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ABSTRACT

Lipids are a very heterogeneous class of biomolecules with distinct structures and functions. Total lipids (TLs)
obtained from natural sources are regularly further separated into lipid subclasses, with the two major ones
being the polar lipids (PLs) and neutral lipids (NLs). Traditional analytical methods for fractionating TLs into NLs,
PLs, and their subclasses, usually comprise difficult, costly and time-consuming steps.

Instead, several benefits and applications are derived by implementing a novel one-step semi-preparative and
reversed-phase HPLC-analysis for separating TLs into all kinds of lipid subclasses. This method allows a one-
step separation/fractionation of several subclasses of bio-functional PLs (i.e. phospholipids, glycolipids, phenolic
compounds, N-acyl-homoserine-lactones, etc.) and NLs (i.e. triacylglycerols, fatty acids, esters, etc.) from TL-
extracts of a natural source, prior to further testing them for their bio-functionality (i.e. in bioassays/cell models)
and structure-activity relationships (i.e. LC-MS/GC-MS).

This method can be applied in several natural sources, such as animal and marine sources, plants,
microorganisms of biotechnological and agricultural interest, foods, beverages and related products, and by-
products.

This method can also be applied for separating specific bio-functional lipids from complex medical and
pharmaceutical samples (i.e. cells, tissues, blood, plasma, liposomes, etc.), either for evaluating their role in
diseases (i.e. PAF/PAF-like molecules) or by elucidating their protective roles (i.e. PLs rich in w3 PUFA) for
supplements and nutraceuticals’ applications.

Abbreviations: PL(s), polar lipid(s); NL(s), neutral lipid(s); TL(s), total lipid(s); w3 PUFA, omega-3 polyunsaturated fatty acids;
PAF, platelet-activating factor; HPLC, high pressure (performance) liquid chromatography; LC, liquid chromatography; GC, gas
chromatography; MS, mass spectra.
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Method details
Background

Lipids are a very heterogeneous class of biomolecules with a wide range of structures and
functions. They can be divided into two major subclasses, namely the Neutral Lipid compounds (NLs)
that are molecules with long hydrophobic hydrocarbon chains lacking a free polar group, and the
Polar Lipid compounds (PL) that, apart from their hydrophobic hydrocarbon residues, they also bear
at least one polar hydrophilic group. Classic examples of NLs are triacylglycerols, fatty acids and
their esters, cholesterol and sterol esters, waxes, terpenes, etc. [1]. The most well known subclasses
of PLs are the phospholipids that bear a phosphate head group with a hydrophilic residue within
their structure (i.e. glycerophospholipids, such as phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidic acid
(PA), cardiolipin (CL), etc., and sphingophospholipids, such as compounds of the sphingomyelin (SM)
family), the glycolipids that bear carbohydrate-group(s) (i.e.glycoglycerolipids and glycosphingolipids
such as cerebrosides, gangliosides, etc.) and phenolic compounds (i.e. flavones, flavanols, catechins,
gallic acid, quercetin, resveratrol, etc.) [1].

