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Abstract: Therapeutic options for Alzheimer’s disease, the most common form of dementia, are
currently restricted to palliative treatments. The glycosaminoglycan heparin, widely used as a clinical
anticoagulant, has previously been shown to inhibit the Alzheimer’s disease-relevant β-secretase 1
(BACE1). Despite this, the deployment of pharmaceutical heparin for the treatment of Alzheimer’s
disease is largely precluded by its potent anticoagulant activity. Furthermore, ongoing concerns
regarding the use of mammalian-sourced heparins, primarily due to prion diseases and religious
beliefs hinder the deployment of alternative heparin-based therapeutics. A marine-derived, heparan
sulphate-containing glycosaminoglycan extract, isolated from the crab Portunus pelagicus, was
identified to inhibit human BACE1 with comparable bioactivity to that of mammalian heparin
(IC50 = 1.85 µg mL−1 (R2 = 0.94) and 2.43 µg mL−1 (R2 = 0.93), respectively), while possessing highly
attenuated anticoagulant activities. The results from several structural techniques suggest that the
interactions between BACE1 and the extract from P. pelagicus are complex and distinct from those
of heparin.

Keywords: Alzheimer’s disease; amyloid-β; BACE1; β-secretase; glycosaminoglycan; heparan
sulphate; heparin; Portunus pelagicus

1. Introduction

Alzheimer’s disease (AD), the most common form of dementia, is characterized by progressive
neurodegeneration and cognitive decline [1]. The deposition and aggregation of toxic amyloid-β
proteins (Aβ), the primary constituents of β-amyloid plaques, has been identified as one of the primary
causative factors in the development of AD. Approximately 270 mutations within genes that are
directly associated with Aβ production are currently linked to the early-onset development of AD [2].
Furthermore, additional genetic risk factors for late-onset AD have been identified, most notably the
APOE polymorphism [1]. Other pathological hallmarks of AD include the presence of intraneuronal
neurofibrillary tangles (NFTs), an enhanced inflammatory response, neurotransmitter depletion, metal
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cation accumulation and oxidative stress [3]. In light of the above, the multifaceted nature of AD has
dictated strategies that are capable of modulating the multiple, distinct pathophysiological pathways
associated with AD [4].

Amyloid-β peptides (Aβ) are produced through the sequential cleavage of the type 1
transmembrane protein, amyloid precursor protein (APP). APP is initially cleaved by the aspartyl
protease, β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the primary neuronal
β-secretase [5], liberating a soluble N-terminal fragment (sAPPβ) and a membrane-bound C-terminal
fragment (β-CTF or C99). The β-CTF/C99 fragment subsequently undergoes cleavage by γ-secretase
within the transmembrane domain, releasing a 36–43 amino acid peptide (Aβ) into the extracellular
space; the most predominant species of Aβ being Aβ40 [6,7]. An imbalance favouring the production
of Aβ42 has been linked to the development of AD, owing to a higher propensity to oligomerize and
form amyloid fibrils than the shorter Aβ40 [8].

As the rate-limiting step in Aβ production, BACE1 inhibition has emerged as a key drug target
for the therapeutic intervention of the progression of AD in order to prevent the accumulation of
toxic Aβ [9,10]. This is supported by the finding that BACE1-null transgenic mice models survive
into adulthood with limited phenotypic abnormalities while exhibiting a reduction in brain Aβ

levels [5,11–16]. Despite the therapeutic potential of BACE1 inhibition, the successful development of
clinically approved pharmaceuticals has proven a challenge due to the large substrate-binding cleft of
BACE1, and unfavourable in vivo pharmaceutical properties of potent peptide inhibitors, for example,
oral bioavailability, half-life and blood–brain barrier (BBB) penetration [10,17].

Heparan sulphate (HS), and its highly-sulphated analogue heparin (Hp), are members of
the glycosaminoglycan (GAG) family of linear, anionic polysaccharides. They share a repeating
disaccharide backbone consisting of a uronic acid (D-glucuronic acid; GlcA or L-iduronic acid; IdoA)
and D-glucosamine, which can be variably sulphated or N-acetylated. HS is synthesised attached to
core protein-forming HS proteoglycans (HSPGs), which have been identified co-localized with BACE1
on cell surfaces in the Golgi complex and in endosomes [18]. HSPGs were reported to endogenously
regulate BACE1 activity in vivo through either a direct interaction with BACE1 and/or by sequestration
of the substrate APP [18]. The addition of exogenous HS or heparin was also shown to inhibit BACE1
activity in vitro and reduced the production of Aβ in cell culture [18–20]. Mouse models treated with
low-molecular-weight heparin (LMWH) exhibit a reduction in Aβ burden [21] and display improved
cognition [22], although the multifaceted modes of heparin interaction (including inflammation,
apolipoprotein E, metal interactions, [23], Tau, Aβ and acetylcholinesterase) may present challenges
when drawing definitive conclusions from in vivo mouse studies. That said, the ability of heparin to
favourably modulate a multitude of potential AD-associated targets, beyond that of BACE-1 inhibition
alone, would appear desirable. Furthermore, heparin oligosaccharides within the minimum size
requirement for BACE1 inhibition [18,19] (<18-mers) possess the ability to cross the blood–brain
barrier (BBB) [24] and can be made orally bioavailable depending on formulation and encapsulation
methods [25]. Heparin analogues, therefore, hold therapeutic potential as a treatment against AD,
which may also offer an advantage over small molecule and peptide inhibitors of BACE1.

Heparin has been utilized clinically as a pharmaceutical anticoagulant for over a century due to its
ability to perturb the coagulation cascade, principally through interactions with antithrombin III via the
pentasaccharide sequence [–4) α-d-GlcNS,6S (1–4) β-d-GlcA (1–4) α-d-GlcNS,3S,6S (1–4) α-l-IdoA2S
(1–4) α-d-GlcNS,6S (1–]. The side effect of anticoagulation presents as an important consideration
when determining the potential of a heparin-based pharmaceutical for the treatment of AD. It has
been previously determined that the anticoagulation potential of heparin can be highly attenuated by
chemical modifications, while retaining the favourable ability to inhibit BACE1 [18–20]. Polysaccharides
in which the 6-O-sulphate had been chemically removed were reported to have attenuated BACE1
activity [18,19] although this correlates with an augmented rate of fibril formation [26].

