numbers of genes, whose active transcription could only be

confirmed for a fraction, the association of cDNAs with predicted

genes was an important factor in the genome characterization

effort. Also, the rate of gene discovery was high, and the

classification of novel genes according to sequence motifs and

domains into protein families was an important step in inferring

functional information. Unlike this early phase of the genome era,

the sequence quality of later releases improved dramatically with

the official closure of the human genome project in April 2003

[36]. As a consequence, gene numbers became more stable

leveling off around 25000 human genes [37]. Most of these genes

were confirmed by RNA transcripts and basic functional

information existed for many of them. Later advancements in

gene annotations captured by the GCI scoring model, therefore,

were defined by deeper levels of functional characterization,

especially in the form of scientific publications describing

individual genes and curated functional knowledge in databases

such as KEGG, OMIM and SwissProt.

In a second assessment of model performance, we showed that

GCI annotation levels correlated well with Gene Ontology terms

of molecular function, with no correlations observed for the biological

process and cellular component categories. This observation revealed

that GCI scores, which are based on specific gene attributes,

referred to unambiguous cellular functions such as binding,

receptor, transporter or enzyme activities rather than higher-

ranking biological processes or cellular components of a gene’s

activity. It also became apparent that the level of functional

annotation captured by the GCI scoring model increasingly

paralleled GO molecular function hierarchies the deeper a gene’s

functional characterization reached.

Applying the GCI to 3 major protein families of current drug

targets, we presented each family’s overall annotation status and

pointed to potential candidates for further investigation within

these highly ‘‘druggable’’ gene classes. Most likely due to their

great sequence diversity rendering homology searches across

species more difficult, the sequencing of the human genome had

revealed many new GPCRs. In our survey, this gene class

produced the largest fraction of weakly characterized genes leaving

ample opportunity for further investigations. The small protein

family of nuclear receptors, to the contrary, displayed less room for

development with the majority of genes deeply characterized,

possibly due to their small number and easy accessibility compared

to membrane-bound receptors. Even though both families of ion-

channel genes lacked genes remaining at the very low end of the

characterization scale, there still was prospect of novel therapeutic

applications owing to hitherto untargeted subunits of target

protein complexes and family members regulating protein

structure. Given that over 50% of current drugs target G

protein-coupled receptors, nuclear receptors and ion channels

and that the majority of new drugs target precedent domains, to

tap the full potential of these families by highlighting any neglect

may be important for the advancement of therapeutic approaches

by small molecule drugs.

As opposed to the common belief that corporate interest had a

negative impact on scientific progress in particular through the

filing of patents on genes and gene-derived sequences, we observed

that patenting did not hamper gene characterization. As already

apparent from the analysis of ‘‘druggable’’ genes both within

specific gene classes (Figure 4A) and the whole genome (Figure 4B)

and based on the fact that the large majority of drug target genes

(86%) was protected by patents, drug targets mostly clustered at

the high end of the characterization scale. Analyzing annotation

progress of patented versus non-patented genes across an extended

time period unveiled an association of functional characterization

and gene patenting. While it is probable that patenting was biased

towards proteins with detectable protein domains now recorded by

genome annotation engines, the increase in the patented gene

scores was heavily driven by new publications. The scientific

community seemed to have been focusing on patented genes in

their efforts to study the molecular function of genes.

Another capacity of the GCI scoring system is to identify areas

of ‘‘neglect’’ within either groups of genes or the whole genome.

Following the annotation status of all human genes since the

Table 6. Change in GCI score distribution of patented versus
non-patented genes between May 2001 and September 2007.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GCI bins Patented Non-patented

% (genes*) % (genes*)

1.0–3.4 241.3 (24653) 215.4 (24371)

3.5–7.4 +9.7 (+1226) +12.3 (+2247)

7.5–10.0 +31.6 (+3642) +3.1 (+588)

*Unbalanced numbers due to gene mapping changes between 2001 and 2007
doi:10.1371/journal.pone.0001440.t006..
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release of the first draft of the human genome, we identified a large

pool (,14500) of genes essentially uncharacterized to the present

day. These genes have minimal functional annotation with scores

below 3.5 and represent over 75% of genes neither protected by

patents nor targeted by small molecule drugs. These findings clearly

illustrate the inestimable potential still hidden within the human

genome in that a considerable portion of genes are shrouded in

darkness, awaiting attention and functional elucidation.

