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Abstract
Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive 
transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these 
factors ultimately depends on the G1 cyclin Cln3.

Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA 
microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking 
components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other 
heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced 
more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our 
predictions show higher internal coherence and predictive power than previous classifications. Our results support a 
model whereby SBF and MBF may be differentially activated by Cln3.

Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional 
networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the 
budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models 
with more informative experimental data.

Background
In the model yeast Saccharomyces cerevisiae, the commit-
ment to a new round of cell division takes place towards
the end of the G1 phase of the cell cycle, a process called
START [1]. This entails the unfolding of a transcriptional
program involving over 200 genes, including some
important cell cycle regulators such as the G1 cyclins
Cln1 and Cln2, S phase cyclins, a number of cell cycle
transcription factors (TFs) as well as many other genes
with functions related to DNA metabolism (replication,
repair, and so on), budding, spindle pole body duplica-
tion, and cell wall synthesis [2,3]. Many of these genes are
known or putative targets of two heterodimeric TFs
called SBF and MBF. SBF contains the DNA-binding pro-
tein Swi4, while MBF contains the Swi4-related DNA-
binding protein Mbp1, and both factors contain the regu-

latory protein Swi6, which binds directly to Swi4 or
Mbp1, respectively (reviewed in [4]). There is consider-
able functional redundancy between these factors. For
example, it has been reported that SBF may recognize,
albeit with reduced affinity, MBF binding sites and vice
versa [5-7]. Moreover, while mbp1Δ and swi4Δ strains are
viable, the double mutant mbp1Δ swi4Δ is not [8].

Although MBF and SBF are poised at their target pro-
moters during much of G1 phase [9-11], they cannot acti-
vate transcription; rather, they repress it. Their activation
at START depends primarily on the cyclin/cyclin-depen-
dent kinase (CDK) complex Cln3-Cdc28. This is achieved
in part by phosphorylation, and consequent shuttling out
of the nucleus, of a repressor called Whi5 [12,13], releas-
ing SBF/MBF from its inhibition. Recently, a positive
feedback mechanism involving Cln1 and Cln2 has been
proposed to operate under physiological conditions in
SBF/MBF activation [14].

There has been considerable interest and effort at eluci-
dating TF-target interactions at a genome scale. Reliable
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TF-target assignments are essential to build accurate
transcriptional networks and to uncover TF modules
responsible for combinatorial transcriptional regulation.
One important piece of information concerning TF-tar-
get assignments is provided by genome-wide location
analyses of TFs [15-18]. However, TF binding does not
necessarily imply regulation, neither is it informative as
to whether the regulation is positive or negative. Further-
more, these studies are typically noisy, and given the
modest overlap among some of these analyses, and the
poor agreement with data from other sources, doubts
about their reliability have also been raised [19,20]. None-
theless, location analyses have been the starting point for
numerous computational studies aimed at defining tran-
scriptional networks by heterogeneous data integration
(see, for instance, Lee et al. [21] and references therein).
Following these lines, two recent works, one based on a
Bayesian approach [22] and another using support vector
machines [23], have provided predictions for TF-target
interactions in the yeast global transcriptional network.
Unfortunately, the agreement between these studies is at
most quite modest.

We are particularly interested in the transcriptional
program at START. In order to produce informative
experimental data concerning this cell cycle stage, we
have used DNA microarrays to generate new expression
profiles under relevant conditions (synchronized cul-
tures, deletion mutants) to study the transcriptional tar-
gets of the START regulator Cln3, and their dependence
on the TFs Mbp1 and Swi4. We have integrated our new
data with previously published datasets to provide reli-
able TF-target assignments. We propose a list of more
than 150 targets. Importantly, we have experimentally
validated our new predictions by performing chromatin
immunoprecipitation (ChIP) to demonstrate TF binding
to the promoters of some of our targets. Furthermore,
our classification performs better than recent analyses
[22,23] in a number of tests, and shows high internal con-
sistency.

Results
New genome-wide expression dataset
In order to identify the targets of the cell cycle regulator
Cln3, and their dependence on the TFs SBF and MBF, we
have used DNA microarrays to interrogate genome-wide
changes in gene expression upon induction of Cln3 in
strains that lacked components of SBF, MBF or both, that
is, swi6Δ, swi4Δ, mbp1Δ, and swi4Δ mbp1Δ mutants.
Cln3 becomes essential in the absence of Bck2 [24-26].
Recently, we have also shown that overexpressed Bck2 is
able to induce an extensive transcriptional program of
mostly cell cycle-regulated (CCR) genes, many of which
peak at the G1/S transition of the cell cycle [27]. Hence,

to avoid confounding effects derived from Bck2 function,
we placed the endogenous CLN3 gene under the control
of the regulatable GAL1 promoter in strains deleted for
BCK2. When grown under non-inducing conditions for
the GAL1 promoter, PGAL1·CLN3 bck2Δ strains were kept
alive by constitutive expression of CLN2
(pRS313{PMET3·CLN2} [26]). Also, to control for non-spe-
cific expression changes, we used a double deletion cln3Δ
bck2Δ strain, again kept alive by PMET3·CLN2. To improve
sensitivity and facilitate interpretation, before galactose
induction we synchronized our cultures by repressing the
expression of CLN2 with methionine. Cln2 depletion in a
raffinose (non-inducing) medium produced a G1 arrest
similar to that described for a cln3Δ bck2Δ double mutant
[24-26], that is, accumulation of unbudded cells with 1N
DNA content (Figure 1).

Overexpressed CLN3 induced cell cycle entry in an
mbp1Δ background and in an otherwise wild-type strain
(that is, in a bck2Δ context), as assessed by DNA content
and budding count. By contrast, Cln3 was unable to
increase the budding index in swi6Δ, swi4Δ or swi4Δ
mbp1Δ strains (Figure 1a). Interestingly, Cln3 was capa-
ble of promoting DNA replication in these backgrounds,
even though it was unable to induce any noticeable
changes in gene expression in the swi6Δ or swi4Δ mbp1Δ
mutants (Figures 1b and 2). Most likely, this is due to
overexpressed Cln3 being able to target the Clb/Cdc28
inhibitor Sic1 for degradation [28]. As expected, galac-
tose addition per se was unable to induce cell cycle entry
in the cln3Δ bck2Δ control strain (Figure 1).

