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Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a key role in

the regulation of the physiological and pathological signaling within the vasculature. In

physiological conditions, a delicate balance between oxidants and antioxidants protects

cells from the detrimental effects of ROS/RNS. Indeed, the imbalance between ROS/RNS

production and antioxidant defense mechanisms leads to oxidative and nitrosative stress

within the cell. These processes promote the vascular damage observed in chronic

conditions, such as hypertension. The strong implication of ROS/RNS in the etiology

of hypertension suggest that antioxidants could be effective in the treatment of this

pathology. Indeed, in animal models of hypertension, the overexpression of antioxidants

and the genetic modulation of oxidant systems have provided an encouraging proof

of concept. Nevertheless, the translation of these strategies to human disease did not

reach the expected success. This could be due to the complexity of this condition,

whose etiology depends on multiple factors (smoking, diet, life styles, genetics, family

history, comorbidities). Indeed, 95% of reported high blood pressure cases are deemed

“essential hypertension,” and at the molecular level, oxidative stress seems to be a

common feature of hypertensive states. In this scenario, new therapies are emerging

that could be useful to reduce oxidative stress in hypertension. It is now ascertained

the role of Vitamin D deficiency in the development of essential hypertension and it

has been shown that an appropriate high dose of Vitamin D significantly reduces blood

pressure in hypertensive cohorts with vitamin D deficiency. Moreover, new drugs are

emerging which have both antihypertensive action and antioxidant properties, such as

celiprolol, carvedilol, nebivolol. Indeed, besides adrenergic desensitization, these kind of

drugs are able to interfere with ROS/RNS generation and/or signaling, and are therefore

considered promising therapeutics in the management of hypertension. In the present

review we have dealt with the effectiveness of the antioxidant therapy in the management

of hypertension. In particular, we discuss about Vitamin D and anti-hypertensive drugs

with antioxidant properties.
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OXIDATIVE AND NITROSATIVE STRESS:
PHYSIO-PATHOLOGICAL IMPLICATIONS

Reactive oxygen species (ROS) are produced in several cellular
systems within the cell: plasma membrane, cytosol, peroxisomes,
mitochondria, lysosomes and endoplasmic reticulum (Di Meo
et al., 2016). The enzymes involved in ROS generation are: nitric
oxide synthase, peroxidases, NADPH oxidase, NADPH oxidase
isoforms (NOX), xanthine oxidase (XO), lipoxygenases (LOXs),
glucose oxidase, cyclooxygenases (COXs), and myeloperoxidase
(MPO) (Bhattacharyya et al., 2014). Moreover, exogenous
sources of ROS also exists that include air pollution, smoking,
ionizing radiations, foods and drugs, chemical agents, heavy
metals, organic solvents, pesticides (Bhattacharyya et al., 2014).
ROS derive from oxygen reduction which produces, through
several steps, important intermediate products: superoxide
anion, hydrogen peroxide, and hydroxyl radical. Superoxide
anion (O•−

2 ) is the most common ROS, which is generated in
mitochondria by the electron transport chain (ETC) through
the partial reduction of oxygen (Bolisetty and Jaimes, 2013).
Superoxide dismutase (SOD) is responsible of H2O2 production
from superoxide anion by means of amino acid and xanthine
oxidase or a dismutation reaction. In the presence of metal ions
and superoxide anion, H2O2 can produce the hydroxyl radical
(·OH), that is the most reactive and dangerous one (Quinlan
et al., 2013; Ogun, 2015).

RNS derives from nitric oxide (NO) that is generated
during the breakdown of arginine to citrulline by the
NADPH-dependent enzyme nitric oxide synthase (Drew
and Leeuwenburgh, 2002). NO is a neurotransmitter and a blood
pressure regulator; it is a free radical but is not a very reactive
one. NO is able to form other nitrogen reactive intermediates
(nitrate, peroxynitrite, and 3-nitrotyrosine), which affect cell
function (Ramchandra et al., 2005; Ogun, 2015). NO competes
with O2 for the binding at the binuclear center of cytochrome c
oxidoreductase, leading to the inhibition of cytochrome c oxidase
activity (Cleeter et al., 1994). In mitochondria it increases the
production of ROS and RNS which affect several processes such
as mitochondrial biogenesis, respiration, and oxidative stress
(Bolisetty and Jaimes, 2013; Ogun, 2015). NO reacts with O−

2 ,
which derives from mitochondrial respiratory chain, to give
peroxynitrite (OONO−), which spontaneously decompose to
NO.