Polysaccharides analogous to GAGs have been isolated from a number of marine invertebrate
species that offer rich structural diversity and display highly attenuated anticoagulant activities
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compared to mammalian counterparts (for further detail, the reader is referred to the following
reviews; [27,28]). The largely unexplored chemical diversity of marine-derived GAGs provides a
vast reservoir for the discovery of novel bioactive compounds, some of which have been identified
to exhibit antiviral [29,30], anti-parasitic [31,32], anti-inflammatory [33,34], anti-metastasis [35–37],
anti-diabetic [38], anti-thrombotic [39] and neurite outgrowth-promoting activities [40]. Also, these
compounds may be obtained from waste material, which makes their exploitation both economically
and environmentally appealing. Here, a GAG extract isolated from the crab Portunus pelagicus has
been found to possess attenuated anticoagulant activity while potently inhibiting the AD relevant
β-secretase, BACE1, in vitro.

2. Results

2.1. Isolation and Characterisation of a Glycosaminoglycan Extract from the Crab Portunus Pelagicus

A glycosaminoglycan extract isolated from the crab Portunus pelagicus via proteolysis was
fractionated by DEAE-Sephacel anion-exchange chromatography utilizing a stepwise sodium chloride
gradient. The eluent at 1 M NaCl (fraction 5; designated P. pelagicus F5) was observed to have similar
electrophoretic mobility in 1,3-diaminopropane buffer (pH 9.0) to mammalian HS/Hp, with no bands
observed corresponding to monosulphated chondroitin sulphate (CSA/CSC), disulphated chondroitin
sulphate (CSD) or dermatan sulphate (DS) (Figure 1).
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Figure 1. (A) DEAE purification of P. pelagicus crude glycosaminoglycan. Fractions 1–6 (F1–6;
λAbs = 232 nm, solid line) were eluted using a stepwise NaCl gradient with HPAEC (dashed line).
(B) Agarose gel electrophoresis of P. pelagicus F5. The electrophoretic mobility of P. pelagicus F5 was
compared to that of bone fide glycosaminoglycan standards, heparin (Hp), heparan sulphate (HS),
dermatan sulphate (DS) and chondroitin sulphate A, C and D (CSA, CSC and CSD, respectively).
M: CSA, Hp and HS mixture.

In order to corroborate the Hp/HS like structural characteristics of P. pelagicus F5, the ATR-FTIR
spectra has been compared with that of Hp. Both P. pelagicus F5 and Hp were shown to share similar
spectral features, for instance bands at 1230, 1430 and 1635 cm−1, which are associated with S=O
stretches, symmetric carbonyl stretching and asymmetric stretches, respectively, indicative of common
structural motifs. An additional peak and a peak shoulder located at ~1750 and ~1370 cm−1 were
observed in P. pelagicus F5, but absent in Hp. The peak shoulder at ~1370 cm−1 is indicative of a Hp
and CS mixture. The differences observed between the spectra of P. pelagicus F5 and Hp in the variable
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OH region (>3000 cm−1) are likely to be associated with changeable moisture levels present during
sample acquisition (Figure 2A) as opposed to underlying differences within the glycan structure [41].

Post-acquisition, the ATR-FTIR spectrum of P. pelagicus F5 was interrogated against a library
of known GAGs comprising: 185 Hps, 31 HSs, 44 CSs and DSs, 11 hyaluronic acids (HAs)
and 6 oversulphated chondroitin sulphates (OSCSs) using principal component analysis (PCA;
Figure 2B) [41]. Principal component 1 (PC1), which covers 57% of the total variance, indicates
that P. pelagicus F5 locates within the region containing mammalian Hp/HS. Through comparison
of PC1 and PC2, comprising >70% of the total variance, P. pelagicus F5 lies towards the CS region,
a location previously identified with Hps containing small amounts of CS/DS [41] analogous to crude,
pharmaceutical Hp.
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Figure 2. (A) ATR-FTIR spectra of porcine mucosal Hp (black) and P. pelagicus F5; (red), n = 5.
(B) Principal component analysis (PCA) Score Plot for PC1 vs. PC2 of P. pelagicus F5 against a
bone fide GAG library. Hp, black; HS, cyan; CS, orange; DS, blue; hyaluronic acid (HA), magenta;
oversulphated-CS, light green and P. pelagicus F5, red (filled circle).

P. pelagicus F5 was subsequently subjected to exhaustive enzymatic cleavage with Flavobacterium
heparinum lyases I, II and III. The digest products from Hp control (Figure 3, Table 1) and P. pelagicus
F5 (Figure 4, Table 1), were analysed using strong anion-exchange chromatography and the retention
times compared to those of the eight common ∆-disaccharide standards present within both Hp and
HS [42].

The digest products detected for Hp were in agreement with a typical mammalian Hp disaccharide
profile [42], with 51.5% of the total products attributable to the trisulphated ∆-UA(2S)-GlcNS(6S) and
22.9% to ∆-UA-GlcNS(6S). A minimal proportion of mono- or unsulphated disaccharides, accounting
for 12.3 and 4.3%, respectively, were also observed for Hp. In comparison, a more disperse sulphation
profile was observed for P. pelagicus F5 than Hp (Table 1), with a comparatively lower proportion of
trisulphated disaccharides, 23.1%. The P. pelagicus F5 contained 24.4% monosulphated disaccharides, of
which 16.5% was accounted for by ∆-UA(2S)-GlcNAc. A higher proportion of ∆-UA(2S)-GlcNS (23.5%)
was also detected in P. pelagicus F5 than Hp (5.9%), indicating that the compound displays distinct
structural characteristics. Such features also contrast with that of HS, where ~50–70% of disaccharides
are comprised of ∆-UA-GlcNAc/∆-UA-GlcNS [42–45]. Also, P. pelagicus F5 presents a significant higher
proportion of trisulphated disaccharides than commonly present in mammalian HS, a typical marker
of more heparin-like structures.
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Table 1. Corrected disaccharide composition analysis of P. pelagicus F5 and Hp.