Cultures were sampled every 20 minutes for the next 80
minutes after galactose addition, and changes in gene
expression were measured using microarrays. In order to
select genes specifically induced by Cln3 (or by cell cycle
entry) as opposed to those induced by stress or by galac-
tose, we used five slightly different selection criteria
based on gene clustering (see Materials and methods).
The number of genes selected by each criterion ranges
from 225 to 327, totaling 445 genes, of which 144 (32%)
were selected by all five approaches used, whereas 118
genes were selected by only one method. The expression
patterns of all 445 candidate genes are shown in Figure 2
(see Additional file 1 for numerical values). We antici-
pated that because we used synchronized cultures, and
because Cln3 is a key cell cycle regulator, most of these
genes would be CCR. Indeed, more than 70% of the 445
genes selected are CCR. Importantly, this is true even
when we did not use CCR gene enrichment as a selection
criterion. Furthermore, most (68%) of these CCR genes
peak at G1 or S phases of the cell cycle, as expected for
Cln3 targets. Hence, it is likely that our microarray analy-
sis has produced a meaningful set of putative Cln3 tar-
gets.
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As we have reported before [27], virtually all genes are
irresponsive to Cln3 in the absence of Swi6. Here, we also
show that Cln3 requires either Mbp1 or Swi4 in order to
promote transcription of its targets, as deduced from the
lack of induction in the swi4Δ mbp1Δ strain. Hence, we
demonstrate that Cln3 functions as a transcriptional reg-
ulator exclusively through MBF and SBF. The only genes
that were somewhat induced in both the swi6Δ and swi4Δ
mbp1Δ backgrounds were histones (Figure 2). Rather
than indicating an MBF/SBF-independent Cln3-medi-
ated induction, this is very likely due to ongoing DNA
replication because histones are regulated at multiple lev-
els and show a robust expression peak in S phase
(reviewed in [29]). Another cluster of genes that also
showed some induction in the absence of Swi6 contains
helicases encoded by middle-repetitive Y' subtelomeric
regions. Because there is extensive sequence similarity
among these loci, it is unclear whether all reported fea-
tures or just one or few were actually induced in our
experiments. In any case, we also observed some induc-
tion of these genes in the control strain, albeit with differ-
ent timing than in the other strains (Figure 2).

Transcription factor-target assignments
To distinguish the targets of Cln3 from those genes that
were just responding to cell cycle progression, and
because we found that Cln3 functions exclusively through
MBF or SBF, we determined the subset of genes within
the 445 candidates that could be assigned to either MBF,
SBF or both. To do this, we used a Bayesian approach that
integrates different lines of evidence into a single proba-
bilistic model [22,30]. In our analysis, we have evaluated

nine different classifiers from three different lines of evi-
dence - TF binding information, TF motifs, and expres-
sion data. For each classifier considered, each TF-target
interaction was assigned a log-likelihood score based on
control sets of positive and negative interactors. Final
scores were computed by simply adding all the individual
scores for the nine classifiers employed. These scores are
provided in Additional file 2. To choose thresholds in our
ranked list of putative targets, we evaluated our predic-
tions with several statistical measures (Figure 3a). We
selected cutoffs that at the same time produced high val-
ues of the Matthews correlation coefficient (MCC) [31] -
regarded as a balanced measure of the quality (predictive
power) of binary classifications, even when classes are of
very different sizes - and also produced high values for
accuracy (›80%), precision (›80%), and specificity (›90%);
somewhat at the expense of sensitivity (approximately
60%). In other words, we preferred to leave out some true
positives to avoid the inclusion of too many false posi-
tives. In any case, these quality values are likely underesti-
mated (see Materials and methods).

By these criteria, we obtained 111 and 94 targets of
MBF and SBF, respectively. Thirty-six of these were
shared by both factors (Tables 1 and 2; Additional file 3).
We first examined our predictions for targets for which
strong evidence of regulation by MBF or SBF exists in the
literature (reviewed in [32]) [19,33,34]. For this purpose,
we avoided noisy datasets generated by genome-wide
approaches. We found a total of 14 genes. Of the seven
genes showing MBF regulation (CDC21, POL1, CLB5,
CLB6, RNR1, NRM1, DUN1), our list of targets includes
six. The only exception, NRM1, was ranked number 161.

Figure 1 Budding index and DNA content. Relevant genotypes of strains are shown. Strains were also deleted for BCK2, and contained plasmid 
pRS313{PMET3·CLN2}. Except for control strain cln3Δ, all strains also had the endogenous CLN3 gene expressed under the GAL1 promoter. Asynchronous 
(Asyn) cultures of the indicated strains were grown in raffinose medium lacking methionine; they were thus kept alive by constitutive expression of 
CLN2. Cells were arrested in G1 (Arrest) by addition of methionine. After most cells were blocked in G1, galactose was added to induce CLN3. Samples 
were taken every 15 minutes for (a) budding and (b) DNA content evaluation (not all time points are shown). Only one experiment is shown. Some-
what less synchronous but otherwise similar profiles were obtained in a duplicate experiment (data not shown). WT, wild type.
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We classified NRM1 as an SBF target instead. Only one
gene, DUN1, was in the positive control set. Similarly, of
the seven reported targets of SBF (HO, CLN1, CLN2,
PCL1, SVS1, TOS4, YOX1), we were able to detect all
except PCL1 (position 165) as SBF-regulated genes. HO
and TOS4 were in the positive control set. Hence, we
conclude that our strategy correctly assigned most
known targets of MBF or SBF. Among our predictions,
58% and 67% of the MBF and SBF targets, respectively,
have also been reported in a number of previous analyses
[35-38] other than Beyer's and Holloway's studies. This
suggests that our approach has produced many true tar-
gets, as substantiated by independent classifications. On
the other hand, we have predicted 27 MBF- and 21 SBF-
regulated genes not found before [22,23,35-38]. Although
this constitutes added value to our work, it raises ques-
tions about the number of false positives in our analysis,
and it calls for further experimental validation of our
results (see below).

We (and others) find most targets of MBF or SBF to be
CCR, with peak expression at the G1 or S phases of the
cell cycle (more on this below). However, there are 172
CCR genes with maximal expression in this same cell
cycle window that we have not classified as MBF or SBF
targets. These are good candidates as false negatives in
our analysis. However, only 28 out of these 172 CCR
genes are predicted as MBF or SBF targets in at least two
previous classifications [22,23,35-38]. Hence, most
(approximately 80%) of these targets are likely true nega-
tives. Among those predicted by others, some were in our
list below the defined cutoff but close to it (for example,
in the MBF list, KCC4 was ranked 132, POL2 126, and
PLM2 113; in the SBF list, HHT1 was 106). Still, some
other genes may have escaped detection because their
expression may depend on BCK2, which was absent in
our experiments. Some candidates within this group are
HLR1, FKS1, and ELO1 [27].

We further compared our targets with those provided
by Beyer et al. [22] and by Holloway et al. [23] (Figure 3b).
About 70% of our predicted targets were also in the lists
of Beyer et al. or Holloway et al. This was not unexpected
since our control sets were based on these studies. By
contrast, we only detected 23% of the targets predicted by
Beyer et al. and approximately 34% of those by Holloway
et al. Because our study has focused only on those targets
that respond in a timely way to Cln3 overexpression in
the absence of Bck2, genes that require this protein for
their expression would not have been selected. Moreover,
some targets controlled by MBF or SBF may also respond
to stress, and they would have been likely removed during
our gene selection procedure. We examined our expres-
sion data for targets solely detected by Beyer et al. or Hol-
loway et al., and found some 70 genes responding to
stress, induced by Bck2 [27], or otherwise selected within

Figure 2 Expression profiles of the 445 genes selected in this 
study. Heat map depicting relative expression levels after galactose 
addition. Induction is yellow; repression is blue. Averaged log2 values 
from duplicate experiments are used (for individual values see Addi-
tional file 1). Scale is at the bottom. Only relevant genotypes of strains 
are indicated. For complete genotypes see Figure 1 or the text. Four 
time points (20 through 80) per strain are indicated by widening black 
bars at the top. Genes are hierarchically clustered (uncentered Pearson 
correlation, average linkage). On the left, H indicates the histone clus-
ter; Y' indicates the cluster of Y' subtelomeric elements. WT, wild type.
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our 445 candidates but unsupported as targets by our
integrative analysis. However, most targets predicted only
by Beyer et al. or by Holloway et al. would remain unac-
counted for under these considerations. It is clear that
our study is rather restrictive and that a few true targets
of MBF and SBF may be missing from our lists. Also,
under different growth conditions MBF and SBF may
show distinct binding specificity, which may have been
accounted for by these other studies. By contrast, we have
predicted 32 targets (29%) of MBF (Table 1) and 32 (34%)
of SBF (Table 2) that Beyer et al. and Holloway et al. failed
to detect. Because we have used expression data collected
in swi4Δ and mbp1Δ backgrounds, which surely are more
informative about SBF and MBF regulation than expres-
sion datasets used in previous studies, our work may pro-
vide higher sensitivity (for our experimental conditions)

in detecting targets that may have escaped other studies
broader in scope.