2 and hydroxyl radical (.OH). Peroxynitrite is cytotoxic,
oxidizes low-density lipoprotein and inhibits mitochondrial
function (Radi et al., 2002; Halliwell, 2007). Nitrogen dioxide
(NO2 ) derives from the reaction of peroxyl radical and NO,
triggers lipid peroxidation and oxidizes ascorbic acid (Patel et al.,
1999).

ROS and RNS play a key role in both health and disease
acting as signaling molecules (Di Meo et al., 2016). Indeed,
they are involved in several physiologic processes (proliferation,
growth, differentiation, apoptosis, migration, contraction, and
cytoskeletal regulation,) but, when in excess, they also trigger
the development of pathologic conditions (chronic inflammation
and autoimmune diseases, sensory impairment, cardiovascular
diseases, cancer, fibrotic disease, obesity, insulin resistance,
neurological disorders, and infectious diseases; Mittler et al.,

2011; Sena and Chandel, 2012; Brown and Griendling, 2015). In
physiological conditions, a delicate balance between oxidants and
antioxidants exists that allow cells to conduct their physiological
functions and to improve the systemic defense mechanisms
(Figure 1; Ristow and Schmeisser, 2014; Ogun, 2015). However,
when this balance is impaired leading to an excessive production
of ROS/RNS, oxidative and nitrosative stress occurs and causes
extensive cellular damage. This dual effect of ROS has been
named mitohormesis, indicating a non-linear dose-response
relationship between ROS levels and mortality (Ristow and
Schmeisser, 2014).

THE INVOLVEMENT OF ROS/RNS IN THE
ETIOLOGY OF HYPERTENSION

Hypertension is a complex condition whose etiology depends
on several factors (smoking, diet, genetics, family history, pre-
existing pathologies) and, inmost cases, it is difficult to determine
the main cause (“essential hypertension”). Besides the complex
etiology of this disease, oxidative and nitrosative stress appear
to be a common feature within hypertensive disorders (Harrison
et al., 2007; Harrison and Gongora, 2009; Baradaran et al., 2014).
Even if it is still debated whether excessive ROS/RNS production
is the cause or the consequence of hypertension, several in vitro
and in vivo evidence suggest that ROS/RNS trigger the activation
of specific molecular mechanisms which in turn increase blood
pressure levels (Ward and Croft, 2006).

In Vitro Evidence in Cultured Vascular Cells
Vascular cell types (endothelialcells, smooth muscle cells,
adventitial fibroblasts, and perivascular adipocytes) are able to
produce ROS through the activity of many enzymes (Touyz
and Briones, 2011; Kim and Byzova, 2014). Among these latter,
mitochondrial enzymes and nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (Nox) are themajor sources of ROS
in the vascular wall that trigger mitochondrial dysfunction and
consequently oxidative stress. Angiotensin II has been shown to
induce mitochondrial ROS production through the activation of
NADPH oxidase (Doughan et al., 2008; Figure 2). The vascular
production of ROS/RNS causes a significant reduction of NO
production and eNOS activity (Rodrigo et al., 2011). Indeed,
when the levels of superoxide anion increase, nitric oxide is
rapidly degraded causing endothelial dysfunction (McIntyre
et al., 1999; Touyz and Schiffrin, 2004). The peroxynitrite oxidizes
BH4, an important NO synthase cofactor, and inducing an
increase of superoxide production leading to the development
of oxidative stress (Laursen et al., 2001). Through lipid
peroxidation, ROS can also cause the generation of secondary
products (lipid-derived aldehydes) that contributes to endothelial
dysfunction and hypertension (Cracowski et al., 2002).