Figure 6. Screenshot of GCI Web Page. Example of Calmodulin-like protein 6 returned by GCI search engine with gene-specific GCI score and links to
data sources.
doi:10.1371/journal.pone.0001440.g006
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Using the GCI scoring system to delineate groups of scarcely

annotated genes could aide decision-making for the allocation of

research funds. Current research funds are distributed in large part

on the basis of extensive preliminary data; there is great reluctance

to fund projects deemed as ‘‘high-risk’’ which would include the

study of uncharacterized genes. As indicated in this report, vast

genome areas have remained unexplored. The availability of GCI

scores could direct resources to these neglected areas. During

grant reviews, GCI could help identify proposals of greater novelty

(a weighting factor for many funding groups) by serving as a

novelty measure.

The GCI produced by this study represents a novel direction in

bioinformatics research. By classifying genes based on a qualitative

score assigned by humans, it represents opinion research. The

existing GCI scores reflect the state of opinion at the time of the

survey. For instance, in 19 cases evaluators assigned a score of 10

to a gene. While this perceived high characterization reflects the

most deeply studied genes, it is unlikely that future scientists would

view our present state of gene knowledge as complete. As research

advances, the perspectives of scientists will without doubt change

and our expectations for the required properties of genes to be

considered characterized will become more stringent. In addition,

over time, the available types and sources of data change.

Therefore, the GCI scoring function will require periodic updating

to reflect available annotation resources and changing opinions of

researchers. Besides, it would be desirable in the future to develop

GCI scores for model organism genes to determine how the

characterization of orthologs of human genes influences the

progression of the GCI. The GCI scoring system could serve as an

important tool for focusing efforts and resources on the study of

weakly characterized genes.

METHODS

Analysis of results from survey
As described, the survey of 52 scientists produced an initial

collection of scores for the 100 reference genes with an average

of 4.6 scores per gene. We implemented quality control

procedures to identify unusual results. For each respondent, we

compared the set of assigned gene scores to the mean score for

each gene using a Pearson correlation coefficient. Scores from 3

reviewers with correlation scores more than 2 standard

deviations from the average correlation score were excluded

from the reference collection (Supplementary Figure S2). As an

additional quality control procedure, we reviewed individual gene

scores for unaccounted deviations from the average. No

individual gene or reviewer appeared particularly unusual after

this final review, although we identified 3 scores as outside the

observed range of scores and thus excluded them. After removal

of outlying scores, an average of 4.2 scores per gene remained in

the reference set.

Model selection
We used the R Statistical Language (http://www.r-project.org/)

to implement all gene characterization score prediction methods.

Initially, we conducted a performance review of linear models

(LM), regression trees (RT), neural nets (NN), support vector

machines (SVM) and multivariate additive regression splines

(MARS). All of the approaches exhibited similar and adequate

accuracy for GCI scoring, as assessed by cross-validation.

Model validation
We verified the quality of the model by a Leave-One-Out (LOO)

cross-validation method. For each of the 100 genes, we

constructed a model with the other 99 genes and compared the

score assigned by the model to the excluded gene to the reference

score. The Root Mean Square (RMS) error provided an overall

performance measure. We tested a number of data transforma-

tions including binary values, binned, log, maximum value

normalization, and z-score normalization. Of the 5 model

frameworks tested, SVM and MARS performed best. The SVM

model failed to assign scores across the entire scale and was

therefore set aside. For the MARS model a range of values for the

parameters ‘‘degree‘‘ (range 1 to 3) and ‘‘penalty‘‘ (range 0 to 6)

was tested. We presented the best model with degree 1 and penalty

of 1. The MARS procedure selected a subset of available attributes

to optimize the fit to training data. The ‘‘degree’’ controlled the

maximum number of splines that could be used for each attribute

across the range of the expected predictions, and the ‘‘penalty’’

was used to decide if an additional attribute should be utilized in

constructing the model. Increasing the ‘‘penalty’’ reduced the

number of attributes used by the final model. Attributes utilized in

the best MARS model are shown in Table 1. A complete

documentation of the model validation is provided in the online

Supplementary Material.