Within these subclasses of lipids there are further differences in lipid structures and related
bio-functionalities. For example, the biological importance of the majority of phopsholipids and
glycolipids derives mostly from their amphiphilic properties [1]. The most characteristic example
of this is that several of these lipids are essential components of cell membranes [1]. The
lipid composition of biological membranes represents a taxonomic signature that distinguishes the
different kingdoms of life. Differences between ester- and/or ether-bonded fatty acid chains at
the glycerol/sphingosine backbone exist between different kinds of organisms, while the fatty acid
composition of phopsholipids and glycolipids also varies depending on their origin [1]. Such PLs from
microorganisms, plants or of animal origin, generally contain an unsaturated fatty acid in the sn-2
position, such as monounsaturated fatty acids (MUFA) (i.e. oleic acid) or polyunsaturated fatty acids
(PUFA) (i.e. w-6 PUFA such as linoleic acid and arachidonic acid, or w3 PUFA such as «-linolenic
acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), whereas the sn-1 position
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predominantly carries a saturated fatty acid (SFA), such as stearic acid or palmitic acid [1]. The
correct ratio of saturated to unsaturated fatty acids in the phospholipid membrane is essential to
sustain membrane characteristics, since the fatty acid composition and degree of saturation directly
affects the fluidity of the cell membrane [1]. Equally, the correct ratio can have a significant effect on
cellular processes such as the formation of lipid rafts and other biological activities [1]. For example,
it has been proposed that a low ratio of w6/w3 PUFA in diet has favorable effects against several
chronic disorders, such as cardiovascular disease (CVD) and cancer [2], while PL-bearing w3 PUFA
such as ALA (usually from microorganisms and plants) or EPA and DHA (usually from marine sources)
seem to possess distinct and favorable nutritional value and health benefits against these disorders in
comparison to the fatty esters and triglycerides bearing such bioactive fatty acids [1,3-7]

Another example of the crucial role played by the nature of bonds (ester or ether) and the fatty
acid moieties with regard to PL bio-functionality, is offered by a specific subclass of PLs consisting
of alcyl-acyl-phospholipids or alcyl-acyl-glycolipids [1,3-7]. Such alkyl-PL usually bear hydrocarbon
chains, saturated or unsaturated and with or without hydroxyl-groups, ether-linked to the sn-1
position of the glycerol/sphingo-backbone, instead of a fatty acid bound by ester bonds to the sn-1
position. Alkyl-PLs can be found as minor constituents of cell membranes in both prokaryotes and
eukaryotes, but they are abundant in archaeal organisms. Some exist as bioactive molecules that
seem to be maintained through evolution from archaeal to eukaryotic organisms because of their
key roles in cell-cell signaling and related bioactivities, especially in eukaryotic organisms [1,3,4]. One
such example is provided by plasmalogens and the platelet-activating factor, also known as PAF (1-O-
alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) [8], which is a potent inflammatory mediator involved
in the immune response and in chronic inflammatory diseases [3,4], in addition to several other PLs
with similar structure or activities to PAF that are called PAF-like molecules [3,9-13].

It should be stressed that specific PLs belonging to the glycolipids and phopsholipids’ subclasses
that are present in several natural sources (such as animal and marine sources, plants, microorganisms
of biotechnological and agricultural interests, foods, beverages and related products and by-products),
have been found to possess strong anti-platelet, anti-thrombotic and anti-inflammatory effects against
inflammatory and thrombotic mediators like PAF and thrombin, but also against well established
platelet agonists like adenosine diphosphate (ADP) and collagen [1,3-7,12-23]. By such favorable bio-
functionalities, these PLs have also exhibited promising outcomes against several inflammation-related
chronic disorders, such as atherosclerosis and CVD, renal disorders, cancer, persistent infections (i.e.
HIV-infection, periodontitis, leishmaniosis, etc.), where PAF is implicated [1,3-5].

Bioactive PL molecules include but are not limited to the following: (i) phospholipids, such as
phosphatidylcholines (PC), phosphatidylethanolamines, sphingomyelins (SM), and especially PAF-like
molecules and/or those bearing w3 PUFA in the sn-2 position of their structures, (ii) glycolipids,
such as sulphoquinovosyldiacylglycerols (SQDG), mono/di-galactosyldiacylglycerols (MGDG/DGDG) and
mono/di-glycodiacylglycerols, including glycolipids with palmitic acid at the sn-1 position and
ALA/EPA/DHA esterified at the sn-2 position of their structures), (iii) cerebrosides and gangliosides,
and (iv) other bioactive polar compounds such as phenolic compounds and phenol-lipids that usually
migrate to the PL fraction of several separation procedures [1],[3-7],[12-23].