In hypertension, ROS affected several processes which in
turn trigger endothelial dysfunction (apoptosis, angiogenesis,
inflammation). Indeed, in endothelial cells, the increase of
ROS production in response to pro-inflammatory and pro-
atherosclerotic factors (Ang II, oxLDL, TNFalpha), activates
apoptotic events which are prevented by the treatment with
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FIGURE 1 | Physiological and pathological ROS levels. In physiological conditions, there is a delicate balance between oxidants and antioxidants that allow cells to

conduct their physiological functions and to improve systemic defense mechanisms by inducing an adaptive response. In this conditions ROS production is

physiologic and not dangerous. However, when the balance between oxidants and antioxidants is impaired and ROS production increase over the physiological

threshold, excessive ROS levels trigger the development of pathologic conditions.

antioxidants (Dimmeler and Zeiher, 2000). The pro-apoptotic
effects of ROS in endothelial cells derives from the impairment of
mitochondrial membrane permeability followed by cytochrome c
release and caspase activation (Breitschopf et al., 2000; Lee et al.,
2009).

In the endothelium, the expression of some adhesion
molecules (vascular cell adhesion molecule-1 and intracellular
adhesion molecule-1) is ROS-dependent, suggesting that ROS
promote adhesion of inflammatory cells (Marui et al., 1993; Khan
et al., 1996).

It has been demonstrated that ROS-dependent angiogenesis
is associated with VEGF expression (Kim and Byzova, 2014).
Indeed, hydrogen peroxide increases VEGF expression both
in vascular smooth muscle cells and in endothelial cells,
thus promoting angiogenic responses (Ruef et al., 1997;
Chua et al., 1998). ROS also affect the dimerization and
autophosphorylation of VEGFR2 in response to VEGF, and
subsequent angiogenesis induced by VEGFR2 activation
(Colavitti et al., 2002; Ushio-Fukai et al., 2002; Kim and Byzova,
2014). Recent studies also identified novel mechanisms of
ROS-dependent angiogenesis which are VEGF-independent
(Kim et al., 2013; Kim and Byzova, 2014). Indeed, ROS are
involved in the generation of new lipid oxidation products with
proangiogenic activities through TLR-2 dependent NFkappaB

activation. Also, ROS-dependent NFkappaB activation induces
the expression of pro-inflammatory genes (Malinin et al., 2011;
Kim et al., 2013; Kim and Byzova, 2014).

In Vivo Evidence in Animal Models of
Hypertension
The involvement of ROS in the etiology of hypertension has
been demonstrated in several animal models of hypertension:
spontaneously hypertensive rat (Kerr et al., 1999), the angiotensin
II-infused rat (Haugen et al., 2000), renovascular hypertension
(Lerman et al., 2001), the deoxycorticosterone acetate-salt
model (Wu et al., 2001), and obesity-related hypertension
(Dobrian et al., 2001). These studies associate oxidative stress
with the mechanisms of hypertension, including vascular and
organ damage. A further confirmation of ROS involvement in
hypertension derives from the finding that in animal models of
hypertension the increased ROS production causes endothelial
dysfunction that is reversed by SOD (Laursen et al., 1997;
Bauersachs et al., 1999; Somers et al., 2000).

In Vivo Evidence in Humans
In smooth muscle cells from arteries of hypertensive patients
the treatment with Angiotensin II induces ROS production,
as demonstrated by the increase of several parameters that
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FIGURE 2 | Angiotensin II-dependent ROS production induces hypertension. Angiotensin II induces ROS production through the activation of mitochondrial enzymes

and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox). Angiotensin II-dependent ROS production causes in turn a significant reduction of eNOS

activity and NO production, lipid peroxidation, induction of apoptotic signaling, and NFκB activation. These all lead to endothelial dysfunction and vascular

inflammation that trigger the development of the hypertensive state.

are related to ROS (Touyz and Schiffrin, 2001; Ahmad et al.,
2017). Furthermore, in hypertensive patients a strong association
exists between blood pressure and the elevated oxidative
stress biomarkers such as malondialdehyde, F2-isoprostanes,
GSSG, and the DNA oxidation marker 8-oxo-7,8-dihydro-2′-
deoxyguanosine (8-oxo-dG) (Rodrigo et al., 2007; Ahmad et al.,
2017).

