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Quantitative analysis of global 
protein stability rates in tissues
Daniel B. McClatchy1, Salvador Martínez‑Bartolomé1, Yu Gao2, Mathieu Lavallée‑Adam1,3 & 
John R. Yates III1*

Protein degradation is an essential mechanism for maintaining proteostasis in response to internal 
and external perturbations. Disruption of this process is implicated in many human diseases. We 
present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the 
global degradation rates in tissues using a non-canonical amino acid and mass spectrometry. QUAD 
analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest 
that cellular environment is a major factor dictating stability. Within a tissue, different organelles and 
protein functions were enriched with different stability patterns. QUAD analysis demonstrated that 
protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first 
global quantitation of protein stability rates in tissues, which will allow new insights and hypotheses 
in basic and translational research.

Proteostasis is the coordinated regulation of many cellular processes, including protein synthesis, degradation, 
and folding, to maintain a fully functional proteome in response to cellular perturbations. Dysfunction in any of 
these cellular processes can disrupt the proteome and trigger disease. Protein degradation is required to maintain 
optimal protein concentrations in response to changes in the cellular environment, and to prevent the accumula-
tion of damaged proteins1. Autophagy and the ubiquitin proteasome system are two main processes that regulate 
protein stability in a cell. Both are tightly regulated, and dysfunction has been linked to various human diseases2,3. 
Global protein stability rates, are generally measured a “pulse-chase” experiment, where proteins are labeled or 
tagged and then quantitated by the loss of protein signal with time using immunoblots, fluorescence, or mass 
spectrometry(MS)4–11. However, these techniques are primarily used on cultured cells because they are difficult to 
employ in tissue. As a result, there are very few reports of quantitation of protein stability rates in tissues. In one 
report, rats were fully labeled with heavy nitrogen (15N) through an 15N diet, and protein stability was measured 
after switching rats to a normal 14N diet12. After 6 months on the 14N diet some proteins that were still labeled 
with 15N were detected by MS, suggesting that these proteins are either very stable, or extreme long-lived proteins 
(ELLP). Protein stability studies of tissue using the 15N labeling ELLP strategy13 identified proteins that persisted 
many months. A few other tissue stability studies have reported global protein turnover rates14–17. To calculate 
these fractional protein turnover rates, a pool of natural unlabeled proteins is chased out by isotopically labeled 
proteins or vice versa. By measuring both synthesis and degradation of peptides, mathematical modeling is used 
to calculate degradation rates or protein half-lives under steady-state conditions. When the system is perturbed 
(i.e. pathological conditions), it can be difficult to determine if synthesis or stability are responsible for changes 
in protein turnover rates using this strategy16.

We propose to use azidohomoalanine (AHA) to directly quantitate protein stability rates in tissues using 
pulse-chase labeling coupled with MS, which will provide better temporal resolution than the ELLP strategy. 
AHA is a non-canonical amino acid(ncAA) that can be inserted into proteins in vivo because it is accepted by 
the endogenous methionine tRNA synthetase. Using click chemistry, AHA containing proteins can be covalently 
bound to a biotin-alkyne and the AHA containing proteins can then be enriched with neutravidin beads. The use 
of AHA was originally described in the BONCAT(Biorthogonal Non-canonical Amino acid Tagging) method 
which labeled cultured cells for short time periods to identify newly synthesized proteins using MS18. One 
concern about employing ncAAs is whether they perturb protein function and/or structure. However, over the 
decade of biological studies employing AHA, no toxicity has been reported, suggesting little to no perturbation to 
native protein characteristics. This mostly likely stems from the fact that AHA structure is so remarkably similar 
to methionine that it interacts with the endogenous tRNA synthetase. In fact, AHA has been employed as an 
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infrared spectroscopy probe to study native protein structure and folding19–21. Numerous biological studies have 
used AHA to study the most delicate and fragile proteomes with no disruption of function22–24. Most relevant to 
this study, AHA labeled proteins have been shown to be as stable as native proteins in cultured cells25,26. However, 
many of these studies briefly deplete or restrict the proteome of Met, which is an essential AA. Thus, validation 
of discoveries using AHA technology are needed in a native proteome as some studies have reported27,28. Using 
PALM (Pulse AHA Labeling in Mammals), it has recently been demonstrated that AHA can be safely incorpo-
rated into the proteomes of mouse tissues through their diet to identify newly synthesized proteins29. In this study, 
we Quantification of AHA Degradation (QUAD) in labeled proteins to measure protein stability rates in tissues.