Numerous phenolic compounds that are also present in several of the aforementioned natural
sources, have also exhibited similar beneficial effects against inflammation and its related disorders,
by favorably affecting biological pathways, including those of PAF [3,4,16,17-19,23-25]. Such
phenolic compounds consist of flavonoids that are broadly classified into anthocyanidins (e.g.,
cyanidin, delphinidin, malvidin), flavanols (e.g., catechin, epicatechin), flavonols (e.g., quercetin, fisetin,
kaempferol, and rutin), flavones (e.g., luteolin), but also of phenolic acids (i.e. caffeic, gallic, and
quinic acids), and other similar compounds characterized by the presence of phenol units with polar
substrates such as the OH-group [24-26]. These compounds, even though they are usually water
soluble, they are more than often co-extracted with other PLs during TL-extract preparations and
separations, because they exhibit slightly more to similar polarity with the more polar molecules of
PLs.

Another interesting subclass of polar compounds that co-migrate with PLs at TL-extract
separations, are the N-acyl-L-homoserine lactones (AHLs), which also have distinct bio-functionalities
during cell-cell signaling and quorum sensing of microorganisms [27-29].
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Taking into consideration all of the above, it is apparent that the majority of bioactive PL
compounds are co-extracted into the TL- extract preparations derived from extractions of several
of the aforementioned natural sources, independently of the extraction methods used. For instance,
considerable amounts of various PL compounds have been found in TL extracts prepared by the
use of highly non-polar solvents such as hexane implemented on fish oils [1]. Hexane-based
extractions of marine-derived fish oils yield a vast majority of NL components, but also considerable
amounts of bioactive PLs, which seem to be the ones providing most of the favorable health
benefits of fish-oil consumption [1]. Similar outcomes are observed for the also highly heterogenic
NL subclass of lipids, which, as aforementioned, contains triacylglycerols, fatty acids and their
esters, cholesterol and sterol esters, waxes, terpenes, and other compounds of neutral polarity.
Such NL content is often present in the TL content of complex natural sources such as the ones
described [1].

Traditionally, TLs are obtained from a natural source, either by extraction (by using conventional
methods of extraction such as the Bligh & Dyer method [6,18,30] or food grade ones [7]), or by
applying other mechanical methods, such as specific pressure and temperature conditions during
supercritical fluid extraction (SFE), subcritical water extraction (SWE), ultrasound-assisted extraction
(UAE), and microwave-assisted extraction (MAE) [31]. Then, these TL preparations are usually further
separated into the PL and NL subclasses by applying classic methods of lipid analysis, such as
counter current distribution (CCD) by using conventional solvents [33]| or food grade solvents
and methodology [7], liquid column chromatography (LC), solid phase extractions (SPE), thin layer
chromatography (TLC) in one or two dimensions (1D or 2D respectively), high pressure (performance)
liquid chromatography (HPLC) of analytical grade, and several other similar methods [5-7,10,11,15-
21,34-38].

Even when applying the aforementioned separation methods in any order, it is not guaranteed that
a proper separation of specific lipid compounds from all lipid subclasses can be adequately achieved.
Moreover, such a traditional approach usually demands high expertise and comprises several
costly, time-consuming, and intricate steps that are not always successful. Particularly, when in the
course of such separations several HPLC steps = of analysis are implemented, this usually requires
the use of analytical grade columns and serial injections of low amounts of TL extracts from natural
source samples in order to obtain good separations [5,11,18,34-38]. Thus, to be able to analyze
preparative amounts of such TL extracts, several repetitions are needed, which renders the scale
laborious and expensive.

From all the above it is obvious that there is a need to reduce the degree of difficulty
entailed in traditional methods applied for lipid separation, and this can be achieved by
implementing approaches and methods of analysis consisting of as few as possible steps, without
however compromising the efficacy of the separation. In the present study we evaluate the
benefits and applications of a recently developed method for a one-step HPLC analysis and
separation of TLs from natural sources. Our separation method resorts into several fractions of
all major bioactive lipid sub-classes, which can be further corroborated by testing the fractions
for their bio-functionality in specified bioassays and cell-models, and also by implementing
structure - activity relationships through tandem or not mass spectra (LC-MS and/or GC-MS)
analyses.