Calculation of Resnik scores
The usage of GO terms varies considerably–a rather general GO

term may be associated with many genes and is therefore not very

explicit, whereas a very detailed term will only be used for few

genes for which the specific function may be applied. Resnik self-

similarity scores for the GO molecular function taxonomy provide a

numerical measure for the depth of GO annotations for individual

genes. The Resnik self-similarity score is based on the lowest (most

detailed) parent node in the GO annotation hierarchy for a

specific gene by extracting the maximum information content of

the node [22]. The information content is linked to the probability

of observing the GO term based on counting how many times the

GO term appears in annotated gene products which is reported

regularly by the GO Consortium [38]. The GOSim 1.0.2 package

[39] was used to compute the scores in the R 2.5.1 statistics

package (http://www.r-project.org/).

Analysis of patented genes
We screened NCBI’s patented nucleotide sequence database for

human transcripts and matched a total of 14295 GenBank

accessions to patent records. To assess GCI score distributions

across several years, we mapped the patented genes to either

GeneLynx or Entrez Gene identifiers and applied the GCI scoring

model based on successive GeneLynx [10] and Entrez Gene [9]

releases.

Gene mappings between GeneLynx and Entrez

Gene
For all analyses of datasets comparing data from the latest

GeneLynx release (April 2004) and earlier with datasets from more

recent Entrez Gene releases, mappings between GeneLynx and

Entrez Gene identifiers were performed via EnsEMBL [40] gene

and transcript intermediates. Due to substantial changes in gene

mappings between May 2001 and September 2007, only 16494

individual genes could be directly mapped between GeneLynx and

Entrez Gene with a bias towards genes with more extensive

functional annotation (see Supplementary Material).

SUPPORTING INFORMATION

Table S1 Collection of reference genes
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Found at: doi:10.1371/journal.pone.0001440.s001 (0.08 MB

PDF)

Table S2 Initial list of 40 gene attributes

Found at: doi:10.1371/journal.pone.0001440.s002 (0.02 MB

PDF)

Figure S1 Evaluator-assigned GCI score distribution

Found at: doi:10.1371/journal.pone.0001440.s003 (0.02 MB

PDF)

Figure S2 Outlier evaluator

Found at: doi:10.1371/journal.pone.0001440.s004 (0.01 MB

PDF)
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the vision to study uncharacterized proteins. Dr. James Fickett suggested

that one could quantitatively assign a characterization score to genes.

Author Contributions

Conceived and designed the experiments: WW BL DK RP. Performed the

experiments: RP. Analyzed the data: JB DK DY RP WC. Contributed

reagents/materials/analysis tools: CW. Wrote the paper: WW DK. Other:

Infrastructure: BL. Funding: CW WW. Statistical models: JB. Supervision:

WW. Web site: DY RP.

REFERENCES
1. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al.

(2007) Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature 447: 799–816.

2. Bogue MA, Grubb SC (2004) The Mouse Phenome Project. Genetica 122:
71–74.

3. Mashimo T, Voigt B, Kuramoto T, Serikawa T (2005) Rat Phenome Project:
the untapped potential of existing rat strains. J Appl Physiol 98: 371–379.

4. Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, et al. (2004) Toward improving

Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi
library. Genome Res 14: 2162–2168.

5. Gewin V (2005) A golden age of brain exploration. PLoS Biol 3: e24.
6. Eisenthal Y, Dror G, Ruppin E (2006) Facial attractiveness: beauty and the

machine. Neural Comput 18: 119–142.

7. Gunes H, Piccardi M, Jan T. Automated classification of female facial beauty by
image analysis and supervised learning; 2004; San Jose, CA, USA. Proc. of the

SPIE 968–978.
8. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nat Genet 25: 25–29.

9. Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez Gene: gene-centered

information at NCBI. Nucleic Acids Res 35: D26–31.
10. Lenhard B, Hayes WS, Wasserman WW (2001) GeneLynx: a gene-centric portal

to the human genome. Genome Res 11: 2151–2157.
11. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007)

GenBank. Nucleic Acids Res 35: D21–25.

12. Vapnik V (1995) The Nature of Statistical Learning Theory: NY Springer.
13. Friedman JH (1991) Multivariate adaptive regression splines. The Annals of

Statistics 19: 1–141.
14. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2007) New

developments in the InterPro database. Nucleic Acids Res 35: D224–228.

15. Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, et al. (2003)
PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res 31:

400–402.
16. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, et al. (2006) The

PROSITE database. Nucleic Acids Res 34: D227–230.
17. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al. (2006) From

genomics to chemical genomics: new developments in KEGG. Nucleic Acids

Res 34: D354–357.
18. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq):

a curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Res 35: D61–65.

19. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, et al. (2006) The

Universal Protein Resource (UniProt): an expanding universe of protein
information. Nucleic Acids Res 34: D187–191.

20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The
Protein Data Bank. Nucleic Acids Res 28: 235–242.

21. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, et al. (2004) The Gene

Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with
Gene Ontology. Nucleic Acids Res 32: D262–266.

22. Resnik P. Using Information Content to Evaluate Semantic Similarity in a
Taxonomy; 1995. 448–453.

23. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are
there? Nat Rev Drug Discov 5: 993–996.

24. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, et al. (2006)

DrugBank: a comprehensive resource for in silico drug discovery and
exploration. Nucleic Acids Res 34: D668–672.

25. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, et al. (2003) GPCRDB
information system for G protein-coupled receptors. Nucleic Acids Res 31:

294–297.

26. Oh JH, Yang JO, Hahn Y, Kim MR, Byun SS, et al. (2005) Transcriptome
analysis of human gastric cancer. Mamm Genome 16: 942–954.

27. Horn F, Vriend G, Cohen FE (2001) Collecting and harvesting biological data:
the GPCRDB and NucleaRDB information systems. Nucleic Acids Res 29:

346–349.
28. Schulman IG, Heyman RA (2004) The flip side: Identifying small molecule

regulators of nuclear receptors. Chem Biol 11: 639–646.

29. Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion
channels: the impact of receptor structure on function. Biochem Soc Trans 32:

529–534.
30. Donizelli M, Djite MA, Le Novere N (2006) LGICdb: a manually curated

sequence database after the genomes. Nucleic Acids Res 34: D267–269.

31. Mizielinska S, Greenwood S, Connolly CN (2006) The role of GABAA receptor
biogenesis, structure and function in epilepsy. Biochem Soc Trans 34: 863–867.

32. Curran ME (1998) Potassium ion channels and human disease: phenotypes to
drug targets? Curr Opin Biotechnol 9: 565–572.

33. Adler RG (1992) Genome research: fulfilling the public’s expectations for

knowledge and commercialization. Science 257: 908–914.
34. Resnik DB (2003) Are DNA patents bad for medicine? Health Policy 65:

181–197.
35. Heller MA, Eisenberg RS (1998) Can patents deter innovation? The

anticommons in biomedical research. Science 280: 698–701.
36. Pennisi E (2003) Human genome. Reaching their goal early, sequencing labs

celebrate. Science 300: 409.

37. Pennisi E (2003) Human genome. A low number wins the GeneSweep Pool.
Science 300: 1484.

38. GO Consortium (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids
Res 34: D322–326.

39. Frohlich H, Speer N, Poustka A, Beissbarth T (2007) GOSim–an R-package for

computation of information theoretic GO similarities between terms and gene
products. BMC Bioinformatics 8: 166.

40. Hubbard TJ, Aken BL, Beal K, Ballester B, Caccamo M, et al. (2007) Ensembl
2007. Nucleic Acids Res 35: D610–617.

Gene Characterization Index

PLoS ONE | www.plosone.org 12 January 2008 | Issue 1 | e1440