∆-Disaccharide P. pelagicus F5 (%) Hp (%)

∆-UA-GlcNAc 2.8 4.3
∆-UA-GlcNS 5.6 4.2

∆-UA-GlcNAc(6S) 2.3 5.0
∆-UA(2S)-GlcNAc 16.5 3.1
∆-UA-GlcNS(6S) 20.2 22.9
∆-UA(2S)-GlcNS 23.5 5.9

∆-UA(2S)-GlcNAc(6S) 6.0 3.1
∆-UAs(2S)-GlcNS(6S) 23.1 51.5
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Proton and Heteronuclear Single-Quantum Correlation (HSQC) NMR was employed to confirm
the GAGs composition of P. pelagicus F5. 1H NMR can indicate the major signals associated with HS
as well as signals that arise from galactosaminoglycans such as CS. The presence of both (Figure 5A
insert) is easily identified by the two N-acetyl signals at 2.02 ppm (CS) and 2.04 ppm (HS). 1H–13C
HSQC NMR (Figure 5B) has been used to resolve overlapping signals and saccharide composition
estimates using peak volume integration. The integration of N-acetyl signals revealed that the extract
is composed of approximately 60% HS and 40% CS. The combined integration of the N-acetyl and A2
signals from the HS showed that P. pelagicus F5 possesses a high NS content of approximately 76%,
which supports the HPLC-based empirical disaccharide analysis (Figure 4 and Table 1). Together,
this data establishes that the HS of P. pelagicus F5 is considerably more sulphated (Table 1) than that
commonly extracted from mammalian sources [45]. With regard to the CS element of P. pelagicus F5,
signals typical of the CS backbone are present although sulhation is generally low, with galactosamine
6-O-sulphation occurring in approximately 35% of all CS residues. The lack of non-overlapping signals
for galactosamine 4-O-sulphation indicates that all but negligible levels of such a modification are
present within the CS component.Mar. Drugs 2019, 17, x FOR PEER REVIEW 6 of 20 
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2.2. P. pelagicus F5 Inhibits the Alzheimer’s Disease-Relevant β-Secretase 1

P. pelagicus F5 was assayed for inhibitory potential against BACE1, utilizing a fluorogenic peptide
cleavage FRET assay, based on the APP Swedish mutation. Reactions were performed at pH 4.0,
within the optimal pH range for BACE1 activity (Figure 6). A maximal level of BACE1 inhibition of
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90.7 ± 2.9% (n = 3) was observed in the presence of 5 µg mL−1 P. pelagicus F5, with an IC50 value of
1.9 µg mL−1 (R2 = 0.94). This was comparable to the activity of Hp, which exhibited a maximal level of
BACE1 inhibition of 92.5 ± 1.5% (n = 3) at 5 µg mL−1, with an IC50 of 2.4 µg mL−1 (R2 = 0.93).

In the presence of low concentrations of Hp, an increase in BACE1 activity was observed
(Figure 6A,B), with maximal activation occurring at 625 ng mL−1 (57.5 ± 3.7%, n = 3). The BACE1
utilised in this study consisted of the zymogen form (Thr22–Thr457), containing the prodomain sequence.
This is in accordance with previous reports that demonstrate low concentrations (~1 µg mL−1) of
heparin can stimulate proBACE1 activity [46,47]. A maximum increase in BACE1 activity was also
detected in the presence of 625 ng mL-1 of P. pelagicus F5 (38.5 ± 1.4%, n = 3), although significantly
diminished promotion was displayed compared to the same concentration of Hp (57.5 ± 3.7%, n = 3);
t(4) = 4.859, p = 0.0083. This indicates that although P. pelagicus F5 exhibits stimulatory activity, it is
significantly less than that of Hp. The percent activity level returned to that of the negative control
value at concentrations lower than 312.5 ng mL−1, indicating that both inhibitory and stimulatory
effects are dose dependent. For both Hp and P. pelagicus F5, BACE1 promotion was followed by
enzyme inhibition, as previously reported (Figure 6B,C; [47]). The rate of BACE1 activity between 60
and 90 min was significantly different from controls lacking either Hp (n = 3–6; t(4) = 7, p < 0.003) or
P. pelagicus F5 (n = 3–6; t(6) = 7, p < 0.004) at 625 ng mL−1, indicating that inhibition was not due to
substrate limitations.

Mar. Drugs 2019, 17, x FOR PEER REVIEW 7 of 20 

 

P. pelagicus F5 was assayed for inhibitory potential against BACE1, utilizing a fluorogenic peptide 
cleavage FRET assay, based on the APP Swedish mutation. Reactions were performed at pH 4.0, within 
the optimal pH range for BACE1 activity (Figure 6). A maximal level of BACE1 inhibition of 90.7 ± 
2.9% (n = 3) was observed in the presence of 5 μg mL−1 P. pelagicus F5, with an IC50 value of 1.9 μg mL−1 
(R2 = 0.94). This was comparable to the activity of Hp, which exhibited a maximal level of BACE1 
inhibition of 92.5 ± 1.5% (n = 3) at 5 μg mL−1, with an IC50 of 2.4 μg mL−1 (R2 = 0.93).  

In the presence of low concentrations of Hp, an increase in BACE1 activity was observed (Figure 
6A,B), with maximal activation occurring at 625 ng mL−1 (57.5 ± 3.7%, n = 3). The BACE1 utilised in this 
study consisted of the zymogen form (Thr22–Thr457), containing the prodomain sequence. This is in 
accordance with previous reports that demonstrate low concentrations (~1 μg mL−1) of heparin can 
stimulate proBACE1 activity [46,47]. A maximum increase in BACE1 activity was also detected in the 
presence of 625 ng mL-1 of P. pelagicus F5 (38.5 ± 1.4%, n = 3), although significantly diminished 
promotion was displayed compared to the same concentration of Hp (57.5 ± 3.7%, n = 3); t(4) = 4.859, p 
= 0.0083. This indicates that although P. pelagicus F5 exhibits stimulatory activity, it is significantly less 
than that of Hp. The percent activity level returned to that of the negative control value at 
concentrations lower than 312.5 ng mL−1, indicating that both inhibitory and stimulatory effects are 
dose dependent. For both Hp and P. pelagicus F5, BACE1 promotion was followed by enzyme 
inhibition, as previously reported (Figure 6B,C;(47). The rate of BACE1 activity between 60 and 90 min 
was significantly different from controls lacking either Hp (n = 3–6; t(4) = 7, p < 0.003) or P. pelagicus F5 
(n = 3–6; t(6) = 7, p < 0.004) at 625 ng mL−1, indicating that inhibition was not due to substrate limitations. 

 
Figure 6. Inhibition of human BACE1 by Hp or P. pelagicus F5. (A) Dose response of Hp (dashed line, 
open circles) or P. pelagicus F5 (solid line, filled circles) as determined using FRET. P. pelagicus F5, IC50 
= 1.9 μg mL−1 (R2 = 0.94); Hp, IC50 = 2.4 μg mL−1 (R2 = 0.93). (B) Time-course activation or inhibition of 
BACE1 by 5 μg mL−1 (black) or 625 ng mL−1 (blue) Hp, compared to water control (green). (C) The same 
as (B) for P. pelagicus F5. 