Materials, methods and applications
Materials and reagents

Standard phospholipids (PC, PE, L-PC, SM) and semi-synthetic cold and 3H-PAF (1-O-alkyl-2-
acetyl-sn-glyceryl-3-phosphorylcholine), along with analytical reagents and organic solvents of HPLC-

analytical purity, such as chloroform, methanol, water and acetonitrile, were purchased from Sigma
Aldrich Co. (St. Louis, MO, USA).
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Method of analysis

Preparation of sample

TLs are obtained from a natural source, either by extraction (by using conventional methods
of extraction such as the Bligh & Dyer method [6,18,30] or by utilizing food grade solvents and
techniques [7]). In addition, other mechanical methods can also be used, such as SFE, SWE, UAE, and
MAE [31].

Among all these methods, the Bligh & Dyer method [30] is the simplest extraction procedure for
the preparation of the TLs extracts from solid or liquid natural sources [6,18,32]. More specifically,
the TL extraction is achieved as previously described [18],[32]], by homogenisation of the sample in
a monophasic system containing chloroform/methanol/water in a 1:2:0.8 (v/v/v) ratio. In the case of
solid samples, tha sample is usually blendered within this solution and then filtration of the blendered
extracts is usually conducted to separate the homogenate from the precipitated solid remnants of the
sample, with filtering papers of 110 mm (Whatman, Maidstone, UK), under vacuum conditions by
pumping in a Buchner-based filtering devices, as previously described [32]. The homogenate/filtrate
from a sample (liquid or solid sample, respectively) is then transferred to a separatory funnel and
addition of appropriate volumes of water and chloroform is then preformed in order to adjust the
chloroform/methanol/water based homogenate at a ratio of 1/1/0.9 (v/v/v) to achieve phase separation
with the TL being present in the lower phase. This phase is then gathered in round-bottom flasks and
evaporated until dry on a flash rotary evaporator at 37°C under vacuum between 700-50 mbar (Buchi
Rotavapor, Mason Technology Ltd., Dublin, Ireland), and then re-dissolved in a chloroform/methanol
solution at a ratio of 1/1 (v/v) and transferred at a small glass tube, which is usually evaporated
under ni-trogen stream. The obtained TL can then be weighted and stored under nitrogen at -20°C
for max 8 weeks. Just before the HPLC analysis, the sample is dissolved again in a small volume of a
chloroform/methanol solution at a ratio of 1/1 (v/v) at room temperature.

HPLC analysis

The one-step HPLC-separation procedure of TLs obtained from a natural source into several bio-
functional lipid subclasses/fractions was performed at room temperature (20°C) by using a HP Series
1100 HPLC model (Hewlett Packard, Palo Alto, CA, USA), and the semi-preparative reversed phase
column Luna 5u C8(2) 100A by Phenomenex (Torrance, CA, USA). A gradient distribution of HPLC-
high-purity acetonitrile (ACN) and water (W) was used as a mobile phase, previously described by
Tsoupras et al. [12]. However, any HPLC-instrumentation of same specifics and a similar separation
regime may be applied for the purposes we describe.

Briefly in our method, and after sample injection, a mobile phase of ACN:W at a 40:60 v/v
ratio was used for 0-2 min, followed by a gradient for the next 2-26 min, which reached a final
ACN:W 100:0 v/v ratio, kept until the end of the separation (80 min). The flow rate on all HPLC
procedures was 3 mL/min. Prior to analysis, care was taken to dilute each sample in a solvent
containing chloroform:methanol at a 1:1 v/v ratio and then inject for separation. In these conditions,
and according to absorption values obtained by a UV-detector (208 nm), several PL subclasses were
eluted first, while after 30-35 min of analysis the NL subclasses started to elute (Fig. 1).

