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Abstract

Background: Bovine tuberculosis (bTB) is an enduring contagious disease of cattle that has caused substantial losses to the
global livestock industry. Despite large-scale eradication efforts, bTB continues to persist. Current bTB tests rely on the
measurement of immune responses in vivo (skin tests), and in vitro (bovine interferon-c release assay). Recent developments
are characterized by interrogating the expression of an increasing number of genes that participate in the immune
response. Currently used assays have the disadvantages of limited sensitivity and specificity, which may lead to incomplete
eradication of bTB. Moreover, bTB that reemerges from wild disease reservoirs requires early and reliable diagnostics to
prevent further spread. In this work, we use high-throughput sequencing of the peripheral blood mononuclear cells
(PBMCs) transcriptome to identify an extensive panel of genes that participate in the immune response. We also investigate
the possibility of developing a reliable bTB classification framework based on RNA-Seq reads.

Methodology/Principal Findings: Pooled PBMC mRNA samples from unaffected calves as well as from those with disease
progression of 1 and 2 months were sequenced using the Illumina Genome Analyzer II. More than 90 million reads were
splice-aligned against the reference genome, and deposited to the database for further expression analysis and
visualization. Using this database, we identified 2,312 genes that were differentially expressed in response to bTB infection
(p,1028). We achieved a bTB infected status classification accuracy of more than 99% with split-sample validation on newly
designed and learned mixtures of expression profiles.

Conclusions/Significance: We demonstrated that bTB can be accurately diagnosed at the early stages of disease
progression based on RNA-Seq high-throughput sequencing. The inclusion of multiple genes in the diagnostic panel,
combined with the superior sensitivity and broader dynamic range of RNA-Seq, has the potential to improve the accuracy of
bTB diagnostics. The computational pipeline used for the project is available from http://code.google.com/p/bovine-tb-
prediction.
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Introduction

Bovine tuberculosis (bTB) is an insidious, progressive disease of

livestock that has cost the United States livestock industry millions

of dollars in losses prior to and since the establishment of a

national eradication campaign in 1917 [1]. Despite this large-scale

eradication effort, bTB is a reemerging infectious disease in the

U.S. It is endemic in select areas of Michigan and recent outbreaks

have occurred in Minnesota, California, and New Mexico.

Mycobacterium bovis, the causative agent of bovine tuberculosis,

creates significant problems for agriculture at both the state and

national levels. From a management and animal health perspec-

tive, it is essential that infected animals are reliably detected and

removed to prevent the spread of the disease. Current diagnostic

tests are primarily based on immune responses to crude protein

extracts from M. bovis (PPDb) injected intradermally. Three days

after injection of PPDb, excessive swelling at the injection site

indicates that the animal may be infected with M. bovis.

The sensitivity (Se) and specificity (Sp) of the single intradermal

test (SIT) depends on a cut-off value, and there is an inverse

relationship between test Se and Sp values [2]. For example, the

SIT test Se could be as high as 91.2%, with an Sp of only 75.5%

[3], or the Se could be only 63.2%, with the Sp as high as 99.0%

[4], depending on the cut-off. The Sp of the tuberculin skin test can

be reduced by exposure to environmental non-tuberculous

mycobacteria such as M. avium and M. avium subsp. paratuberculosis

[5]. This reduction in Sp is due to immunological cross-reactivity

between these species. To increase Sp while maintaining reason-

able Se, animals that test positive to the caudal fold (CF) test are

tested 60 days later using the Comparative Cervical Test (CCT).

The CCT consists of injecting PPDb and a crude protein

derivative from M. avium (PPDa) at adjacent sites on the neck.

Three days later, the swelling at each injection site is compared. If
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the inflammation at the PPDb injection site is greater than that at

the PPDa site, the animal is considered M. bovis infected.

Conversely, if the swelling at the PPDa site is greater than that

at the PPDb site, the animal is considered clinically negative.