THE ANTIOXIDANT THERAPY IN
HYPERTENSION

Given the above discussed involvement of oxidative and
nitrosative stress in the etiology of hypertension, the antioxidant
therapy seems to be a useful strategy to restore the impaired
balance between oxidants and antioxidants in hypertensive
conditions. Indeed, the treatment with antioxidants has been
successfully used in animal models of hypertension. The oral
treatment with Lazaroid, a ROS scavenger, in spontaneously
hypertensive rats (SHR) improved NO viability and reduced

blood pressure (Vaziri et al., 2000). Similarly, treatment with the
antioxidant N-acetylcysteine (NAC) inhibited ROS production
and improved NOS activity and accordingly reduced blood
pressure (Ahmad et al., 2017). The same results were found also
in SHR treated with the xanthine oxidase inhibitor, allopurinol
(Mazzali et al., 2001). Moreover, successful results were also
obtained by targeting antioxidant peptides to the vasculature to
increase the antioxidant effect, reduce vascular resistances and
lower BP. For instance, the antioxidant peptide gp91ds affects
the assembly of NAD(P)H oxidase and consequently reduces
superoxide production (Greig et al., 2010). This peptide was
engineered to target vasculature and chronically administered to
a preclinical model of endothelial dysfunction and more severe
hypertension, the stroke-prone SHR. The treatment significantly
improved nitric oxide bioavailability and attenuated the time-
dependent and progressive increase in systolic blood pressure
(Greig et al., 2010).

Opposite to preclinical models, however, antioxidant
strategies for the treatment of hypertension in clinic did
not reach the expected success. Indeed, literature is quite
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discordant on the effect of antioxidant therapy in hypertension
as demonstrated by data from clinical trials (Kizhakekuttu and
Widlansky, 2010). This could be due to the complexity of this
condition. Indeed, while we call hypertensives all patients with
blood pressure values above a given threshold (Mancia et al.,
2013;Whelton et al., 2017) indeed within this generic definition a
much diversified range of phenotypes are included, ranging from
the young lean to the obese, to the postmenopausal women or
the elderly hypertensives. For each of this phenotype, indeed, it
is expected to recognize different etiology, depending on several
risk factors (genetics, family history), lifestyles (smoking, diet,
sedentary lifestyle), concomitant conditions (chronic kidney
disease, diabetes). In each of these phenotypes, the role of
oxidants might be different, and therefore diluted within clinical
trials that do not select the appropriate patient. Moreover, it is
to be considered that the effectiveness of antioxidants can be
lowered by the cross-talk with other substances. For instance,
it has been shown that Vitamin C alone reduced both systolic
and diastolic blood pressure (BP) vs. placebo (Ward et al.,
2005) through the down-regulation of NADPH oxidase and
up-regulation of eNOS (Briones and Touyz, 2010; Juraschek
et al., 2012). However, the same vitamin, in combination with
Polyphenols, increases BP, while in combination with other
antioxidants (Vitamin E, beta-carotene, and zinc) modestly
reduces systolic BP and does not modify diastolic BP (Ardalan
and Rafieian-Kopaei, 2014). Furthermore, ineffective dosing
regimens and inadequate selection of subjects recruited in the
studies could also have affected the effectiveness of the treatment.
Table 1 summarize the main common natural antioxidants
(e.g., vitamins and mitochondrial related antioxidants), other
potential antioxidants (e.g., vitamin D), and anti-hypertensive
drugs that also exert antioxidant effects.

Among natural antioxidants, here we focused on Vitamin
D, whose levels has been recently associated with hypertension,
since it has great potentiality to be used for therapeutic
treatments. Among the other antioxidants listed in Table 1, we
discuss the ability of some anti-hypertensive drugs to reduce
oxidative stress. This latter property of anti-hypertensive drugs
enforces the proof of concept about the key role of oxidative stress
in the development and progression of hypertensive states and
the benefit of antioxidants as therapeutic strategy.