In the case of PLs, phenolic-compounds are eluted in the first 5-10 min, such
as flavonoids, catechins, resveratrol, quercetin, gallic acid, etc, followed by glycolipid
compounds (10-15 min), such as digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol
(MGDG),sulphoquinovosyldiacylglycerol (SQDG), cerebrosides (CER), gangliosides (GAN), etc. The
presence of these subclasses depends on the natural source from which the TLs and subsequently the
PLs were obtained. Then the solvent chloroform is eluted (15-17 min), and afterwards phospholipids
(i.e. L-PC, SM, PC), until 30-35 min of retention time, with the exception of PE that is eluted early
during separation (3-5 min). Semi-synthetic cold and 3H-PAF (1-O-alkyl-2-acetyl-sn-glyceryl-3-
phosphorylcholine) and similar to PAF molecules, namely PAF-like molecules, are usually eluted in
fractions with retention times similar to that of PC (depending on their fatty acid composition).

In the case of NLs and after 35 min, several subclasses are eluted, such as free fatty acids (FFA),
monoacylglycerols (MAG), diacylglycerols (DAG), triglycerides (TAG), sterol esters (STE), esters of FA
with fatty alcohols, and waxes, again, depending on the natural source of the TLs.
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Fig. 1. Representative chromatograph of the One-Step HPLC-separation of total lipids from a natural source into the most
important lipid subclasses. The HPLC purification procedure can be performed as previously described by Tsoupras et al. [12].
In the experimental conditions applied, several PL-subclasses are eluted first, such as phenolic compounds, glycolipids and
phospholipids, while after 30-35 min of analysis NL-subclasses start to elute such as FFA, MAG, DAG, TAG, STE, esters of FA with
fatty alcohols, waxes, etc. Which ones of these subclasses are present depends on the natural source from which the TLs and
subsequently the PLs and NLs were obtained. HPLC: high pressure (performance) liquid chromatography; CAN: acetonitrile; W:
water; PC: phosphatidylcholines; PE: phosphatidylethanolamines; L-PC: lyso-phosphatidylcholines; SM: sphingomyelins; PAF:

platelet-activating factor; FA: fatty acids; FFA: free fatty acids; MAG: Monoalcylglycerol; DAG: dialcylglycerol; TAG: triglycerides;
sterol esters (STE).

During our HPLC separation procedure, lipid fractions of lipid subclasses can manually be collected
according to their absorption values under a UV-detector (208 nm), or collected automatically at
specific time intervals (i.e. every 0.5 or 1 min), evaporated under a stream of nitrogen, re-dissolved in
chloroform:methanol at a ratio of 1:1 v/v and stored in -20°C for further analysis.

Advantages of the presented HPLC-methodology

After obtaining the TL-extract from a natural source, these TLs are usually further separated into
the PL and NL subclasses by applying classic methods of lipid analysis, such as CCD, LC, SPE, TLC, HPLC
of analytical grade, and other similar methods [5-7,10,11,15-21,30,31,33-38], in any order. Such a
traditional approach usually demands specific expertise and comprises of several costly, repetitive and
time-consuming steps.In several cases the guard pre-columns and even the column itself are saturated
by bulky lipid samples that reduce the efficacy of the separation, and thus the use of analytical grade
HPLC columns is further compromised:

Instead, the presented HPLC-separation method allows a one-step separation/fractionation of TLs
extracted from natural sources, into several fractions of all major bioactive lipid sub-classes, such as
bio-functional PLs (i.e. phospholipids, glycolipids, phenolic-compounds, N-acyl-homoserine-lactones,

etc.) and NLs (i.e. triacylglycerols, fatty-acids, esters, etc.), without the need of previous separation
techniques such as CCD, LC, SPE and TLC.
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Furthermore, this HPLC-method has the advantage of using a semi-preparative column, and
thus it can separate high amounts of dense TL-extracts into such bioactive lipid subclasses, by
applying a low number of injections (1-2) in comparison to HPLC methods based in analytical
grade columns where at least 10 injections are required for separating the same amount of
TL-extract.