Figure 6. Inhibition of human BACE1 by Hp or P. pelagicus F5. (A) Dose response of Hp (dashed
line, open circles) or P. pelagicus F5 (solid line, filled circles) as determined using FRET. P. pelagicus
F5, IC50 = 1.9 µg mL−1 (R2 = 0.94); Hp, IC50 = 2.4 µg mL−1 (R2 = 0.93). (B) Time-course activation or
inhibition of BACE1 by 5 µg mL−1 (black) or 625 ng mL−1 (blue) Hp, compared to water control (green).
(C) The same as (B) for P. pelagicus F5.

2.3. Heparin Binding Induces a Conformational Change in the Alzheimer’s Disease β-Secretase, BACE1

Hp binding has been proposed to occur at a location close to the active site of BACE1 [18],
possibly within or adjacent to the prodomain sequence [46]. In light of the contrasting and
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concentration-dependant BACE1:GAG bioactivities, the ability of Hp and P. pelagicus F5 to induce
structural changes in BACE1 has been investigated utilising circular dichroism (CD) spectroscopy at a
range of w/w ratios; this also negates the intrinsic effect of the significant polydispersity for this class
of biomolecules.

The CD spectra of BACE1 at pH 4.0 has previously been shown to contain a greater proportion
of β-sheet and reduced α-helical content, compared to spectra obtained at pH 7.4, indicating that
at an acidic pH, where BACE1 is most active, a conformational change can be observed by CD [50].
Consistent with this, the CD spectra of BACE1 in 50 mM sodium acetate buffer at pH 4.0 (Figures 7 and 8)
featured a positive peak at wavelengths below 200 nm, which can be attributed to a sum of α-helical
and β- sheet structures [51]. The broad, negative band observed between wavelengths 250 and 200 nm,
contains a peak at λ = 218 nm ~ 208 nm, commonly associated with antiparallel β-sheets and α-helical
structures, respectively [51] (Figures 7 and 8). The CD spectra of BACE1 at pH 4.0 can be estimated to
have a secondary structural composition of 9% α-helix, 31% antiparallel β-sheet, 16% turn and 44%
other (NRMSD < 0.1) when fitted against a library of representative proteins using BeStSel [48]. This was
in close agreement with the BestSel secondary structure prediction based on x-ray crystallography of
BACE1 at pH 4.0 (PDB accession no 2ZHS, [52] of 7% α-helix, 30% antiparallel, 4% parallel, 12% turn
and 47% other). Deviations between secondary structure predictions may be accounted for by subtle
differences present within the BACE1 primary sequences.
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Figure 7. The structural change of BACE1 observed in the presence of Hp by circular dichroism (CD)
spectroscopy. (A) CD spectra of BACE1 alone (solid line) or with Hp at a ratio of 1:2 (w/w; dashed line;
B:Hp 1:2); (B) ∆ secondary structure (%) of BACE1 upon the addition of increasing amounts of Hp;
α-helix (black), antiparallel (red), parallel (blue), turn (magenta) and others (green) [48]. % structural
change of B:Hp; 1:2 or 2:1 (w/w) ratio are highlighted in grey. (C) CD spectra of BACE1 alone (solid
line) with Hp (dashed line) at a ratio of 2:1 w/w (D) Near-UV CD spectra of (C); respective absorption
regions of aromatic amino acids are indicated [49]. Spectra were recorded in 50 mM sodium acetate
buffer at pH 4.0 in all panels.

In the presence of a BACE1:Hp (B:Hp), ratio of 1:2 (w/w) where maximal inhibition was observed
in FRET assays, the CD spectra of BACE1 exhibited increased negative ellipticity below λ = 222 nm,
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resulting in an estimated increase in α-helix (+6%) and a reduction in antiparallel β-sheet (−8%)
(NRMSD < 0.1) [48] (Figure 7A,B). In comparison to Hp, BACE1 in the presence of P. pelagicus F5 (B:F5),
at the same ratio (1:2; w/w), exhibited a slight increase in positive ellipticity between λ = 222–200 nm
and decreases at λ < 200 nm, resulting in an estimated change in α-helical content of +1% accompanied
by a decrease in antiparallel β-sheet content of 8% (Figure 8A,B). This is in contrast to CD studies in
the presence of peptide inhibitors, which did not reveal a secondary structural change in BACE1 [50].

The conformational change of BACE1 upon binding to Hp and P. pelagicus F5 was assessed over
a range of ratios (Figures 7B and 8B). At a B:Hp ratio of 2:1 (w/w), a change in the characteristics of
the CD spectrum of BACE1 was observed in the far-UV region (λ < 250 nm; Figure 7C) that was
identified as a reduction in α-helix by 6% and an increase in antiparallel β-sheet structures 19%
(NRMSD < 0.1) [48]. In addition, an increase in positive ellipticity was observed in the near-UV region
(250–300 nm; Figure 7C,D) following the addition of Hp, which may be attributed to a change in the
tertiary structure of BACE1 involving aromatic amino acids [49,53]. In contrast, B:F5 at the same ratio
of 2:1 (w/w), exhibited a decrease in ellipticity in the near- and far- UV region (λ < 300 nm; Figure S1).

The increase in positive ellipticity observed in the CD spectra of BACE1 in the near-UV region at
a B:Hp ratio of 2:1 (w/w) was also observed at a 1:1 (w/w) ratio of B:F5 (Figure 8C,D). The secondary
structural change in the far-UV CD spectrum of BACE1 at a B:F5 ratio of 1:1 (w/w) for λ= 250–190 nm
corresponded to a decrease in α-helix by 8% and an increase in antiparallel β-sheet structures by 15%.
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Figure 8. The structural change of BACE1 observed in the presence of P. pelagicus F5 by CD spectroscopy.
(A) CD spectra of BACE1 alone (solid line) with P. pelagicus F5 (dashed line; ratio of 1:2 w/w; B:F5);
(B) ∆ secondary structure (%) of BACE1 upon the addition of increasing amounts of P. pelagicus F5;
α-helix (black), antiparallel (red), parallel (blue), turn (magenta) and others (green) [48] % structural
change of B:F5; 1:2 or 1:1 ratio are highlighted in grey. (C) CD spectra of BACE1 alone (solid line) or
with P. pelagicus F5 (dashed line; ratio of 1:1 w/w); (D) Near-UV CD spectra of (C); respective absorption
regions of aromatic amino acids are indicated [49]. Spectra were recorded in 50 mM sodium acetate
buffer at pH 4.0 in all panels.
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2.4. Heparin and P. pelagicus F5 Destabilise the Alzheimer’s Disease β-Secretase, BACE1