Traditional skin testing requires at least 2 animal handling

events, one for PPD injection, and another for the evaluation of

the test. The need to hold animals for 72 h is a significant

disadvantage of PPD testing [6]. The recognition of cytokines and

their role in tuberculosis immunology has led to the development

of an in vitro assay for bovine interferon-c (IFN-c) production

[7,8]. The BovigamTM assay detects IFN-c released in response to

PPDb in a whole-blood culture assay [8,9]. Because the

BovigamTM uses the same antigens as the skin test, it has Se

similar to the SIT with a slightly lower corresponding Sp [2]. The

reported Se of the use of IFN-c release as a diagnostic tool was

91.4%, whereas the Sp was 86.7% [6]; no significant difference

was seen between the reliability of the IFN-c assay and that of the

SIT [2,10,11]. Despite the national programs in Brazil, the limited

sensitivity and specificity of current tests do not facilitate complete

bTB eradication in many countries [2,12].

Using real-time PCR, it has been reported that the expression of

IFN-c, tumor necrosis factor alpha (TNF-a), inducible nitric oxide

synthase (iNOS), and interleukin (IL)-4 by peripheral blood

mononuclear cells (PBMCs) increased in response to infection,

whereas that of IL-10 decreased. PPDb-stimulated PBMCs from

animals in the high-pathology (with lesions in the lungs and

associated lymph nodes) group expressed more IFN-c, TNF-a,

iNOS, and IL-4 mRNA than did those from animals in the low-

pathology (only had lesions in the head lymph nodes) group at

early time points. PBMC expression of the IL-10 gene decreased

faster among animals in the high-pathology group, whereas the

expression patterns of T-helper (TH) 1 and TH2 cytokines were

different among the animals in the high- and low-pathology

groups [13]. The maximal difference in expression occurred

within the first month after experimental infection. However, over

the next 2 months, the IFN-c responses between the 2 groups

reached similar levels. These data suggest that the outcome of

disease may be established early after infection. Similar responses

were detected in M. bovis infected white-tailed deer [14].

Measuring changes in cell products other than IFN-c after in

vitro stimulation can yield useful diagnostic assays. For example, an

IL-2 receptor A (IL2RA) enzyme-linked immunosorbent assay

(ELISA) exhibited a reported sensitivity of 94% and specificity of

98% [15]. ELISA-based and Griess reaction assays were used to

determine that changes in TNF-a and iNOS expression in PBMCs

exposed to PPDa or PPDb antigen could serve as additional

diagnostic indices complementing IFN-c measurements [16]. The

advent of high-throughput functional genomics has facilitated

studies based on targeted immunospecific bovine cDNA micro-

arrays to discover changes in the expression levels of hundreds of

genes, many of which are cytokines [17–19].

Diagnostics specific for M. bovis that can reliably detect early

infection are critical for the eradication program. In this study, we

explore the possibility of using next-generation sequencing from

PBMC mRNA for the purpose of diagnosing bTB. By quantifying

the host immunological response to infection by comparing the

transcriptome of known infected and uninfected individuals, we

can enhance our ability to detect M. bovis in agriculturally

important species and, in the future, in potential wildlife reservoirs.

Whole transcriptome sequencing technology (RNA-Seq) based

on second-generation sequencing platforms, such as the Illumina

Genome Analyzer II, have revolutionized the field of transcrip-

tomics [20]. Quantitative PCR (qPCR) has confirmed the

accuracy of RNA-Seq in quantifying gene expression levels [21].

RNA-Seq analysis of spike-in RNA controls of known concentra-

tions also confirmed the high fidelity of the novel technique [22].

Compared to microarray platforms, RNA-Seq delivers higher

sensitivity, accuracy, and a broader dynamic range in a

hypothesis-neutral way that can help elucidate and annotate novel

transcripts [20,23,24]. The results of RNA-Seq are highly

reproducible, for both technical and biological replicates [21,25].

In this case-control study, RNA-Seq reads from PBMCs have

been splice-aligned against the Btau 4.0 reference genome. We

converted the alignment results and Btau 4.0 genome annotation

to the general feature format GFF3 and uploaded the results to a

MySQL database connected to the Generic Model (GMOD)

Generic Genome Browser (GBrowse). Gene expression levels were

measured by counting the number of reads mapped against the

NCBI annotated gene loci. Based on the fact that RNA-Seq

provides highly sensitive measures of absolute and relative gene

expression levels, we constructed a probabilistic model for bTB

diagnosis. We demonstrated that reliable classification of infected

animals could be achieved using only 7,500 reads for each sample.