Cell cycle behavior
MBF and SBF are TFs that play a central role during the
cell cycle. Hence, we first wanted to visualize the distribu-
tion of the expression peaks of their targets throughout
the cell cycle (Figure 4). Most targets (92%) were CCR. In
comparison, some previous predictions [22,23,35,37]
produced a much greater proportion of non-CCR targets.
Because we worked with synchronized cultures, explicitly
enriched for CCR genes during selection, and used cell
cycle regulatory data in our model, this was hardly sur-
prising. MBF targets distributed narrowly, and centered
at a time point corresponding to 20% of the whole dura-
tion of the cell cycle. Almost identical distributions were

Figure 3 Target classifications. (a) Values of quality measures throughout our ranked list of candidates. Average values obtained with two bench-
marks are represented. See text for details. (b) Venn diagrams comparing our classifications with those of Beyer et al. [22] and Holloway et al. [23].
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Table 1: Summary of targets controlled by MBF

Ranking Systematic 
name

Standard 
name

Cell cycle
peaka

TF bindingb Motifs ACGCGc Previous classificationsd Functional classe

1 YMR179W SPT21 14 [15-18] 2 (1) [23,35-38] Others

2 YKL113C RAD27 20 [15-18] 1 (1) [23, 35-38] DNA RRR

3 YLR103C CDC45 18 [15-18] 2 [22, 23, 35-38] DNA RRR

4 YNL102W POL1 20 [15,18] 3 (1) [22,23,36] DNA RRR

5 YJL074C SMC3 19 [17,18] 2 [22,23,35-38] Cell cycle

6 YOR074C CDC21 22 [15-18] 2 [22,23,35-38] DNA RRR

7 YNL312W RFA2 22 [15,17,1
8]

2 [22,23,36,37] DNA RRR

8 YAR007C RFA1 19 [17,18] 2 (1) [22,23,36-38] DNA RRR

9 YAR008W SEN34 17 [17,18] 2 (2) [22,23,36-38] Others

10 YDL003W MCD1 20 [15-18] 2 (2) [23,35-38] Cell cycle

41 YNL082W PMS1 13 2 DNA RRR

56 YOR144C ELG1 16 1 DNA RRR

66 YKL092C BUD2 ND 1 BP

67 YDL157C 32 1 Unknown

68 YNL206C RTT106 19 1 DNA RRR

69 YKL108W SLD2 13 1 DNA RRR

70 YOR284W HUA2 17 1 BP

71 YDL164C CDC9 18 2 [36] DNA RRR

72 YLR032W RAD5 15 2 DNA RRR

77 YDL102W POL3 17 1 (1) DNA RRR

78 YNL263C YIF1 24 1 (1) Others

79 YPL208W RKM1 23 1 Others

83 YKL042W SPC42 21 1 SPB

84 YML133C 8 [15] (1) DNA RRR

85 YJL173C RFA3 31 2 (1) [36] DNA RRR

86 YJL181W 13 3 Unknown

88 YKL089W MIF2 ND [36] SPB

89 YML060W OGG1 22 1 DNA RRR

90 YBR275C RIF1 22 [18] DNA CM

91 YOR368W RAD17 ND 1 DNA RRR

95 YNL339C YRF1-6 10 [15] (1) DNA RRR

96 YOL090W MSH2 20 1 [36] DNA RRR

99 YOR114W 24 1 Unknown

101 YHL013C OTU2 ND [17] [35,37] Unknown

103 YOR195W SLK19 27 1 SPB

104 YGR140W CBF2 34 1 (1) Cell cycle

106 YNL309W STB1 15 1 (1) Cell cycle

107 YOL034W SMC5 ND 1 DNA RRR

108 YER016W BIM1 29 2 Cytoskeleton

109 YDR356W SPC110 33 1 Cytoskeleton
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observed in previous approaches (Figure 4; Additional file
4). By contrast, the distribution of SBF targets was more
variable across studies. In our case, we observed a
bimodal distribution (also apparent with Beyer et al.'s
data) with some SBF targets peaking slightly later than
MBF-regulated genes, but most peaking much later (40%
point), and few extending beyond 45% of the cycle dura-
tion. Significant numbers of SBF targets in other studies
[22,23,35,36,38] showed cell cycle peaks beyond this
point (Figure 4; Additional file 4). These might be targets
for which SBF acts as repressor rather than as activator or
which are not controlled by Cln3. Although many SBF
targets peak much later than genes regulated by MBF,
they are actually activated concurrently or just slightly
later [39] (Additional file 5). SBF targets are, however,
deactivated much later than MBF targets [39] (Additional
file 6). This differential timing of expression of MBF and
SBF targets throughout the cell cycle was also apparent in
our microarrays, with SBF targets being induced some-
what later and longer than MBF targets. Most likely, this
is the consequence of Nrm1-specific repression of MBF
targets [33], and Clb2-dependent repression of SBF tar-
gets [9,40].

Experimental validation by ChIP
To validate experimentally our predictions, we performed
ChIP assays. For each TF, we chose three targets for
which binding had not been detected previously. ELG1,
SLD2, and STB1 (ranked 56, 69 and 106, respectively)
were chosen as MBF targets, and VRG4, STU2, and ERP2
(ranked 76, 93 and 94, respectively) as SBF targets. Only
STU2 was predicted as a SBF target by just one previous
analysis [36]. As positive controls we chose CDC45 and
SVS1 for MBF and SBF binding, respectively. Both genes
bound these TFs in previous genome-wide location anal-
yses [15-18], and are predicted as targets by all previous
classifications [22,23,35-38]. CDC45 had two ACGCG
motifs (Mbp1 binding site) in the first 200 bp upstream of
the transcription start site (TSS), whereas the three MBF
targets tested contained just one each. SVS1 and STU2
had three CRCGAA motifs (Swi4 binding site) in the first
400 bp upstream of the TSS, VRG4 contained two, and
ERP2 only one. We designed PCR primers targeting these
regions. As control for non-specificity we chose a frag-

ment of the coding sequence of DYN1. This gene is one of
the largest in the S. cerevisiae genome, and thus this
region is more than 6 kb away from the closest promoter.
In addition, we carried out parallel ChIPs with an
untagged strain. As source material for the ChIPs, we
used both asynchronous cultures and G1-enriched cul-
tures by treatment with α factor. Somewhat unexpectedly,
however, G1 enrichment did not improve detection of
MBF or SBF binding. On the contrary, our results are
quite comparable irrespective of the growth conditions
(Figure 5). Importantly, these constitute two independent
ChIP experiments.