Results
AHA pulse‑chase strategy to quantitate global protein stability rates in tissues.  Figure  1A 
illustrates the QUAD workflow. Twelve one-month old male C57BL/6 mice were placed on an AHA diet as 
previously described29. After 4  days, three mice were sacrificed, and tissues were harvested. This group was 
designated Day0. The remaining mice were returned to a normal mouse diet for various “chase” times. Three 
mice were sacrificed after three (Day3), seven (Day7), and fourteen (Day14) days on a normal mouse diet. These 
timepoints were chosen because a previous study reported that the lifetime of a majority of proteins in the brain 

Figure 1.   (A) Schematic of the experimental MS design. (B) The number of AHA peptides identified from 
chase time points decreases with increased chase time. Percentages of heavy AHA peptide identified (y-axis) 
from the total AHA identifications (i.e. light plus heavy) were calculated from MS analysis of different sample 
mixtures. The Day0/Day0 consists of two MS analyses of technical replicates and other mixtures represent three 
MS analyses from three mice. Liver tissue had significantly (* p < 0.05) fewer heavy AHA peptide identifications 
than brain tissue at Day7 and Day14 using a two-tailed t-test at each chase point. The abundance of the AHA 
proteins decreases with chase time in both liver (C) and brain(D). The median AHA peptide heavy/light ratios 
were calculated for each protein at each chase time point. After a natural log transformation, they were plotted 
in a histogram with the y-axis representing the percentage of proteins. The median protein ratio for each time 
point is in parentheses in the legend.
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ranged between 3 and 13 days30. After tissue homogenization, click chemistry was performed to covalently add 
a biotin-alkyne to all AHA containing proteins. Immunoblot analysis demonstrated that biotin was observed at 
all time points, with the most observed at Day0 and the least at Day14 (Fig. S1A). For MS analysis, samples were 
labeled with either a light or heavy biotin-alkyne to enable quantification based on the calculation of heavy/light 
ratios29. Day0 samples were labeled with the light biotin-alkyne and all other time points were labeled with the 
heavy biotin-alkyne. The Day0 samples from different mice were combined to generate one internal standard 
and was mixed 1:1(wt/wt) with samples from individual mice at the other time points. As a baseline measure-
ment, an aliquot of Day0 labeled with light biotin-alkyne was mixed 1:1 (wt/wt) with an aliquot of Day0 labeled 
with heavy biotin-alkyne. Next, the mixtures were digested with trypsin and the peptides that contained AHA 
were enriched with neutravidin beads. The enriched AHA peptides were eluted from the beads and analyzed 
by MS. MS analysis was first performed on liver and brain tissue samples. Peptide identification was limited to 
AHA-containing peptides. After data analysis, quantified AHA proteins were reported in four heavy/light mix-
tures: Day0/Day0, Day3/Day0, Day7/Day0, and Day14/Day0. Across all samples, over 500,000 non-unique AHA 
peptides were identified representing 6,614 protein groups.

The percentage of heavy AHA peptides identified in each MS analysis was calculated (Fig. 1B). For the 
baseline (i.e. Day0-Heavy/Day0-Light), ~ 50% of the AHA peptides identified were heavy. With a longer chase 
time, the percentage of heavy AHA peptides identified decreased. Although the baseline was similar between 
liver and brain, the percentage of heavy AHA peptides identified in the liver was significantly less than in the 
brain at Day7 and Day14. Since the ability to identify a peptide in the mass spectrometer is directly related to its 
abundance in the sample, this suggests that heavy AHA proteins become less abundant with longer chase times. 
The heavy AHA proteins identified at each time point in all three biological replicates were assigned to a large 
variety of functions, indicating the QUAD strategy is capable of a global analysis of protein stability (Fig. S1B).