Results

PBMC transcriptome sequencing result
The following numbers of reads were obtained for each pooled

transcriptome sample with the Illumina Genome Analyzer II and

mapped against the Btau 4.0 reference genome as shown in

Table 1. We applied the Fisher exact test to get the list of loci with

significant expression changes in response to bTB as presented in

Supporting Information S4. We also applied the Fisher exact test

to obtain the list of annotated exons with significant coverage

changes in response to bTB as presented in Supporting

Information S5, which might indicate alternative exon inclusion

levels.

Table 1. Number of reads.

Sample name Number of reads Number of reads mapped

against reference genome

TCT1 10,421,654 7,616,528 (73.08%)

TCT2 29,316,410 18,324,561 (62.51%)

TCT3 13,881,201 10,143,019 (73.07%)

TCT4 14,512,900 10,645,842 (73.35%)

TCT5 14,606,602 10,627,915 (72.76%)

TCT6 15,189,216 11,071,421 (72.89%)

Number of reads from different pooled transcriptome samples and the total
number of reads mapped against the Btau 4.0 reference genome.
doi:10.1371/journal.pone.0050147.t001

Table 2. Number of mapped reads.

Sample name

Number of reads
mapped Total number Fraction

to informative loci of reads

TCT1 78,434 7,616,528 1.03%

TCT3 137,912 10,143,019 1.36%

TCT5 142,741 10,627,915 1.34%

Number of reads mapped against informative loci.
doi:10.1371/journal.pone.0050147.t002
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The number of reads mapped against informative loci listed in

Supporting Information S3 are shown in Table 2. As mentioned in

the section ssec:classification results, our experiments demonstrated

that reliable classification could be achieved with 100 or more

reads that map against informative loci. Table 2 shows that the

fraction of RNA-Seq reads mapped against the informative loci is

approximately 1.35%, which translates to 7,500 RNA-Seq reads

per sample that are necessary for reliable classification.

Classification results
We used pools TCT1, TCT3, and TCT5 to train probabilistic

profiles as described in the subsection Samples classification. Samples

TCT2, TCT4, and TCT6 were used to estimate classification

performance, where we used reads mapping against the informa-

tive loci mentioned in Supporting Information S3. From the reads

that are known to map to informative loci, we randomly sampled

groups of sizes 10,20,40, . . . ,140 and conducted maximum a

posteriori (MAP) classification according to the formulas men-

tioned in the subsection Samples classification. In each category, we

formed 10 groups, each containing 100 read sets of sizes in the

range 10, . . . ,140 and reported the means and standard deviations

of the classification accuracy in these groups. The results of these

classifications are shown in Figures 1(a), 1(c) and 1(e).

Figure 1 compares the performance of 2 classification methods.

One method aligns the reads against the profiles to calculate

forward probability as discussed in the section Samples classification.

The performance of the alignment-based method is represented in

Figures 1(b), 1(d), and 1(f). Another method, based on a much

simpler technique, assigns a constant logarithm of probability to all

the reads that map against informative loci, listed in Supporting

Information S3, according to the genomic short-read nucleotide

alignment program (gsNap). This type of classification uses only

gene expression mixture proportions for sample classification, as

shown in equation (1). This simpler technique results in improved

performance, as can be seen in Figures 1(a), 1(c), and 1(e).

Significant gene expression changes
A heat map of statistically significant gene changes (p,10230),

along with their product names, is provided in Supporting

Information S2. A histogram of the expression changes for these

loci with error bars is provided in Figure 2. The locations and heat

map of exons with statistically significant inclusion discrepancies

(p,1028) relative to the expression changes of the containing gene

locus are provided in Supporting Information S5. Examples of the

expression changes of the cytokines IFN-c and IL-17 in response

to bTB, as displayed in GBrowse, are shown in Figure 3.

Materials and Methods

RNA-Seq protocol
Seven Holstein calves were obtained from a TB-free herd and

housed at the National Animal Disease Center in a biosafety level

3 facility. All animals were housed and cared for in accordance

with institutional policies, and procedures were approved by the

Institutional Animal Care and Use Committee. The calves

received M. bovis strain 95-1315 by aerosol at 6 months of age,

as described previously [16].