Vitamin D
Among antioxidants, Vitamin D is recently emerging as anti-
hypertensive effector through the activation of antioxidant

mechanisms. In human, most vitamin D (∼80%) is naturally
synthesized in the skin from 7-dehydrocholesterol in response
to ultraviolet (UV) B radiation but it can also derive from
dietary sources. Vitamin D is metabolized in the liver to
25-hydroxyvitamin D (25(OH)D) that is converted by 1α-
hydroxylase into 1,25-dihydroxyvitamin D3, the biologically
active agonist for the Vitamin D receptor (VDR) (Figure 3;
Chen et al., 2015). Serum levels of Vitamin D are regulated
by calcium homeostasis and parathyroid hormone (PTH) level
since low calcium and high PTH levels induce Vitamin D
synthesis by increasing 1α-hydroxylase activity (Chen et al.,
2015).

A large part of western population is thought to
have a Vitamin D deficiency/insufficiency, which has
been associated with an increased risk for cardiovascular
diseases (McGreevy and Williams, 2011; Tamez et al., 2013).
The reason for this deficiency can be probably due to a
decreased exposure to sun as a prevention for melanoma
(Holick, 2007), although nutritional aspects are also being
considered and posed a the base of replacement therapy
strategies.

Recently, an association between low Vitamin D serum
levels and hypertension have been suggested (Ullah et al.,
2010; Kota et al., 2011). Indeed, 1-alpha-hydroxylase deficient
mice, which cannot synthesize Vitamin D3, develop high
blood pressure and left ventricular hypertrophy (Zhou et al.,
2008). Vitamin D can affect blood pressure through several
mechanisms. Indeed, in both animals and humans it has
been shown that vitamin D decreases renin-angiotensin-
aldosterone system (RAAS) activity (Li et al., 2002;
Tomaschitz et al., 2010), modulates endothelial function
(Wong et al., 2010; Pittarella et al., 2015; Molinari et al.,
2018) and regulates vascular oxidative stress (Argacha et al.,
2011).

Clinical studies demonstrated an inverse, dose-response
relationship between plasma Vitamin D3 concentration and
blood pressure or renin activity in both normotensive and
hypertensive patients (Nigwekar and Thadhani, 2013; Grubler
et al., 2017). High levels of Vitamin D in humans, for instance,
are associated with lower blood pressure (Vimaleswaran et al.,
2014). All these reports suggest that Vitamin D levels are
associated with BP also in humans. Based on such findings,
it is likely to believe that Vitamin D supplementation could
be an effective therapy for hypertension. This hypothesis was
confirmed in animal models of hypertension. Indeed, Vitamin

TABLE 1 | Known and potential antioxidants.

Antioxidant vitamins Mitochondrial related antioxidants Enzymatic antioxidants Other potential antioxidants Anti-hypertensive drugs

Vitamin A Coenzyme Q10 Glutathione peroxidase Vitamin D Propanolol

Vitamin C Acetyl-L-Carnitine Catalase Glutamate Nebivilol

Vitamin E α-Lipoic Acid Superoxide dismutase N-acetylcysteine Carvedilol

L-Arginin Sour milk Celiprolol

Flavonoids Garlic Amlodipine

Enalapril
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FIGURE 3 | Vitamin D synthesis and effects. Most vitamin D is naturally synthesized in the skin from 7-dehydrocholesterol in response to ultraviolet radiation.

7-dehydrocholesterol is converted to Pre-Vitamin D3 that through the circulation reach the liver where it is metabolized to 25-hydroxyvitamin D (25(OH)D). This latter is

then converted in the kidney by 1α-hydroxylase into 1,25-dihydroxyvitamin D3, the biologically active agonist for the Vitamin D receptor. The synthesis of

1,25-dihydroxyvitamin D3 is mainly regulated by PTH and serum calcium levels. 1,25-dihydroxyvitamin D3 has a several effects since it increases serum calcium levels

by inducing calcium mobilization from bone, decreases renin-angiotensin-aldosterone system (RAAS) activity and inhibits PTH production.