Both Hp and P. pelagicus F5 were shown to induce a conformational change in BACE1, in contrast
to previous CD studies in the presence of peptide inhibitors [50]. Therefore, to explore whether
the binding of Hp or P. pelagicus F5 alters the stability of BACE1 in a mechanism similar to known
inhibitors, differential scanning fluorimetry (DSF) was employed to monitor the change in thermal
stability. Previously identified BACE1 inhibitors have been shown to stabilize BACE1, exemplified by
an increase in TM values obtained through DSF measurements [54]. In the presence of a BACE1:Hp
or P. pelagicus F5 ratio of 1:2, a decrease in the TM of BACE1 by 11 ◦C and 10 ◦C, respectively was
observed (Figure 9A). The change in TM of BACE1 induced by binding of either Hp or P. pelagicus F5
was not significantly different, (p = 0.1161 t= 2 df = 4). The destabilisation of BACE1 in the presence of
both Hp and P. pelagicus F5 was found to be concentration dependent (Figure 9B).
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2.5. Attenuated Anticoagulant Activities of the P. pelagicus Glycosaminoglycan Extract

An important consideration when determining the therapeutic potential of a heparin-like
polysaccharide against AD is the likely side effect of anticoagulation. The prothrombin time (PT)
and activated partial thromboplastin time (aPTT) of P. pelagicus F5 were measured compared to Hp
(193 IU mg−1), to determine the overall effect on the extrinsic and intrinsic coagulation pathways,
respectively (both assays also include the common coagulation pathway). In comparison to Hp,
P. pelagicus F5 exhibited reduced anticoagulant activity in both the PT (Figure 10A; EC50 of 420.2 µg
mL−1 compared to 19.53 µg mL−1, respectively) and aPTT (Figure 10B; EC50 43.21 µg mL−1 compared to
1.66 µg mL−1, respectively) coagulation assays. Both results show that the extract presents a negligible
anticoagulant activity.
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Figure 10. (A) Prothrombin time (PT) and (B) activated partial thromboplastin time (aPTT) inhibitory
response (x%, ± SD, n = 3) for Hp (open circle, dashed line) and P. pelagicus F5 (closed circle, solid line);
PT: Hp EC50 = 19.53 µg mL−1; P. pelagicus F5, EC50 = 420.2 µg mL−1. aPTT: Hp EC50 = 1.66 µg mL−1;
P. pelagicus F5, EC50 = 43.21 µg mL−1.

3. Discussion

The glycosaminoglycan extract isolated from P. pelagicus was observed to possess similar
electrophoretic behaviour to mammalian HS and Hp, with no bands identified corresponding to
CS or DS standards. In contrast, the FTIR and HSQC analyses of P. pelagicus F5 identified regions
corresponding to both HS and CS saccharides within the extract. PCA analysis of the FTIR spectra
revealed P. pelagicus F5 contained features associated with both HS/Hp and CS/DS, which are typical of
crude heparin preparations [41]. This was confirmed by HSQC NMR, which identified N-acetyl peaks
associated with both galactosamine (CS) and glucosamine (HS). The absence of an IdoA signal from
the NMR spectra suggests that P. pelagicus F5 resembles HS and CS more closely than DS/Hep [55,56].
Peaks corresponding to Gal-6S and 6-OH were identified by NMR analysis, with no detectable
4-O-sulphation, indicating that the CS component of P. pelagicus F5 resembles CSC saccharides. The HS
component possesses >70% N-sulphated moieties, which is greater than mammalian HSs published
previously, but is not as heavily N-sulphated as mammalian heparins. An intermediate proportion
of trisulphated ∆-disaccharides were also identified post-bacterial lyase digestion in P. pelagicus F5
when compared to mammalian HS and Hp samples. Furthermore, the P. pelagicus F5 extract contained
a low proportion of ∆-UA-GlcNAc/∆-UA-GlcNS, which is typical of more heparin-like structures.
This suggests that the HS/Hp component of P. pelagicus F5 consists of a hybrid structure lacking the
domain structure of HS and the highly-sulphated regions of Hp.

The absence of a band migrating in a similar manner to that of CS when P. pelagicus F5 was
subjected to agarose gel electrophoresis suggests that the polysaccharide is not a mixture of HS and CS
chains. The simplicity of the signals in the HSQC spectrum suggests either two separate populations
or two distinct domains, while the former is not consistent with the agarose gel electropherogram
mentioned previously. The PCA of the FTIR spectra is also in agreement with the presence of discrete,
rather than mixed, HS/CS sequences. The precise nature of the arrangement of these stretches remains
unknown, although it is well documented that marine-derived GAGs harbour significant and unusual
structural features, when compared to those present within their mammalian counterparts [33,43,57–66].
Studies to resolve this technically demanding question are currently in progress.

The P. pelagicus F5 extract was found to possess significant inhibitory potential against human
BACE1, in a manner akin to that of mammalian Hp, as demonstrated by comparable IC50 concentrations
determined via FRET. The ability of P. pelagicus F5 to promote BACE1 bioactivity at lower concentrations,
owing to the presence of the BACE1 pro-domain [46,47], appears to be at a diminished level compared
to mammalian Hp, suggesting differences between these GAGs and the nature of their interactions with
human BACE1. This was exemplified when the secondary structural changes in BACE1 (evident from
CD) in the presence of Hp or P. pelagicus F5 were examined.
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BACE1 has previously been observed to adopt a unique secondary structure at pH 4.0,
where catalytic activity is increased, resulting in a predicted increase in beta-sheet and a reduction in
alpha-helical structures [50]. When the changes in the secondary structure (evident from CD) of BACE1
in the presence of high concentrations of Hp (BACE1:Hp ratio of 1:2) was examined, a shift towards
the structural features observed for BACE1 alone at pH 7.4 was observed (increase in alpha-helical
and reduction in beta sheet structures). At high concentrations (B:F5 ratio of 1:2), the P. pelagicus
F5 extract induced similar, but not identical, changes to the secondary structure of human BACE1,
when compared to those of Hp at the same ratio.

In contrast, the CD spectra observed for B:Hp complexes under conditions that facilitate BACE1
promotion (i.e., low Hp concentrations) demonstrated evidence of an interaction that involves the
aromatic amino acids (near UV CD). Tyr-71 is located within the BACE1 flap that has previously been
identified to change conformation between the flap-open and flap-closed states [67]. Unfortunately,
due to the location of the aromatic residues on the surface of the protein, it is not possible to conclude
definitely whether interaction(s) of Hp-based inhibitors with human BACE1 occur at, or near to, the
active site. This interpretation is consistent with the previous reports that a conformational change
in BACE1 may occur upon heparin binding, which would be required to allow access into the active
site [46]. In addition, the increase in BACE1 activity by heparin has been shown to be followed by
BACE1 inhibition [47], which may suggest this arrangement is required to allow access to the active
site. The results also support the work by Scholefield et al. [18] who showed that the mode of Hp
inhibition is non-competitive, and can prevent access of the substrate.