We found specific enrichment for all the genes tested
when compared to the non-specific control DYN1 (Figure
5). As expected, the relative enrichments for the untagged
strain were close to one for all the genes and conditions.
The positive controls, CDC45 and SVS1, showed approxi-
mately 4-fold and 7-fold enrichments, respectively,
whereas our test targets gave values in the range of 1.5 to
2. STU2 and ERP2 gave the greatest variability, but con-
sidering both experiments and all the PCRs performed,
we also conclude that there is some enrichment for these
genes. These are particularly noteworthy because they
are ranked last in our list of SBF targets. Although the
enrichments for test genes may seem modest, particularly
when compared to that for SVS1, this result was antici-
pated because higher values would have been unlikely to
escape detection in genome-wide location analyses.

Validation by functional enrichment
To further validate our predictions, we analyzed the bio-
logical functions of our targets (Figure 6a). Because no
functional annotation was used at any step in our TF-tar-
get assignment approach, gene functions provide an inde-
pendent quality assessment of our predictions. It has
been previously proposed that MBF and SBF control
genes with distinct and dedicated roles. Thus, many MBF
targets would be involved in DNA replication, repair and
DNA processing in general, whereas many SBF-con-
trolled targets seem to be involved in membrane and cell
wall biogenesis [15,41,42]. In agreement with this, we
have found statistically significant enrichment (P ‹ 10-15)
in genes involved in DNA replication, repair and recom-
bination among our MBF targets. We also found signifi-

110 YDL105W NSE4 16 DNA RRR

111 YNL088W TOP2 34 2 DNA CM

aPercent value of the whole duration of the cell cycle taken from [20,45]. bReferences for publications where Mbp1 binding was detected. 
cNumber of motifs in the first 200 bp upstream of the TSS (motifs beyond the first 200 bp upstream). dReferences for publications where the 
gene was predicted as target of MBF. eDNA RRR, DNA replication, recombination and repair; BP, budding/polarity; SPB, spindle pole body; 
DNA CM, DNA conformation modification. The top ten predicted targets and all those specific (not detected in [22] or [23]) to our classification 
are shown. The full list is available in Additional file 3. ND, not determined.

Table 1: Summary of targets controlled by MBF (Continued)



Ferrezuelo et al. Genome Biology 2010, 11:R67
http://genomebiology.com/2010/11/6/R67

Page 8 of 18
Table 2: Summary of targets controlled by SBF

Ranking Systematic 
name

Standard 
name

Cell cycle
peaka

TF bindingb Motifs CRCGAAc Previous
classificationsd

Functional classe

1 YER001W MNN1 29 [16-18] 1 (1) [22,23,36-38] CW Gly

2 YNL300W TOS6 30 [15-18] 4 [22,23,35-38] Unknown

3 YKR013W PRY2 25 [16-18] 4 [22,23,35,36,38] Unknown

4 YOL007C CSI2 24 [15] 4 [22,36] CW Gly

5 YPL163C SVS1 28 [15-18] 3 (1) [22,23,35-38] Others

6 YPL256C CLN2 23 [15] 2 (2) [23,35,36] DNA RRR/BP

7 YDR297W SUR2 30 [15] 1 [23] Others

8 YMR307W GAS1 36 [15-18] 2 (1) [22,23,36-38] CW Gly

9 YDR507C GIN4 21 [15-18] 1 [23,37,38] BP

10 YLR183C TOS4 23 [15] 2 (1) [22,36] Others

16 YOL019W 22 [15,17] 1 [36-38] Unknown

17 YGR140W CBF2 34 [15] 1 (2) Cell cycle

18 YNL031C HHT2 37 [15] 2 [36] DNA CM

32 YJL173C RFA3 31 1 (1) DNA RRR

39 YMR144W 33 [16-18] 1 [35-38] Unknown

49 YMR179W SPT21 14 [15-18] 1 [35-38] Others

51 YPL267W ACM1 16 [17,18] 1 [35-38] Unknown

54 YLR121C YPS3 17 [15] 2 [36] Others

57 YNL278W CAF120 nd [15] 2 Others

61 YHR154W RTT107 24 1 [36] DNA RRR

63 YMR304C-A nd [16-18] 0 Unknown

65 YHR173C 36 1 Unknown

67 YBL009W ALK2 36 2 Others

69 YJL080C SCP160 33 2 Cell cycle

70 YKR090W PXL1 27 1 BP

71 YGL093W SPC105 34 1 Cytoskeleton

72 YKL113C RAD27 20 1 [36] DNA RRR

73 YBR088C POL30 20 1 [36] DNA RRR

76 YGL225W VRG4 38 2 (1) CW Gly

77 YDR113C PDS1 33 0 Cell cycle

79 YLR383W SMC6 24 1 DNA RRR

81 YGL012W ERG4 42 [15] 1 Others

84 YPL032C SVL3 40 1 BP

85 YHR050W SMF2 nd 1 (1) Others

86 YKL049C CSE4 40 1 Cell cycle

87 YBR252W DUT1 40 1 Others

88 YOR099W KTR1 34 1 (1) CW Gly

89 YLL021W SPA2 31 0 (1) BP

91 YNL102W POL1 20 0 (1) [36] DNA RRR

92 YJR144W MGM101 nd 3 (1) DNA RRR
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cant enrichment (P ‹ 2 × 10-4) for SBF-regulated targets
involved in cell wall biogenesis and integrity, as well as
protein glycosylation. We considered these two func-
tional classes together because many cell wall compo-
nents are highly glycosylated proteins, and cell wall
integrity thus strongly depends on protein glycosylation
(reviewed in [43]). We next examined the functional con-
sistency of our classification by comparing the distribu-
tion in different functional classes of unique versus
shared targets, taking as reference the lists provided by
Beyer et al. [22] and Holloway et al. [23]. We found no
statistically significant differences (two-tailed Fisher
exact test, P ‹ 0.05) between these two sets in any of the
functional categories considered. By comparison, a simi-
lar analysis performed with Beyer et al.'s and Holloway et
al.'s classifications showed significantly fewer genes dedi-
cated to DNA replication, recombination and repair
among their unique MBF targets than in those shared
with other classifications (P ‹ 2 × 10-5 and P ‹ 2 × 10-3,
respectively). Beyer et al.'s SBF targets were lacking in cell
cycle genes (P ‹ 0.01) and those involved in cell wall and
glycosylation (P ‹ 6 × 10-5). By contrast, Holloway et al.'s
specific MBF targets included more genes involved in cell
wall and glycosylation (P ‹ 0.02). In conclusion, our classi-
fication shows higher functional internal consistency
than the predictions from these previous studies. This
consistency reinforces the idea that we have been able to
find many real targets that have escaped previous analy-
ses.

Evaluation of predictive power: the case of divergently 
transcribed genes
Divergently transcribed genes offer another approach to
evaluate the quality of our predictions. These genes share
their promoter regions, and because in yeast intergenic
regions are usually short, ChIP-chip data alone cannot
distinguish whether both or only one gene (or none) may
be regulated by the bound TF. Several studies [37,44]
have integrated expression data together with ChIP-chip
data to establish which divergent genes are likely or
unlikely to be regulated by bound TFs. These works pro-
vide independent predictions that can be used as bench-
marks to compare the predictive power of other
classifications. Compared to the experimental data we

have used, Beyer et al.'s and Holloway et al.'s analyses
have arguably used datasets more akin to those used pre-
viously [37,44]. Despite this, our classification outper-
formed both Beyer et al.'s and Holloway et al.'s in
predicting true regulation in divergently transcribed
genes as measured by MCC (Figure 6b). These other clas-
sifications displayed much lower specificity and preci-
sion, similar accuracy, and higher sensitivity than ours
(data not shown). The greatly diminished specificity
(higher number of false positives) of these classifications
may be explained by the fact that both seem to rely
strongly on genome-wide binding data.