D supplementation ameliorates pathological right ventricular
hypertrophy in rats with pulmonary hypertension (Tanaka et al.,
2017) and reduces blood pressure levels in SHR rats (Wong et al.,
2010). Accordingly, several clinical trials show the effectiveness
of natural vitamin D, Vitamin D3 or its analog supplementation
on BP levels in those patients with essential hypertension that
is dependent on Vitamin D-deficiency (Kimura et al., 1999;
Pfeifer et al., 2001; Judd et al., 2010; Goel and Lal, 2011; Bernini
et al., 2013; Forman et al., 2013; Carrara et al., 2014; Mozaffari-
Khosravi et al., 2015). Vitamin D supplementation therapy also
in pregnancy is able to reduce the incidence of gestational
hypertension/preeclampsia (Behjat Sasan et al., 2017). Moreover,
Vitamin D have beneficial effects on BP also in patients affected
by other pathologies, such as type 2 diabetes (de Paula et al.,
2017).

However, other randomized controlled trials show that
Vitamin D supplementation results ineffective as anti-
hypertensive agent (Li et al., 2004; Michos and Melamed,
2008; Beveridge et al., 2015; Grubler et al., 2017; Wu and Sun,
2017). Thus, literature seems to be quite discordant on the
effectiveness of Vitamin D supplementation in the treatment of
the hypertensive condition. However, this discrepancy could be
dependent on several variables in study population (Vitamin D-
deficiency levels, gender, ethnicity, BP levels, age, parathormone
levels). Indeed, a recent study show that the relationship
between serum levels of Vitamin D and BP differs according

to ethnicity and gender with a significant inverse association
among non-hispanic whites (NHW) and females, NHW
females and non-hispanic black females (Vishnu and Ahuja,
2017). Data from this study suggest a non-linear relationship
between Vitamin D and hypertension with significant decline
in hypertension only up to a physiological level of Vitamin
D that is different depending on race/ethnicity and gender
(Vishnu and Ahuja, 2017). Among the putative mechanisms
involved in the association between Vitamin D deficiency
and increased blood pressure levels, anti-oxidant effects of
Vitamin D have been implicated. Nevertheless, it has also to
consider that Vitamin D is inversely correlated with the calcium
modulator paratohormone (PTH). The vascular effects of such
hormone, as well as the mechanisms associated with the reduced
kidney function are both possible mechanisms of increased
vascular resistance and blood volume, two determinants of
hypertension. Indeed, increased PTH has been demonstrated to
correlates better than Vitamin D deficiency with blood pressure
and cardiovascular risk, including hypertension, in a large
population in Southern Italy (Pascale et al., 2018) suggesting
that also PTH levels could be a discriminating parameter in
the selection of patients that could be sensitive to Vitamin D
supplementation. Thus, future researches on this issue should
take into account these parameters and, accordingly, identify
an ideal population which result more sensitive to this kind of
treatment.
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Anti-hypertensive Drugs With Antioxidant
Properties
To date, several molecules have been discovered that are
effective anti-hypertensive drugs with antioxidant properties.
Indeed, some beta-blockers, apart from their ability to
inhibit adrenaline/noradrenaline dependent activation of
beta adrenergic receptors (Iaccarino et al., 2006; Sorriento et al.,
2011; Galasso et al., 2013), are also able to reduce oxidative
stress. Among them, Propanolol, Nebivilol, Carvedilol, and
Celiprolol are the most studied (Yao et al., 2008). Propranolol
inhibits oxidative stress and reduces tissue lipid peroxidation
(Mak and Weglicki, 1988; Yao et al., 2008). Carvedilol reduces
lipid peroxidation in patients with heart failure by acting as
a free radical scavenger (Kukin et al., 1999; Yao et al., 2008).
Celiprolol reduces superoxide anions generation in patients
with essential hypertension and improves endothelial function
(Mehta et al., 1994; Kobayashi et al., 2001; Yao et al., 2008).
However, this antioxidant effects are not a common feature of
all beta-blockers since it has been shown that Atenolol has no
effect on ROS production in endothelial cells (Fratta Pasini et al.,
2005).