Finally, this one-step HPLC analysis and separation/fractionation of TL extracts has several
applications if coupled with bioassays and use in cell-models, but also if combined in tandem with
mass spectra analyses (LC-MS and/or GC-MS) for elucidating structure - activity relationships.

In addition, with this method the quantification of specific lipid molecules can also be achieved
by the use of a calibration curve of either an external or an internal standard. For example, external
PL standards from stock solutions and intermediate solutions can be prepared at 1 mg/mL and 20
ug/mL, respectively, in chloroform/methanol (1:1 v/v) and stored at —20°C under nitrogen. Serial
dilutions of the intermediate solution in chloroform/methanol (1:1 v/v) are then made to give a six-
point calibration curve with the use of the concentration ratio vs. peak area ratio for each PL class. In
the case of quantifying bioactive lipid molecules with very low peak areas, such as the PAF molecule
that is usually present in very low concentrations in relation to the other PLs in a TLs extract from
a biological source (blood sample, tissue sample, cell samples) and thus provide very low peak areas,
then alternatively an internal standard of semi-synthetic cold and 3H-PAF mixture can also be used by
utilizing a liquid scintillation counter. In this case, the calibration curve is based on the concentration
ratio vs. counts per minutes (cpm) ratio of the eluted molecule at the specific retention time for
quantifying the concentration of bioactive lipid signaling molecules like PAF in a biological sample.

Applications
Separation of bioactive PL and NL subclasses from TLs of several natural sources

Our proposed HPLC methodology has been applied efficiently for separating TL-extracts obtained
from several microorganisms of agricultural, biotechnological and bio-pharmaceutical interest, into
bioactive lipid-subclasses. By the implementation of the presented HPLC-method, the detection and
separation of bioactive molecules from specific species of these microorganisms, was also achieved
for the first time [12-14].

For example, by applying the current HPLC-method for fractionating TL-extracts obtained from
Zymomonas mobilis, an ethanologenic a-proteobacterium, into several lipid subclasses, coupled with
aggregometry assays in platelets, it was found for the first time that this bacterium also contains
bioactive PL subclasses with potent inhibitory effects against PAF (Fig. 2) [12]. Furthermore, by
implementing LC-MS analytics to the Z. mobilis TL-extract fractions, it was also discovered that this
bacterium synthesizes and secretes PAF, a signaling molecule that plays major role in eukaryotic cell-
cell signaling (Fig. 2) [4,12]. These results revealed that apart from the well-established application
of Zymomonas as a platform microorganism for large-scale bioethanol production, this interesting
bacterium seems also to be a potential source of high-value bioactive compounds of interest to the
food and healthcare industries, with obvious bio-pharmaceutical applications [12].

Another interesting example of the application of the presented HPLC-method was the
fractionation of TL-extracts derived from sea-algae, such as Spiruling, into bioactive lipid subclasses
[13]. Such marine microorganisms have been proposed as sustainable sources of several important
nutrients. In addition to that, by applying the presented HPLC-method for separating TL-extracts
obtained from Spirulina platensis, it was also found for the first time that this microalgae contain
bioactive PL subclasses (e.g. phenolic compounds, SQDG and other glycolipids, PAF-like molecules of
the PC and SM families, etc.), with potent inhibitory effects against both PAF and thrombin (Fig. 2)
[13]. The results obtained by the application of this HPLC-method further support the use of such
microalgae for the appropriate design and production of food supplements and nutraceuticals against
inflammation-related chronic disorders associated with the PAF and thrombin pathways.