Internal consistency: distribution of motifs in MBF targets
The MBF targets used as positive control in our analysis
were highly enriched for Mbp1 binding motifs (ACGCG)
located proximal (‹200 bp) to the TSS. Whereas 65% of
these targets had at least one binding site in the first 200
bp upstream of the TSS, only 4.5% of genes in our nega-
tive control did. Similarly, the SBF control genes were
enriched in Swi4 binding motifs (CRCGAA), but they
were neither so narrowly distributed upstream of the TSS
nor so highly enriched (78% versus 33%). Strikingly, even
when we recalculated the scores without the motif classi-
fier - hence, no information concerning sequence motifs
was used - the vast majority of the MBF targets still pre-
sented the ACGCG motif in their promoters with a
clearly biased distribution towards the proximity of the
TSS (Figure 7). This was true irrespective of whether the
predicted targets were common to other studies or
unique to our work. By contrast, a random set of non-
MBF targets did not show this pattern (Figure 7c). We
next examined the distribution of motifs in the promoters
of the MBF targets predicted by Beyer et al. and Holloway
et al. We considered four groups of targets: those
detected in all three studies and those unique to only one
study. Because the classifications by Beyer et al. and Hol-
loway et al. included motif information, we expected to
find enrichment of MBF binding motifs. Indeed this was
the case, but these motifs were much more scattered
along the full length of promoters in Beyer et al.'s or Hol-
loway et al.'s targets than in the common set or in our
specific targets (Figure 7a). Consequently, the proportion
of genes containing sites in the first 200 bp upstream of

93 YLR045C STU2 42 3 (1) [36] SPB

94 YAL007C ERP2 37 1 Others

aPercent value of the whole duration of the cell cycle taken from [20,45]. bReferences for publications where Swi4 binding was detected. 
cNumber of motifs in the first 400 bp upstream of the TSS (motifs beyond the first 400 bp upstream). dReferences for publications where the 
gene was predicted as target of SBF. eCW Gly, cell wall/glycosylation; DNA RRR, DNA replication, recombination and repair; BP, budding/
polarity; SPB, spindle pole body; DNA CM, DNA conformation modification. The top ten predicted targets and all those specific (not detected 
in [22] or [23]) to our classification are shown. The full list is available in Additional file 3. ND, not determined.

Table 2: Summary of targets controlled by SBF (Continued)
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the TSS in the common set and in our specific group was
greater than in the specific sets of the other two studies
considered (Figure 7b). Hence, this analysis strongly sug-
gests that our MBF targets constitute a more homoge-
neous group than those previously described [22,23].
Previous analyses may have detected condition-specific
targets of Mbp1 that we may have missed under our more
restrictive experimental investigation. Should this be the
case, however, the distinct distribution of motifs would
suggest that positional information at promoters may
play a role in the response to one or another cellular cue.

Evaluation of genome-wide location datasets
Finally, we used our classification as a benchmark to com-
pare the predictive value of the different genome-wide
location analyses involving Mbp1 and Swi4. To this pur-
pose, we produced classifications leaving the binding
information classifier out. Note that the datasets gener-
ated by Young and co-workers [16-18] were used by
Beyer et al. and Holloway et al. in their analyses, and
because our control sets were derived from those studies,
our predictions cannot be considered fully independent
from those datasets. We used MCC to assess the predic-
tive power of these datasets. For Mbp1, regardless of the
cutoff chosen in our classification, Harbison et al.'s [18]
data greatly outperformed the others (Figure 8), espe-
cially those by Simon et al. [16] and Iyer et al. [15]. This
may stem from the fact that Harbison et al. performed
their Mbp1 ChIPs under several growth conditions, pro-
viding a considerably larger number of targets. In fact,
whereas the accuracy and specificity of all four studies
analyzed were similar, Harbison et al.'s dataset was signif-
icantly more sensitive than the others (data not shown).
For Swi4, Iyer et al.'s dataset slightly outperformed the
other three studies, at least for a cutoff of 100 or lower,
which is a reasonable threshold for SBF-regulated genes
in our classification (Figure 8). This difference was under-
scored by the fact that, contrary to the others, Iyer et al.'s
study provided a dataset that was fully independent of
our classification.

Discussion
The transcriptional program at START is driven by the
related TFs MBF and SBF. Cln3 is the most upstream acti-
vator of START. It functions by activating the CDK
Cdc28, which then inhibits repressors of SBF and MBF,
leading to the activation of their target genes [12,13].
Cln3 is not, however, the only activator operating at
START. For instance, it shares an essential function with
Bck2 of promoting the G1 to S transition of the cell cycle
[24-26], and we have recently shown that Bck2, at least
when overexpressed, induces many genes at this point
[27]. Here we provide an extensive list of genes that are
activated by Cln3 in the absence of Bck2 in an MBF- or
SBF-dependent manner. In fact, it is likely that Cln3 func-
tions solely, at least as a transcriptional activator, through
MBF and SBF because all known functions of Cln3
depend on Swi6 [27,28], overexpression of Cln3 at cell
cycle stages other than G1 has little effect on gene activa-
tion [27], and here we have shown that Cln3 is unable to
induce any of its targets in a swi4Δ mbp1Δ background.

We produced our list of Cln3 targets in two steps. First,
we generated new genome-wide experimental data that
are arguably more informative for this purpose than other
datasets available in the literature. This is so because we
studied the effects on gene expression of overexpressing

Figure 4 Cell cycle distribution of targets. Predicted targets were 
binned according to their expression peak in the mitotic cell cycle 
[20,45]. Values on the x-axis are percentages of the whole duration of 
the cycle, as defined in [20]. Beyer et al.'s [22] and Holloway et al.'s [23] 
predicted targets are also shown for comparison. MBF_SBF denotes 
targets controlled by both TFs; No_MBF_SBF refers to genes from our 
445 candidates not classified as MBF or SBF targets.
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Figure 5 Experimental validation of predicted targets. ChIP assays with Mbp1TAP and Swi4TAP were carried out for a number of targets for which 
TF binding had not been detected before. (a) PCR products for predicted targets ELG1, STB1, VRG4 and STU2 are shown. Cells were grown either asyn-
chronously or enriched in G1 with α factor. Three dilutions (1:1,500, 1:4,500, 1:13,500 for tagged strains; 1:2,500, 1:7,500, 1:22,500 for untagged strains) 
of the whole cell extract (WCE) and two (1:5, 1:15) of the immunoprecipitates (IP) were used. PCR was carried out for 28 or 30 cycles for tagged and 
untagged strains, respectively. As an internal control for non-specificity the gene DYN1 was used. The PCR product amplified from this gene was sev-
eral kilobases away from the closest promoter. (b) Quantification of ChIP assays. Optical density of bands was measured with ImageJ. The relative en-
richments shown are calculated as ratios of specific to non-specific (DYN1) products in the IP compared to the input (WCE). Two independent PCRs 
were carried out per gene tested (just one PCR in the untagged strains). The average and standard deviations (error bars) of two or three different 
exposures are shown. Genes ELG1, SLD2, STB1 and CDC45 (positive control) were tested in the Mbp1TAP ChIP; genes STU2, ERP2, VRG4 and SVS1 (pos-
itive control) were tested in the Swi4TAP ChIP.
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Cln3 in synchronized cultures, and most importantly
because we used a battery of deletion strains lacking
components of MBF and/or SBF. Second, because Cln3
needs MBF or SBF to promote gene expression, we inte-
grated our data together with other published datasets to
determine the targets of Mbp1 and Swi4. This has
allowed us to distinguish direct targets of Cln3 from
genes induced indirectly as a result of cell cycle progres-
sion in our experiments. It is possible, however, that some
of the genes regulated by Mbp1 or Swi4 are not direct tar-
gets of Cln3. Cln1 and Cln2 are involved in a positive
feedback mechanism promoting transcriptional activa-
tion at START [14]. Hence, it is unclear whether the
induction we see is solely due to overexpressed Cln3, or
most likely to Cln1, Cln2 and Cln3 acting in concert.
Interestingly, most MBF targets seem to be insensitive to
overexpressed Cln1 (our unpublished results).