Blood was collected prior to infection, and at 1 month and 2

months post-infection. PBMCs were isolated after stimulation with

PPD for 16 hours and the RNA isolated as previously described

[14]. The quality of the RNA was tested using an Agilent 2100

Bioanalyzer using the Agilent RNA 6000 Nano Kit according to

the manufacturer’s instructions. All RNA samples had a RNA

integrity number (RIN) value greater than 7.0. Samples (3.3 mg of

RNA) from each animal were randomly assigned to 1 of 2 pools at

the 0-, 1-, and 2-month timepoints of disease progression. Two

RNA pools were generated for each time point, each containing

randomly assigned RNA samples from 3 animals. RNA pools from

uninfected animals were designated as TCT1 and TCT2, those

from the 1-month progression animals were designated as TCT3

and TCT4, and those from the 2-month progression animals were

designated as TCT5 and TCT6. Pooled samples were sent to the

Iowa State DNA Facility for library preparation and sequencing

(75 base run) on the Illumina Genome Analyzer II (one pooled

sample per channel).

Processing the mapped samples
The resulting cDNA reads were splice-aligned against the

reference genome Btau 4.0, listed in Supporting Information S6,

using the gsNap [26,27] program. The gsNap tool has been cited

[28] as one of the most accurate programs for RNA-Seq reads

alignment in a splicing-aware fashion. The alignment results were

parsed and deposited into a custom-designed MySQL database

and then converted to GFF3 format. The Genbank files were

parsed using a BioJava [29]-based parser. All the GFF3 files were

uploaded to a MySQL database connected to GBrowse. We used

a 262 Fisher test to compare the number of reads that map

against a gene locus, as annotated in the Btau 4.0 reference

genome, to the number of reads mapped against the chromosome

containing the locus minus the number of reads that map to the

locus in a case-control experiment. We also estimated patterns of

differential inclusion of exons by comparing the number of reads

that map against an exon, as annotated in Btau 4.0 reference

genome, to the number of reads that map against the containing

locus minus the number of reads mapped against the exon in case-

control experiments. In our experiments, we reported statistically

significant differences in gene expression and exon inclusion

patterns at significance levels of 0.01 or less in the following tests:

TCT1uTCT3, TCT1uTCT4, TCT1uTCT5, and

TCT1uTCT6. The probability that all 4 tests are significant is

1028.

We show expression changes for genes with significance levels

1610230 using the heat map built using Bioconductor http://

www.bioconductor.org/. The heat map dendrogram shown in

Supporting Information S2, was used to identify genes in the top 3

clusters as the most informative classification loci, as listed in

Supporting Information S3. These clusters group the most closely

related expression profiles having the shortest dendrogram

branches. Attempts to use loci in outgroups of these clusters

results in suboptimal classification performance in our experi-

ments.

Samples classification
In this work, we introduce a hierarchical mixture model for the

classification of transcriptomes based on individual RNA-Seq

reads. In our model, differential isoform expression patterns can be

modeled with various probabilities of exonic isoforms, as shown in

Figure 4. The mixture of profiles for different conditions, as seen in

Figure 4, form a hierarchical model based on which we generate a

MAP classification based on equation (1).

Figure 1. Classification performance. Classification performance for subsets of RNA-Seq reads from samples corresponding to various bTB post
infection periods against control (TCT1), one month progression (TCT3) and two months progression (TCT5) trained profiles.
doi:10.1371/journal.pone.0050147.g001
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Figure 2. Gene expression changes.
doi:10.1371/journal.pone.0050147.g002
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The hidden Markov model (HMM) is a widely accepted

stochastic modeling tool [30] used in various domains, such as

speech recognition [31] and bioinformatics [32]. HMM is a

stochastic finite state machine where each transition between

hidden states culminates in the emission of a symbol. The HMM

can be represented as a directed graph with N states where each

state can emit either a discrete character or a continuous value

drawn from a probability density function (PDF). In order to

describe the HMM, we need the following parameters:

N Set of states, we label individual states as S~fS1,S2, . . . ,SNg,
and denote the state visited at time t as q(t),

N Set of PDFs B~bj(o) from where emission is drawn

bj(ot)~P(otjqt~Sj), 1ƒjƒN. where ot is observation at

time moment t from the sequence of observations

O~o1,o2, . . . ,oT .

N The state-transmission probability matrix A~a(i,j), where

a(i,j)~P(q(tz1)~jjq(t)~i),

N The initial state distribution vector P~fp1, . . . ,pNg.

The set of parameters l~(P,A,B) completely specifies the

HMM.