At lower GAG concentrations, differences in BACE1 secondary structure were observed between
the B:Hp and B:F5 complexes in the CD spectra, although a similar change in the near UV CD spectra
of BACE1 was observed with increased amounts of P. pelagicus F5. This may be accounted for by the
reduced potency of P. pelagicus F5 with regard to activating BACE1, or indicative of an alternative
interaction. The conformational change induced in the near-UV CD spectra of BACE1 is solely the
result of the HS/Hp-like component of the P. pelagicus F5 extract. CS has previously been shown to
possess diminished BACE1 promotion activity compared to Hp/HS [46].

From a mechanistic standpoint, the decrease in the Tms observed using DSF for both the
human BACE1 protein in the presence of either Hp or the P. pelagicus F5 extract, when compared
to human BACE1 alone, suggests that the mode of BACE1 inhibition by this class of carbohydrates
could both involve structural destabilisation. The Hp-induced thermal instability of human BACE1
occurs in a concentration dependent manner, akin to that of the inhibitory potential of Hp in the
FRET-based bioactivity assay. As for the FRET-based, BACE1 inhibition assays, P. pelagicus [F5] also
induces comparable destabilisation of BACE1 with similar Tm values. A graph of BACE1:GAG Tm vs.
concentration demonstrates similar profiles for the P. pelagicus GAG extract and that of mammalian Hp.
The relationship between Hp and P. pelagicus F5 concentration and biological properties that coexists
for both FRET-based, BACE1 inhibition and DSF is not mirrored at defined concentrations of Hp and
P. pelagicus F5 with regard to their distinct CD spectra and predicted secondary structure. This would
suggest that complex and distinct modes of interactions are present.

One of the major obstacles that precludes the use of mammalian Hp compounds as potential
BACE1 inhibitors and pharmaceutical candidates in general is that of the significant anticoagulant
potential residual within the biomolecule. This anticoagulant potential is afforded by the propensity
of Hp to interact with antithrombin and thereby inhibit the human coagulation pathway, which
unperturbed, ultimately results in fibrin clot formation. The anticoagulant potential of P. pelagicus F5
has been shown to be highly attenuated in contrast to mammalian Hp, as measured by both the aPTT
and PT clotting assays. These coagulation assays are routinely employed, in clinical settings, to screen
for the common pathway in combination with either the intrinsic (aPTT) or extrinsic pathways (PT).
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4. Materials and Methods

4.1. Extraction of Glycosaminoglycans from Portunus pelagicus

A total of 2.4 kg Portunus pelagicus tissue (Yeuh Chyang Canned Food Co., Ltd., Nhut Chanh,
Vietnam) was homogenised with excess acetone (VWR, UK) and agitated for 24 h at r.t.
Defatted P. pelagicus tissue was recovered via centrifugation, 5670 rcf at r.t. for 10 min, and allowed
to air dry. The tissue was then subjected to extensive proteolytic digestion (Alcalase®; Novozymes,
Bagsværd, Denmark) using 16.8 U kg−1 dried tissue mass, in PBS (w/v; Gibco, Loughborough, UK)
made up to a final concentration of 1 M NaCl (Fisher Scientific, UK), pH 8.0, and incubated at 60 ◦C
for 24 h. Post-digestion, the supernatant was collected via centrifugation (5670× g for 10 min, r.t.),
and subjected to ion exchange chromatography employing Amberlite IRA-900 resin (Sigma-Aldrich,
Dorset, UK; hydroxide counterion form) for 24 h under constant agitation at r.t. Ion exchange resin was
recovered by filtration and washed successively with distilled H2O (Fisher Scientific, Loughborough,
UK) at 60 ◦C with two volumes of water and 10 volumes of 1 M NaCl at r.t. The ion exchange resin was
then re-suspended in 1 L 3 M NaCl and agitated for 24 h at r.t. The ion exchange resin was removed
and the filtrate was added to ice cold methanol (VWR, Lutterworth, UK), 1:1 (v/v), prior to incubation
for 48 h at 4 ◦C. The precipitate formed was recovered by centrifugation at 4 ◦C, 15,400× g for 1 h
and re-suspended in distilled H2O. The crude P. pelagicus extract was dialysed against distilled H2O
(3.5 kDa MWCO membrane; Biodesign, Carmel, NY, USA) for 48 h prior to syringe filtration (0.2 µm)
and lyophilisation. The crude GAG extract was re-suspended in 1 mL HPLC-grade H2O and loaded
onto a pre-packed DEAE-Sephacel column (10 mm I.D. × 10 cm; GE Healthcare, Buckinghamshire, UK)
at a flow rate of 1 mL min−1. The column was eluted using a stepwise NaCl gradient of 0, 0.25, 0.5, 0.8,
1 and 2 M NaCl at a flow rate of 1 mL min−1, with elution monitored in-line at λabs = 232 nm (using a
UV/Vis, binary gradient HPLC system; Cecil Instruments, Cambridge, UK), resulting in six fractions
(F1–F6, respectively). Each of the eluted fractions was dialysed against distilled H2O, employing
a 3.5-kDa MWCO (Biodesign, Carmel, NY, USA) for 48 h under constant agitation. The retentate
obtained for F5 was lyophilised and stored at 4 ◦C prior to use.

4.2. Agarose Gel Electrophoresis

Agarose gel electrophoresis was performed in 0.55% (w/v) agarose gels (8 × 8 cm, 1.5 mm thick)
prepared in 1,3-diaminopropane-acetate buffer at pH 9.0 (VWR, Lutterworth, UK), 2–7.5 µg P. pelagicus
F5 or GAG standards were subjected to electrophoresis utilizing a X-Cell SureLock™ Mini-Cell
Electrophoresis System (ThermoFisher, Altrincham, UK). Electrophoresis was performed in 0.5 M
1,3-diaminopropane-acetate buffer (pH 9.0), at a constant voltage of 150 V (~100 mA) for ~30 min or
until the dye front had migrated ~8 cm from the origin. The gels were then precipitated with 0.1%
w/v cetyltrimethylammonium bromide solution (VWR, Lutterworth, UK) for a minimum of 4 h and
then stained for 1 h in 0.1% toluidine blue dissolved in acetic acid:ethanol:water (0.1:5:5). Gels were
de-stained in acetic acid:ethanol:water (0.1:5:5 v/v) for ~30 min prior to image acquisition with GIMP
software (v2.8, Berkeley, CA, USA) and processing with ImageJ (v1.51(100), Madison, WI, USA).