Following previous approaches [22,30], we have devel-
oped a single probabilistic model based on Bayesian sta-
tistics that allows the integration of data from
heterogeneous sources. Integration is important because
with expression data alone it is difficult to distinguish
direct from indirect regulation as well as compensating
mechanisms of redundant factors, whereas TF binding or
motifs at promoters lack functional information. From
our experiments, we have made available to our model
expression data concerning the time and extent of induc-
tion, and how these are affected in deletion mutants.
From others, we have taken information on TF binding,
Cln3 induction (under non-progressive conditions), Clb2
repression, and cell cycle behavior [3,15-18,20,45]. We
have also integrated information about binding motifs at
promoters. Doubtless, the dominant feature in our classi-
fication is gene expression. This is, however, rather spe-

cific and more informative than expression datasets
typically used in genome-wide studies on transcriptional
networks. In general, it seems these studies give more
weight to ChIP-chip data (see, for example, Beyer et al.
[22] and Holloway et al. [23]).

We have validated our predictions in two ways. First,
and most important, we have demonstrated by ChIP
assays that Mbp1 and Swi4 bind the promoters of pre-
dicted targets for which binding had not been detected
before [15-18]. Second, our predictions show high
enrichment in biological functions previously attributed
to MBF or SBF [15,41,42]. Importantly, and contrary to
other analyses [22,23], this was true also for the set of tar-
gets that was specific to this study, indicating that our
classification maintains internal functional consistency.
On the other hand, our classification shows greater pre-
dictive power than previous ones [22,23] as tested by
their ability to discriminate regulatory targets between
divergently transcribed genes.

We have used our TF-target assignments as a bench-
mark to assess the quality of several genome-wide TF
binding datasets [15-18]. Our analysis suggests that
whereas for Mbp1 the study by Harbison et al. [18] is
superior to the others, for Swi4 Iyer et al. [15] is the best
performer. Interestingly, Harbison et al. provided a more
thorough study of Mbp1 (several conditions assayed)
than of Swi4, and conversely Iyer et al. performed many
more ChIP-chip experiments for Swi4 than for Mbp1. It
is likely, then, that more experimental ChIP-chip data
may considerably improve the quality of available data-
sets.

Our predicted MBF targets are highly enriched in
ACGCG sequences. Strikingly, the position of this motif
is strongly biased towards the first 200 bp from the TSS.

Figure 6 Quality assessment of our predictions. (a) Functional classification of predicted targets. Functional classes are based on the MIPS func-
tional catalog, but sometimes we merged several classes, and they were adapted to make them virtually non-overlapping. DNA RRR, DNA replication, 
recombination and repair; SPB, spindle pole body. Thirteen MBF and 14 SBF targets were of unknown function; they are not considered in the percent 
calculation. (b) Comparison of the predictive power of our classification with those of Beyer et al. [22] and Holloway et al. [23]. MCC was used to assess 
the ability of each classification to detect true regulatory TF-target associations in the case of divergently transcribed genes for which binding had 
been reported (Gao et al. [37]; Chen et al. [44]).
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Importantly, these features remain unchanged even when
the motif information classifier is not incorporated into
our model. Hence, this constitutes another independent
confirmation that our classification must have captured
biologically meaningful predictions. By contrast, this pro-
moter architecture is not maintained in most Mbp1 tar-
gets specific to other models [22,23]. It is possible that
association of Mbp1 with partners other than Swi6 may
change its binding specificity. SBF targets show enrich-
ment of CRCGAA sequences, but their more scattered
distribution suggests that SBF-controlled promoters are
more complex than MBF-regulated promoters. In agree-
ment with this, combinatorial regulation involving Swi4
and other factors seems commonplace [22,23,46].

The apparently simpler architecture of MBF target pro-
moters correlates with a narrow distribution in their
expression peak during the mitotic cell cycle. By contrast,
SBF targets show a more spread bimodal distribution.
This may likely be due to combinatorial regulation with
Ste12 and forkhead TFs [22,23,46]. The bulk of SBF tar-
gets peaks much later than genes regulated by MBF. This
is so mainly owing to their different inactivation timing,

and not so much because SBF targets are activated much
later. In fact, most SBF targets are activated just slightly
later. MBF-regulated genes are subject to specific repres-
sion by Nrm1 [33], a G1/S cell cycle-regulated gene, as
cells proceed from G1 to S phase, and before Clb/CDK
activity raises. By contrast, SBF is repressed only later,
when Clb2 is expressed and its activity is high [9,40].
Hence, the set of targets we have predicted here recapitu-
late known cell cycle regulatory mechanisms.

It has been controversial whether Whi5 represses only
SBF [13] or both SBF and MBF [12]. Recently, the role of
Stb1 as an activator and repressor of both SBF and MBF
has also been proposed [47-50]. Here, we have predicted
STB1 as a target of MBF, and we have demonstrated
Mbp1 binding to the STB1 promoter by ChIP assays. This
raises the possibility of Stb1 being involved in feedback
mechanisms as well as linking MBF and SBF regulation at
START. Nonetheless, the small but appreciable delay in
the activation of most SBF targets as compared to MBF-
regulated genes, whether related to Stb1 function or not,
supports the existence of different activating mechanisms
for these TFs.

Figure 7 Mbp1 binding motif distributions at gene promoters. (a) Proportion of ACGCG sites located within the first 200 bp, from 200 to 500 bp, 
and beyond 500 bp at the promoters of MBF targets that are specific to this work (F), to Beyer et al. [22] (B), to Holloway et al. [23] (H), or that are com-
mon to all three studies (FBH). (b) Proportion of MBF targets with ACGCG sites within the first 200 bp upstream of the TSS, beyond 200 bp, or without 
such sites; FBH, F, B, and H as before. (c) Promoter representations with the location of ACGCG sites (blue). Left panel, MBF targets in our work shared 
with the aforementioned studies. Right top panel: our specific MBF targets. Right bottom panel: random set of genes with ranking values from 200 to 
445 in our MBF classification. Every line represents a gene promoter from the TSS (right end) up to -1,000 bp upstream of the START codon. For all 
analyses in this figure, scores were recalculated without the motif classifier.