Here we adopt the notation from [33]. We need to calculate the

expected probability of being at a certain state at a certain moment

in time using a forward-backward procedure.

Forward procedure. By definition

at(i)~P(o1,o2, . . . ,ot,xt~ijl) is calculated the following way

1. Initially a1(i)~piN (o1jHi) for 1ƒiƒN ,

2. at(j)~
PN

i~1 at{1(i)aij

h i
N (otjHj) for t = 2,3,…,T and 1ƒjƒN,

3. Finally P(Ojl)~
PN

i~1 aT (i) is the sequence likelihood

according to the model.

Let us consider a set of K sequences O~fO1,O2, . . . ,OLg to

find the likelihood of the mixture shown in Figure 4.

We calculate the likelihoods matrix as follows:

p(O1jl1) . . . p(O1jlL)

p(O2jl1) . . . p(O2jlL)

p(O3jl1) . . . p(O3jlL)

. . . . . . . . .

p(OK jl1) . . . p(OK jlL)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L mixture components

%hbrace

9>>>>>>=
>>>>>>;

K sequences

Let us define mixture parameters as H~(A,L) where

A~fa1,a2, . . . ,aLg and L~fl1,l2, . . . ,lLg

Figure 3. Example of IFN-c and IL17A unnormalized gene expression changes in response to bTB. On these GBrowse views we show
coverage for mapped RNA-Seq reads along with Illumina short reads spanning across introns, i.e. cDNA reads that that partially map to two different
exons thus anchoring the exonic boundaries. Here the control reads are the reads from TCT1 pool.
doi:10.1371/journal.pone.0050147.g003
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Mixture likelihood is then

p(ODH)~ P
K

k~1

XL

l~1

al p(Ok Dll):

We use Bayes rule to find the posterior probability (responsi-

bility) of a mixture component as shown in Figure 4 with

parameters Hm and emission sequences O where

Q~fH1,H2, . . . ,HMg

p(HmjO,Q)~
bm p(OjHm)PM

m~1 bm p(OjHm)
: ð1Þ

Discussion

Evidence of immunomodulating response
In this study, we demonstrated that RNA-Seq can be used for

the early diagnosis of bTB. We identified an extensive panel of

genes undergoing differential expression changes in response to

infection, as shown in Figure 2. Many of the genes that show

increased expression are cytokines, the immune response modu-

lators. We observed significant expression changes in cytokines,

including interleukins (IL-22, IL17A, IL17F, IL1A, IL1B) and

interferons (IFNG).

According to a study by Meade et.al. [18] based on an immune

microarray, 378 genes were differentially expressed at the level

p~0:05 in bTB-infected and control animals. A significant

proportion of genes (65%) were expressed at lower levels, among

these genes are immune response modulators such as TLR2,

TLR4, IFNG, IL-2, IL-4, and the bovine major histocompatibility

complex proteins BoLA and BoLA-DRA. Suppression of the key

genes modulating the immune response was suggested as one of

the mechanisms by which bTB survives host immune defenses. A

significant increase in the expression of IFN-c, IL-22, CXCL9,

CXCL10, GZMA, and IL17A has been reported based on high-

density microarray gene expression profiling of the murine

immune response against M. bovis infection [19], suggesting the

use of the elevated expression of these genes as an additional

biomarker for bTB diagnosis ante-mortem.

Similar to this study [19], we observed that the expression of key

immune response players such as IFNG, IL-22, IL17A, IL17F,

NOS2A, TNF, and IL1A increased, as seen in Figures 3 and 2,

and in the Supporting Information S4. The majority of the genes

(56%) mentioned in Supporting Information S4 show increased

expression, as represented in Figure 2. In this study, we confirm

the previously observed [13,16] important roles of IFN-c (IFNG),

TNF-a (TNF), and iNOS (NOS2A) in the bTB immune response.