At the molecular level, the beta-blocking effect is itself
important to reduce ROS production by blocking catecholamines
that are known to induce oxidative stress in the myocardium.
Furthermore, some beta-blockers have also direct antioxidant
effects which are different depending on the modulation of
specific intracellular signaling.

Indeed, Nebivolol exerts its effects by increasing NO
levels, NOS activity, and expression of eNOS, as well as
by reducing ROS production and Nox expression (Wang
et al., 2017). Carvedilol inhibits 4-hydroxy-2-nonenal
(HNE)-induced intracellular Ca2+overload (Nakamura
et al., 2011). Celiprolol significantly suppresses BP levels
and ameliorates hypoxia-induced LV remodeling in mice,
by restoring eNOS expression via stimulation of PI3K-AKT
signaling pathway (Kobayashi et al., 2003; Nishioka et al.,
2013).

Besides these beta-blockers, also Amlodipine, a calcium
channel blocker, shares the same anti-hypertensive and
antioxidant properties. Indeed, Amlodipine is able to
decrease blood pressure as well as oxidative stress as shown
by a decrease of malondialdehyde and an increase of
Na+ K+ ATPase and SOD levels in essential hypertensive
patients (Mahajan et al., 2007). This effect is further
increased by Vitamin C supplementation (Mahajan et al.,
2007).

Furthermore, Enalapril, an ACE-inhibitor, reduces the
expression of oxidant stress markers and antioxidant enzymes
in the heart and kidney of SHR rats (Chandran et al., 2014;
Yusoff et al., 2017) and of diabetic rats (de Cavanagh et al.,
2001). Also in hypertensive patients, 3 months of Enalapril
therapy are beneficial to prevent oxidative stress compared
with Atenolol treated patients (Deoghare and Kantharia, 2013).
Similarly, the antioxidant beneficial effects on vascular biology,
including nitrix oxide availability, has been demonstrated

for SH- containing ACE inhibitors (Captopril, Lisinopril,
zofenopril) due to the free radical scavenging properties of
the tiol residues contained in the drug sequence (Chopra
et al., 1990; Buikema et al., 2000; Donnarumma et al.,
2016).

CONCLUSIONS AND FUTURE
DIRECTIONS

Several diseases have been associated with oxidative stress
suggesting that this latter could be a trigger for diseases
and that antioxidant therapy could be an effective therapeutic
treatment. However, while basic research and pre-clinical
studies support this point of view, clinical studies still produce
controversial results. This could probably be dependent on
the pathophysiological complexity of ROS/RNS signaling in
humans with comorbidities (Pagliaro and Penna, 2015, 2017;
Egea et al., 2017). Here, in particular, we have discussed about
the role of oxidative stress in the development and progression
of hypertensive states even if the idea that antioxidant therapy
is effective against this disease by inhibiting or destroying
free radicals is not accepted yet. Indeed, the promising results
in pre-clinical model of hypertension are not always support
by data from patients. A great discrepancy exists among
results from different clinical trials. Actually, limitations to
the effectiveness of antioxidant therapy in the management of
hypertension could be due to numerous variables. First of all,
the half-life of the particular antioxidant administered affects
its effectiveness in long-term treatments. Moreover, the cross-
talks with other substances in some cases reduce the anti-
hypertensive effects. Finally, the inadequate homogeneity of
patients characteristics in study population is probably the most
important limitation of clinical trials. To date, the use of anti-
hypertensive drugs with antioxidants properties seems to be the
most effective treatment in the management of hypertension
since they are able to reduce blood pressure by affecting
molecular mechanisms which are involved in the regulation
of both vascular function and oxidative state. Despite the
discordant results of clinical trials, Vitamin D supplementation
could also be a promising therapeutic treatment for hypertension
that is worthwhile to further investigate considering not only
the rate of Vitamin D deficiency, but also PTH levels, as
discriminating factors in the selection of patients. For the
future improvement of antioxidant therapy the above proposed
potential limitations should be taken into account. Moreover,
further studies are needed to better clarify the sources and targets
of ROS/RNS and their harmful or beneficial roles, the specific
molecular mechanisms and their cross-talks, and to identify the
ideal patient which could be sensitive to specific antioxidant
therapies.
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