4.3. Attenuated FTIR Spectral Analysis of Marine-Derived Glycosaminoglycans

Samples (10 mg, lyophilised) were recorded using a Bruker Alpha I spectrometer in the region of
4000 to 400 cm−1 for 32 scans at a resolution of 2 cm−1 (approx 70 seconds acquisition time), 5 times.
Spectral acquisition was carried out using OPUS software (v8.1, Bruker, Coventry, UK) with correction
to remove the residual spectrum of the sampling environment.

Spectral processing and subsequent data analyses were performed using an Asus Vivobook
Pro (M580VD-EB76, Taipei, Taiwan) equipped with an intel core i7-7700HQ. Spectra were smoothed,
employing a Savitzky–Golay smoothing algorithm (R studio v1.1.463; signal package, sgolayfilter),
to a 2nd-degree polynomial with 21 neighbours prior to baseline correction employing a 7th-order
polynomial and subsequent normalisation (0–1). CO2 and H2O regions were removed prior to
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further analysis in order to negate environmental variability (<700 cm−1, between 2000 and 2500
cm−1 and >3600 cm−1). Second derivatives plots were calculated using the Savitzky–Golay algorithm,
with 41 neighbours and a 2nd-order polynomial.

The normalised and corrected matrix of intensities was subject to PCA using singular value
decomposition in R studio (v1.1.463, Boston, MA, USA) with the mean-centred, base prcomp
function deployed.

4.4. Nuclear Magnetic Resonance (NMR)

NMR experiments were performed upon P. pelagicus F5 (5 mg) dissolved in D2O (600 µL; VWR,
São Paulo, Brazil) containing TMSP (0.003% v/v; VWR, Brazil) at 343 K using a 500-MHz Avance Neo
spectrometer fitted with a 5-mm TXI Probe (Bruker, São Paulo, Brazil)). In addition to 1-dimensional
(1H) spectra, 1H–13C Heteronuclear Single-Quantum Correlation (HSQC) 2-dimensional spectra were
collected using standard pulse sequences available. Spectra were processed and integrated using
TopSpin (Bruker, São Paulo, Brazil)

4.5. Constituent ∆-Disaccharide Analysis of Hp/HS-Like, Marine-Derived Carbohydrates

Pharmaceutical (API) grade, porcine intestinal mucosal heparin (193 IU mg−1; Celsus, Cincinnati,
OH, USA) and P. pelagicus F5 carbohydrate samples were re-suspended in lyase digestion buffer (50 µL;
25 mM sodium acetate, 5 mM calcium acetate (VWR, Lutterworth, UK), pH 7) prior to exhaustive
digestion by the sequential addition of a cocktail of the three recombinantly expressed heparinase
enzymes (I, III and II) from the soil bacterium Flavobacterium heparinum (2.5 mIU mg−1; Iduron,
Alderley Edge, UK). Samples were incubated for 4 h at 37 ◦C prior to a further addition of the same
quantity of enzymes and an additional overnight incubation. Samples were then heated briefly at 95 ◦C
post-enzyme digestion (5 min) and allowed to cool.

Denatured heparinase enzymes were removed from the sample solution by immobilisation upon a
pre-washed (50% methanol (aq.) followed by HPLC-grade H2O) C18 spin column (Pierce, Altrincham,
UK), whereby the newly liberated ∆-disaccharides were present in the column eluate upon washing
with HPLC-grade H2O.

Lyophilised ∆-disaccharide samples from Hp and P. pelagicus F5 were desalinated by
immobilisation up on graphite spin columns (Pierce, Altrincham, UK) that had been extensively
prewashed with 80% acetonitrile, 0.5% (aq.) trifluoroacetic acid and HPLC-grade H2O prior to use.
∆-disaccharides liberated from the exhaustive, heparinase digestion were separated from buffer salts
by extensive washing with HPLC-grade H2O prior to elution with a solution of 40% acetonitrile,
0.5% trifluoroacetic acid (aq.). Contaminant, non ∆-disaccharide components of the spin column eluate
were removed by serial lyophilization prior to chromatographic separation, using high performance
anion exchange chromatography (HPAEC).

Heparinase digested samples (50 µg) were made up in HPLC-grade H2O (1 mL) immediately
before injection onto a ProPac PA-1 analytical column (4× 250 mm, ThermoFisher Scientific, Altrincham,
UK), and pre-equilibrated in HPLC-grade H2O at a flow rate of 1 mL min−1. The column was held
under isocratic flow for 10 min prior to developing a linear gradient from 0 to 2 M NaCl (HPLC grade;
VWR, UK) over 60 min. Eluted ∆-disaccharides were detected absorbing within the UV range λabs

= 232 nm via the unsaturated C=C bond, present between C4 and C5 of the uronic acid residues,
introduced as a consequence of lyase digestion.

Authentic ∆-disaccharide reference standards, comprising the 8 common standards found in
Hp and HS (Iduron, Alderley Edge, UK), were employed as a mixture (each at 5 µg mL−1) and
served as chromatographic references with elution times cross-correlated with Hp and P. pelagicus F5
samples. The column was washed extensively with 2 M NaCl and HPLC-grade H2O prior to use and
between runs.
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4.6. Determination of Human BACE1 Inhibitory Activity Using Förster Resonance Energy Transfer

P. pelagicus F5 and Hp were assayed for inhibitory potential against human β-secretase, tag free
(BACE1; ACRO Biosystems, Cambridge, MA, USA), using the fluorescence resonance energy transfer
(FRET) inhibition assay, essentially as described by Patey et al. (2006) [19]. Human BACE1 (312.5 ng),
and P. pelagicus F5 or Hp were incubated in 50 mM sodium acetate at pH 4.0 at 37 ◦C for 10 min,
followed by the addition a quenched fluorogenic peptide substrate (6.25 µM; Biomatik, Cambridge,
Ontario, Canada; MCA-SEVNLDAEFRK(DNP)RR-NH2; pre-incubated at 37 ◦C for 10 min) to a final
well volume of 50 µL. Fluorescent emission was recorded using a Tecan Infinite® M200 Pro multi-well
plate reader (Tecan Group Ltd., Männedorf, Switzerland) with i-control™ software (λex = 320 nm,
λem = 405 nm) over 90 min. The relative change in fluorescence per minute was calculated in the linear
range of the no inhibitor control, with normalized percentage inhibition calculated (% ± SD, n = 3)
compared to the x of substrate only and no inhibitor control, followed by fitting to a four-parameter
logistics model using Prism 7 (GraphPad Software, San Diego, CA, USA).