As seen in Figure 2, IL2RA gene expression is significantly higher;

this confirms diagnostic utility of this gene as described earlier

[15]. Expression of IL2RB is also higher, as seen in Supporting

Information S4.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway involved in the bovine TB immune response was

Figure 4. Symbolic representation of classification profiles mixture. Here the mixture components a1,a2, . . . ,aL indicate the fraction of all
hits mapping against loci used to build a profile. Transition frequencies across introns match the Illumina coverage density at each particular splice
site.
doi:10.1371/journal.pone.0050147.g004

Figure 5. Transcriptome model. Here b1,b2, . . . ,bM are the prior
probabilities of cattle being infected based on previous experience.
Each profiles mixture has structure as shown in Figure 4.
doi:10.1371/journal.pone.0050147.g005
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identified as listed in Supporting Information S1; the majority of

immune modulators participating in this pathway were shown in

this study to change expression. This study clearly reveals that

IL17A responds to bTB infection synergistically with interleukin-1,

TNF, iNOS, IFN-c, IL2RA and other immune modulators, as

shown in Supporting Information S1. We used this coordinated

expression as a disease signature for early bTB diagnostics based

on RNA-Seq technology. RNA-Seq has been previously reported

to be a very sensitive and accurate method of evaluating gene

expression with a literally unlimited dynamic range. The inherent

stochasticity of RNA-Seq reads is convenient for interrogating the

expression of multiple loci.

Further studies are needed to determine if naturally infected

animals can also be easily classified using RNA-Seq at the early

stages of infection, because experimentally infected animals usually

have extremely high immune responses to M. bovis antigens. In this

study we did not investigate if RNA-Seq is more efficient in

distinguishing immune responses from M. avium vs. those from M.

bovis. Further investigation is needed to tell if RNA-Seq has any

advantage in Se and Sp compared to the SIT or the in vitro c-

interferon assay. One of the advantages of pooling RNA samples

from different animals, as in this study, is the ability to estimate the

generalized immune response to bTB infection. However, this

approach does not allow estimating differences in the immune

reaction that might exist between individual calves, including

assessments of the impact of shared sires on the classification

results.

Advantages and limitations of the RNA-Seq classification
framework

Figures 1(a),1(c), and 1(e) indicate that for reliable classification,

we would need 100 or more reads mapping to informative loci, as

seen in Supporting Information S3. The performance of the

classification based on the forward algorithm, as discussed in the

section Samples classification, is represented in Figures 1(b), 1(d), and

1(f). The alignment-based classification is less accurate compared

to the simple classification based on gene expression proportions

shown in Figures 1(a), 1(c), and 1(e). This is explained by the fact

that transitions corresponding to exonic isoform frequencies, as

seen in Figure 4, have fluctuations associated with a limited

number of reads interrupted by introns. These fluctuations

generate some random noise in the loci classification profiles.

We detected some gene isoform changes associated with the bTB

response in the form of differential inclusion of the exons

mentioned in Supporting Information S5. Although we did not

use these predicted isoform changes in our bTB classification

experiments, they might be useful for future developments in

improved bTB diagnostics.

As expected, we had limited resolution between the 1-month

and 2-month disease progression animals, as shown in Figures 1(c)

and 1(e). In the case of the classification of the first month response

to bTB, we have been able to achieve reliable classification, with

an accuracy of more than 90%, as seen in Figure 1(c). The

accuracy of classification of the 2-month progression samples was

approximately 50%, mostly non-discriminatory between the first

and second month profiles. However, in all rounds of classifica-

tion, we had reliable resolution between the infected and

uninfected animals. It is possible that extending the panel of the

informative loci used for classification can further improve

performance.

The proposed bTB classification framework based on RNA-Seq

reads from the PBMC transcriptome has several advantages. It

can easily handle the uneven coverage biases of modern

sequencers such as Illumina and SOLID [34], and different

lengths of underlying loci. The framework can also easily

accommodate sequencing errors and known SNPs. The mixture

framework is flexible and can model different numbers of genes.

The classification process does not require isoform reconstruction,

as in some cases it is impossible to infer isoforms from short cDNA

reads [35]; it rather presents different isoforms as independent

assortments of alternative exonic isoforms. The transcriptome

model, as shown in Figure 5, can incorporate prior believes for

optimal performance that can be adjusted based on the number of

cattle found infected with bTB in a certain area.

Supporting Information

Supporting Information S1 Genes participating in im-
mune response.

(PDF)

Supporting Information S2 Genes and the product
names.

(PDF)

Supporting Information S3 Genes used for classifica-
tion.

(PDF)

Supporting Information S4 Genes changing expression.

(PDF)

Supporting Information S5 Exons changing inclusion.

(PDF)

Supporting Information S6 Reference sequences used.

(PDF)
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