0 

20 

40 

60 

80 

FBH F B H 

%
 g

en
es

 

<200 >200 No sites 

0 

20 

40 

60 

80 

FBH F B H 

%
 s

ite
s 

< 200 < 500 > 500 

(a) 

(b) 

(c) 



Ferrezuelo et al. Genome Biology 2010, 11:R67
http://genomebiology.com/2010/11/6/R67

Page 14 of 18
Conclusions
Here we have provided the transcriptional network acti-
vated by the cell cycle regulator Cln3 through the TFs
SBF and MBF. We have validated our TF-target predic-
tions both experimentally by means of ChIP assays, and
computationally by studying the functional enrichment of
target genes. Although likely still incomplete, our net-
work appears to be more accurate (higher predictive
power and internal consistency) than others previously
proposed. Likely, this stems from the integration of new
experimental data with other available genome-wide
datasets, and from relying less on TF binding studies than

other previous integrative models. We believe our work
exemplifies the need to generate more informative exper-
imental data to build detailed and reliable networks. This
work and similar approaches may be keystones to the
development of accurate computational models of the
cell cycle.

Materials and methods
Strains used in the expression profiling experiments were
MATa haploid W303 derivatives. Their relevant geno-
types are shown in Figure 1. General procedures for the
construction of strains, growth conditions, budding
count, DNA content analysis, RNA isolation as well as
microarray hybridizations and data analysis have been
described previously [27]. Microarray data have been
deposited in ArrayExpress under accession number
[ArrayExpress:E-TABM-764].

Gene selection
To select for genes specifically induced by Cln3 or by cell
cycle progression, we used five slightly different criteria
based on gene clustering [51]. Two selection methods
used visual inspection only. One has been described pre-
viously [27]. The other was similar except that only the
strains used in this work, but not the PGAL1·BCK2 strains
used in our previous study, were used. Another method
used first a visual selection and then a second selection
based on cell cycle enrichment. Two other methods were
based solely on cell cycle enrichment, but for one we first
filtered out inconsistent expression between duplicate
experiments evaluated in the PGAL1·CLN3 bck2Δ strain.
Throughout this study we consider CCR genes as those
belonging to a consensus list of 648 cell cycle genes
(Additional file 7) that appear among the top 800 ranked
in at least three of five cell cycle studies [3,20,45,52,53].

Probabilistic model
We have followed others' ideas [22,30] to develop a
Bayesian probabilistic model. We have used a unified
scoring scheme that received input from nine different
classifiers (see below). Most classifiers were binned into
four mutually exclusive groups. To delimit each group, we
chose three random sets of 40 elements from our list of
445 genes (see Results). The 40 elements in each set were
sorted by their values within each classifier, and the 10th,
20th, and 30th ranked values in each random set were
averaged, respectively. These average values were used as
thresholds to delimit the bins. Each bin was then assigned
a weight calculated as a log likelihood score (LLS):

LLS = ln(P(bini/positive)/P(bini/negative))
where P(bini/positive) and P(bini/negative) are the fre-

quencies of positives and negatives from control sets (see
below), respectively, that belong in bin i. The total LLS for
each gene in our list was the result of adding all individual

Figure 8 Quality assessment of location analyses. The predictive 
power (MCC) of different location analyses was evaluated with our 
classifications as benchmarks. MCC values are represented throughout 
our ranked list of candidates. Work by Iyer et al. [15], Simon et al. [16], 
Lee et al. [17], and Harbison et al. [18] were considered. For these anal-
yses, we did not include explicit binding information in our classifica-
tions.
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LLSs from the corresponding bins for the nine classifiers
considered. All scores can be found in Additional file 2.

Control sets
To train our model, we created positive and negative con-
trol sets for both factors, Mbp1 and Swi4. Positive and
negative interactors were chosen from our list of 445 can-
didates. Positives were genes defined as targets of Mbp1
or Swi4 in both Beyer et al. [22] and Holloway et al. [23].
We avoided picking up genes regulated by both Mbp1
and Swi4, as well as other cell cycle TFs (Ste12, Fkh2,
Ndd1 or Mcm1). Because this gave rise to too few posi-
tives, especially for Swi4, we added some targets that
were top ranked in either classification (although not in
both). For these, we also avoided those regulated by both
factors. We ended up with 40 positives for Mbp1 (90%
shared by Beyer et al. and Holloway et al.), and 32 posi-
tives for Swi4 (50% shared by Beyer et al. and Holloway et
al.). The negative set for Mbp1 (or Swi4) consisted of ran-
domly selected genes from our list of 445 candidates that
were not reported to be regulated by Mbp1 (or Swi4) in
Beyer et al.'s or Holloway et al.'s studies. We selected five
groups of 40 genes for Mbp1, and five groups of 32 genes
for Swi4. The five groups were merged into a single nega-
tive set.

Classifiers
We used nine classifiers integrating different lines of evi-
dence: one from TF binding data, one from TF motifs,
four from the expression data we generated in this study,
one from expression profiling during the cell cycle, and
two from the expression profiling upon Cln3 or Clb2
overexpression, as reported in a previous study [3].
Transcription factor binding information
We used TF binding data from four genome-wide studies
that used ChIP-chip technology [15-18]. We considered
the assignments proposed by Iyer et al. [15], and those
TF-target interactions with a P-value ‹0.001 from the
other three studies. For MBF, we evaluated three condi-
tions: none of the studies, only one study, and more than
one study detected an interaction. For SBF, we did the
same, but SBF interactions detected by Iyer et al. were
considered more reliable and consequently given more
weight. The rationale behind this is that Iyer et al. per-
formed multiple ChIP-chip experiments with Swi4, and
they arguably produced better quality data for this factor.
Also, preliminary comparisons of our expression dataset
with that of Iyer et al. and from the other three ChIP-chip
studies suggested better agreement with the former
study.
Transcription factor motifs
For MBF, we evaluated whether the promoters of genes
had at least one MCB consensus site (ACGCGT) within
the first 200 bp upstream of the TSS or not. For SBF, we
examined the presence of at least one SCB consensus site
(CRCGAA) located within 400 bp of the TSS. The TSS

information was obtained from two recent genome-wide
studies [54,55].
Expression data
We evaluated six classifiers from the expression profiles
generated in this study, and three more from data gener-
ated by others. (1) The time of peak expression in the
wild-type strain. This parameter was divided into four
groups according to the sampling performed, that is, 20,
40, 60 and 80 min. (2) The value at 20 minutes in the
wild-type strain. (3) The ratio between the maximum
value in the wild-type strain series and the maximum in
the mbp1Δ mutant as well as (4) the correlation between
the profiles in the wild-type and in the mbp1Δ back-
grounds. These two classifiers were used only for Mbp1.
For Swi4, we evaluated (5) the average value at 40 and 60
minutes in the wild type as well as (6) the ratio between
the maximum value at 20 or 40 minutes in the wild type
and the maximum value in the swi4Δ background. From
the work of Spellman and co-workers [3], we analyzed (7)
the value of induction upon Cln3 or (8) upon Clb2 over-
expression. Finally, we also considered (9) the time of
peak expression during the mitotic cell cycle [20,45].

Evaluation of predictions and thresholding
We first created several benchmarks of positives and neg-
atives. Positive benchmarks for both Mbp1 and Swi4 were
created with 40 genes each. All benchmarks contained
ten genes that had been reported as regulated by both
factors in previous classifications [22,23]. The remaining
30 genes for each particular benchmark were randomly
selected among those targets regulated by Mbp1 (or
Swi4) in any of those studies. None of the genes in the
benchmark sets had been used before in the training sets.
We generated two positive benchmarks for each factor.
Negatives for Mbp1 or Swi4 were randomly selected
among those genes that were not regulated by Mbp1 or
Swi4, respectively, in Beyer et al.'s and Holloway et al.'s
studies. For each factor, we randomly selected 40 genes
twice, and merged the two groups. Hence, the negative
benchmarks contained somewhat fewer than 80 genes
each.