4.7. Secondary Structure Determination of Human BACE1 by Circular Dichroism Spectroscopy

The circular dichroism (CD) spectra of native, human BACE1 (6.12 µM, 30 µL; Acro Biosystems,
USA) in 50 mM sodium acetate (pH 4.0; VWR, Lutterworth, UK) was obtained using a J-1500 Jasco CD
spectrometer and Spectral Manager II software, equipped with a 0.2-mm path length quartz cuvette
(Hellma, Plainview, NY, USA) operating at a scan speed of 100 nm min−1 with 1-nm resolution over
the range λ = 190–320 nm. Spectra obtained were the mean of five independent scans. Human BACE1
was buffer exchanged (in order to remove commercially supplied buffer) prior to spectral analysis
using a 10-kDa Vivaspin centrifugal filter (Sartorius, Goettingen, Germany) at 12,000× g washed thrice.
Collected data was processed using Spectral Manager II software and data analysis was carried out with
GraphPad Prism 7, employing a 2nd-order polynomial smoothed to 9 neighbours. Secondary structure
prediction was performed utilizing the BeStSel analysis server on the unsmoothed data [48]. To ensure
the CD spectral change of BACE1 in the presence of each GAG was not altered owing to the addition
of the GAG alone, which are known to possess CD spectra at high concentrations [68,69] GAG control
spectra were subtracted before analysis. In addition, the theoretical, summative CD spectra was
confirmed to differ from the observed experimental CD spectra, thereby indicating that the change in
the CD spectra compared to that of BACE1 alone is a result of a conformational change upon binding
to the GAG. The conformational change observed is believed to occur as a result of changes solely in
BACE1 secondary structure, as GAG controls exhibited negligible spectra at the concentration used.
All CD data has been presented with GAG controls subtracted.

4.8. Investigating the Thermal Stability of Human BACE1 with Differential Scanning Fluorimetry

Differential scanning fluorimetry (DSF) was carried out using the method of Uniewicz et al.
(2010) [70] based on a modification to the original method of Niesen et al. (2007) [71]. DSF was
performed on human BACE1 (1 µg) using 96-well qPCR plates (AB Biosystems, Warrington, UK) with
20X Sypro Orange (Invitrogen, Warrington, UK) in 50 mM sodium acetate, pH 4.0, in a final well
volume of 40 µl. Hp or mGAG were included, as necessary, to a maximal concentration of 200 µg mL−1.
An AB Biosystems StepOne plus qPCR machine, with the TAMRA filter set deployed, was used to
carry out melt curve experiments, with an initial incubation phase of 2 min at 20 ◦C increasing by 0.5 ◦C
increments every 30 s up to a final temperature of 90 ◦C. Data analysis was completed using Prism 7
(GraphPad Software, San Diego, CA, USA) with the first derivative plots smoothed to 19 neighbours,
using a 2nd-order polynomial (Savitzky-Golay). The peak of the first derivatives (yielding Tms) was
determined using MatLab software (R20018a, MathWorks, Cambridge, UK).



Mar. Drugs 2019, 17, 293 16 of 20

4.9. Activated Partial Thromboplastin Time (aPTT)

Serially diluted GAG samples (25 µL) were incubated with pooled, normal human citrated
plasma (50 µL; Technoclone, Surrey, UK) and Pathromtin SL reagent (50 µL; Siemens, Erlangen,
Germany) for 2 mins at 37 ◦C prior to the addition of calcium chloride (25 µL, 50 mM; Alfa Aesar,
Heysham, UK). The time taken for clot formations to occur (an upper maximal of 2 mins was imposed,
represented as 100% inhibition of clotting) was recorded using a Thrombotrak Solo coagulometer
(Axis-Shield). HPLC-grade H2O (0% inhibition of clotting, representing a normal aPTT clotting time,
of ≈ 37–40 seconds) and porcine mucosal heparin (193 IU mg−1; Celsus, Cincinnati, OH, USA) were
screened as controls. The EC50 values of all test and control samples were determined using a sigmoidal
dose response curve fitted with Prism 7 (GraphPad Software, San Diego, CA, USA).

4.10. Prothrombin Time (PT)

Serially diluted GAGs (50 µL) or control (H2O, HPLC grade) were incubated with pooled,
normal human citrated plasma (50 µL) for 1 minute at 37 ◦C prior to the addition of Thromborel S
reagent (50 µL; Siemens, Erlangen, Germany). The time taken for clot formations to occur (an upper
maximal of 2 min was imposed, representing 100% inhibition of clotting) was recorded using a
Thrombotrak Solo coagulometer. HPLC-grade H2O (0% inhibition of clotting, representing a normal
PT clotting time of ≈ 13–14 s) and porcine mucosal heparin (193 IU mg−1; Celsus, Cincinnati, OH, USA)
were screened as controls. The EC50 values of all test and control samples were determined using a
sigmoidal dose response curve fitted with Prism 7 (GraphPad Software, San Diego, CA, USA).

5. Conclusions

While the search for effective AD treatments is still on-going, GAGs offer a route to BACE1
inhibition that surmounts the challenge presented by the large substrate-binding cleft of the enzyme
and the unfavourable pharmokinetics of peptide-based inhibitors. Heparin, a GAG from mammalian
sources (usually porcine or bovine intestinal tissue), has long been known to possess potent BACE1
inhibitory activity [18–20] but also exhibits undesirable anticoagulant properties. The P. pelagicus
GAG of the present study largely circumvents the anticoagulant limitations of mammalian heparins
while maintaining comparable, low IC50 BACE1 inhibition values. Additional advantages with
marine-derived GAGs is that they offer sources, derived from waste material of otherwise very
low economic value, that are free from contamination with mammalian pathogens (e.g., BSE) and
avoid many of the religious and social issues associated with mammalian products [72]. Interestingly,
the mechanism by which the present product from P. pelagicus inhibits BACE1 is complex, concentration
dependent and appears to be distinct from that of mammalian heparin, suggesting marine GAGs
as a potential starting point for future drug development. Furthermore, as heparin has been shown
to positively modulate distinct pathophysiological processes associated with AD [23], this class of
molecules may hold the potential for the delivery of a multi-target AD therapeutic. The present
contribution highlights the potential offered by the largely unexplored chemical space defined by
marine-derived GAGs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/5/293/s1,
Figure S1: The CD structural change of BACE1 observed in the presence of P. pelagicus F5 with a ratio of 2:1 w/w.
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