Finally, similar interesting results were obtained by applying this HPLC-method for fractionating
TL-extracts from Beauveria bassiana, a widely used entomopathogenic fungus, into several subclasses
of bioactive lipid compounds [14, under submission]. By coupling the HPLC lipid-fractionation method
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Fig. 2. Representative application of the One-Step HPLC-separation of total lipids from a natural source into fractions
of bioactive lipid molecules with antithrombotic/thrombotic activities. The HPLC chromatogram depicts the separation
of TL-extracts from the supernatant of Spirulina platensis cell cultures into fractions of bioactive lipid molecules with
antithrombotic activities, as it was evaluated by tandem platelet aggregometry assays in washed rabbit platelets (WRPs)
against platelet aggregation induced by the potent inflammatory and thrombotic mediators platelet-activating factor (PAF)
and thrombin [13]. This experimental approach has also been used effectively in separating bioactive lipid molecules with
antithrombotic/thrombotic properties from TL-extracts of other microorganisms too, such as Zymomonas mobilis [12] and
Beauveria Bassiana [14], while if tandem with LC-MS an elucidation of the structures and structure-activity relationships can
also be achieved [12].

with aggregometry-related bioassays in platelets, the presence of several bioactive lipid molecules in
B. bassiana culture supernatant with strong anti-inflammatory and anti-coagulant effects against PAF-
activities and platelet-aggregation was observed, which provide new perspectives and putative future
applications for this agriculture-related fungus.
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Fig. 3. Representative application of the one-step HPLC separation of TLs from Zymomonas mobilis into molecular species
exhibiting proteobacterial pheromone (AHL) bioactivity. The HPLC chromatogram depicts Z. mobilis culture-supernatant extract
separation into fractions exhibiting AHL activity. The latter is evaluated by a tandem bioassay procedure making use of an
indicator Agrobacterium tumefaciens strain and fB-galactosidase (Miller-unit) measurements [39]. In this experimental procedure,
fractions 2 and 3, in which standard 3-oxo-C6-, 3-0x0-C8- and 3-oxo-C10-AHLs are usually eluted (data in submission),
exhibited the strongest bioactivity, suggesting that compounds of AHL nature may be produced and secreted from Z. mobilis.

Future applications

« Another interesting application of this one-step HPLC-separation method is the separation of specific
bioactive subclasses of lipid-molecules implicated in bacterial quorum sensing [28]. Preliminary
assays in Z mobilis supernatant extracts, revealed the presence of fractions exhibiting N-acyl-
homoserine lactone (AHL) activity or even fractions exhibiting inhibition of such an activity (Fig. 3,
data in submission), as shown by coupling the fractionation with an AHL-indicative in vivo bioassay
[39]. Such an analysis promotes the realization that industrial biotechnological platforms, such
as Z. mobilis, may engage in coordinated community behaviors, a fact highly important when
monoculture or mixed-culture fermentation regimes are taken into account.

e The presented HPLC-separation method can also be applied effectively in a one-step way of
separating bioactive lipid compounds from dense TL extracts of several other natural sources, such
as animal and marine sources, plants, several other microorganisms of agricultural, biotechnological
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and biopharmaceutical interests, and several foods, beverages and related products and by-products
(Fig. 2).

o The presented HPLC method for a one-step lipid fractionation from TL extracts, can also accomplish
a more effective separation of bioactive lipids and lipid inflammatory mediators (i.e. PAF and PAF-
like molecules) from dense and complex medical and pharmaceutical samples (i.e. cells, tissues,
blood, plasma, liposomes, etc.) for evaluating and monitoring their role in inflammation-related
disorders in which PAF is associated [3,4,10,11,39] or for elucidating and monitoring the protective
roles of supplemented or nutrition-derived bio-functional lipids (i.e. PL rich in w3 PUFA, vitamin D,
etc.) [3-5,22,23,40] related to nutraceutical and bio-pharmaceutical applications (Fig. 2).
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