Throughout this study we have used several statistical
measures commonly employed to assess the quality of
binary classifications. They are defined as follows:

MCC

Accuracy

= × − ×
+ + + +

=

( ) ( )
( )( )( )( )

TP TN FP FN
TP FP TP FN TN FP TN FN
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+ + +
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where TP is true positives, TN true negatives, FP false
positives, and FN false negatives.

To select thresholds, we calculated these measures at
any given position in our classifications. We averaged
(geometric mean) the values obtained with each positive
benchmark. We chose as cutoff a ranking value that pro-
duced high specificity and precision (›80%) as well as a
high value for the MCC. Likely, these quality measures
produced underestimated values because at least some of
the targets in the positive benchmarks may not be true
positives (many were reported as targets by Beyer et al. or
Holloway et al., but not by both studies) and some of the
genes in the negative benchmarks may actually be posi-
tive. In fact, we have predicted some targets that escaped
previous detection.

ChIP assays
Strains used in ChIP assays were derived from BY4741
(MATa his3Δ1, leu2Δ0, met15Δ0, ura3Δ0). We tagged
Mbp1 or Swi4 with tandem affinity purification (TAP) tag
[56]. Correct tagging was checked by PCR and western
blotting. Tagged strains and untagged control were grown
in YPD at 30°C to an OD600 of ‹0.25, split in two, α factor
(5 mg/l) was added to one culture, and all cultures were
incubated at 30°C for an extra 90 minutes. At this point,
in the cultures with α factor most cells were arrested at
G1 as determined by microscope inspection. We used 40
ml of culture per ChIP. These were carried out as previ-
ously described [49] with modifications. Briefly, after
formaldehyde cross-linking, cells were broken in a Bio-
Spec (Bartlesville, OK, USA) mini-beadbeater-16 (6
pulses of 1 minute with 1 minute on ice between pulses),
chromatin was sheared in an MSE (London, UK) soni-
prep-150 sonicator (power 10, 6 pulses of 15 s, ice 1 min-
ute between pulses), and clarified extracts were incubated
with 50 μl magnetic beads (Dynabeads Pan mouse IgG,
Invitrogen Dynal, Oslo, Norway) for 90 minutes at 4°C.
Washes were carried out at room temperature, and after
elution and reversal of the cross-link, we treated with
proteinase K (0.25 mg/ml, 2 h, 37°C). DNA was purified
with a Qiagen (Valencia, CA, USA) column (PCR
QIAquick PCR purification kit) and eluted with 100 μl
elution buffer (10 mM Tris-Cl pH 8.5). Finally, RNase A
was added to 0.5 mg/ml and incubated for 2 h at 37°C.
PCR was carried out for 28 (tagged strains) or 30 cycles
(untagged controls). PCR products were separated in
2.4% agarose gels, stained with SYBR gold (Invitrogen,
Carlsbad, CA, USA), and imaged with an AlphaDigiDoc
RT2 gel documentation system (Alpha Innotech, Santa
Clara, CA, USA). Quantification of bands was performed
using ImageJ.

Miscellaneous
For our functional analysis, we focused on several func-
tional classes that were more over-represented among

our predicted targets according to the Munich Informa-
tion Center for Protein Sequences (MIPS) functional
catalog [57]. Sometimes we removed genes to make
them non-overlapping. The final classes considered
were as follows: cell wall and glycosylation; budding
and polarity; spindle pole body (SPB); cytoskeleton
(excluding SPB, budding and polarity members); DNA
conformation modification; DNA replication, recom-
bination and repair (excluding members involved in
DNA conformation modification); and cell cycle
(excluding genes involved in DNA processing, SPB,
budding or polarity). The heat map in Figure 2 was
generated with the Java TreeView software [58]. Venn
diagrams in Figure 3 were created with an Applet from
[59]. To match and visualize motifs at promoters we
used the tools implemented in the Regulatory
Sequence Analysis Tools web site [60].

Additional material

Additional file 1 Log2 expression values for the 445 candidate genes 
selected from our microarray analysis. This file contains log2 expression 
values (relative to time 0) for the 445 candidate genes selected from our 
microarray analysis. There are two sheets labeled 'Average_values' and 
'Duplicate_experiments'. The 'Duplicate_experiments' sheet contains the 
values of two independent experiments (denoted _1 and _2 following the 
name of strain and time). The 'Average_values' sheet contains the data rep-
resented in Figure 2, corresponding to the average values of the two inde-
pendent experiments mentioned above. Arrays are labeled with the 
relevant genotype of the strain and the time of sampling. Same color is 
used for all the arrays obtained with the same strain. The background con-
text for all strains was bck2Δ PMET3·CLN2. Except for strain cln3Δ, cells also 
had PGAL1·CLN3 at the endogeneous CLN3 locus (wt stands for wild type).

Additional file 2 Log likelihood scores for the 445 candidates ana-
lyzed in our study. Matrix containing the individual values assigned to 
each gene in all nine classifiers used in our model and the final score 
obtained (column SUM). Each sheet corresponds to one TF. 'PEAK TIME' 
evaluates the time of peak expression in the wild-type strain in our experi-
ments. 'Value 20' wt' evaluates the value at 20 minutes in the wild-type 
strain whereas 'Av. value 40-60 wt' (only Swi4) corresponds to the average 
value at 40 and 60 minutes in the wild type. In 'Corr. wt/mbp1Δ' we assess 
the value for the correlation coefficient between the expression patterns in 
the wild type versus the mbp1Δ strain. 'max wt/max mbp1Δ' (only Mbp1) 
refers to the ratio between the maximum value in the wild-type series (20 
to 80 minutes) and the maximum in the mbp1Δ mutant. Similarly, 'max 
wt_20-40/max swi4Δ' makes reference to the ratio between the maximum 
value at 20 or 40 minutes in the wild type and the maximum value in the 
swi4Δ background. For 'Mbp1 motifs' we evaluated whether the promoters 
of genes had at least one MCB consensus site (ACGCGT) within the first 200 
bp upstream of the TSS or not. For SBF ('Swi4 motifs'), we examined the 
presence of at least one SCB consensus site (CRCGAA) located within 400 
bp of the TSS. In 'Mbp1 binding' we evaluate TF binding data from four 
genome-wide studies that used ChIP-chip technology [15-18]. We consid-
ered the assignments proposed by Iyer et al. [15], and those TF-target inter-
actions with a P-value ‹0.001 from the other three studies. Three conditions 
were assessed: none of the studies, only one study, and more than one 
study detected an interaction. The same applies to 'Swi4 binding' but inter-
actions detected by Iyer et al. were considered more reliable and conse-
quently given more weight (see Materials and methods for details). In 'cln3' 
and 'clb2', we analyzed the value of induction upon Cln3 or upon Clb2 over-
expression in [3]. Finally, 'CC peak' assesses the time of peak expression dur-
ing the mitotic cell cycle.

http://www.biomedcentral.com/content/supplementary/gb-2010-11-6-r67-S1.XLSX
http://www.biomedcentral.com/content/supplementary/gb-2010-11-6-r67-S2.XLSX
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