The abundance of the heavy and light AHA peptides were quantified to generate heavy/light ratios. On 
average, 8.3 peptides were quantified per protein. The correlation between biological replicates suggested good 
reproducibility, and thus, accurate quantification (Fig. S2). As the chase time became longer, the heavy/light 
protein ratios became progressively smaller for both tissues (Fig. 1C,D). However, the median ratio in the liver 
was consistently smaller than the median ratio in the brain at all chase time points. Next, an average “protein 
stability trajectory” or PST was graphed for each AHA protein that was quantified at all chase time points. In 
total, 617 and 407 PSTs were determined for brain and liver, respectively. A majority of the proteins followed a 
linear continuous decay, but a smaller subset exhibited non-exponential decay, as previously described25. A wide 
distribution of trajectories was observed in both tissues, but more trajectories from the liver appeared to have a 
steeper slope than from the brain, (Fig. 2A,B; Table S1 and S2). To further investigate, the slope was calculated 
for each PST. A slope of zero would indicate no change in AHA protein abundance over time (i.e. very stable). 
The average brain slope (−0.11) was significantly (p < 0.0001) different from liver (−0.16) (Fig. 2C). In the brain, 
the myelin basic protein(MBP), sirtuin-2, and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase(CNP) were among 
the most stable proteins while cofilin-1 was one of the least stable (Fig. S1C), which is consistent with previous 
reports12,15. We found no evidence in the literature that slopes were previously calculated to extract protein sta-
bility information; instead, published protein tissue turnover papers calculated protein half-lives. The protein 
half-lives of the liver and brain datasets in Fig. 2A,B were calculated and compared to the slope. There was a 
significant correlation (r = 0.84, p < 0.0001) between the two measurements (Fig. S1D, Table S3). Finally, we tested 
whether any intrinsic protein characteristics could contribute to the differences in PST. There was no correlation 
between slope and molecular weight (Fig. S3A), abundance (Fig. S3B), or transmembrane regions (Fig. S3C). 
Examination of three different databases of intrinsic protein disorder revealed a significantly negative correlation 
between protein disorder and slope, which is consistent with the hypothesis that increases in protein disorder 
correspond to decreased protein stability or decreased slope (Fig. S3D, Fig. S3E, and Fig. S3F)31.

Tissues differentially regulate protein stability.  PSTs were further analyzed by an unsupervised 
learning approach (i.e. clustering analysis), where representative clusters were determined based on the average 
slope and shape trajectory. To increase confidence in our dataset, to qualify for further analysis the PSTs of each 
biological replicate for each protein were required to cluster together. This removed the few spurious PSTs that 
did not exhibit a linear or non-exponential decay. There were six distinct clusters for brain, and three for liver 
(Fig. 2D,E; Table S4 and Table S5). Although some clusters had the same endpoint, the route to that endpoint 
was different, as illustrated by liver cluster B and C. Clusters with shallow slopes (i.e. cluster D, E, and F) were 
unique to brain tissue. For a direct comparison, clustering analysis of PSTs was performed on one dataset con-
taining both the liver and brain. Four clusters were clearly distinguishable (Fig. S4A; Table S6). Proteins from 
both tissues were present in all clusters, but the clusters were biased towards one tissue (Fig. S4B). Most liver 
proteins were assigned to clusters with steep slopes whereas most brain proteins were assigned to the clusters 
with shallow slopes. Almost all identical proteins that were quantified in both liver and brain tissue were less 
stable in the liver compared to the brain (Fig. S4C; Table S7), but no proteins were observed to be less stable in 
the brain than in the liver. Only serum and blood proteins exhibited no stability differences between liver and 
brain (Fig. S4D). Thus, comparison of proteins stability in liver and brain suggests that it can be a defining trait 
of tissues. To further explore how tissues can influence protein stability, a second QUAD dataset was generated 
with an additional three mice to analyze other tissues (kidney, heart, spleen, and lung) and a second analysis of 
liver and brain tissues. For this QUAD analysis, one chase time of 7 days was chosen for analysis because it had 
larger changes in protein stability than the 3 day chase, but more AHA proteins identified than the 14 day chase. 
Consistent with the previous QUAD dataset, brain tissue had a significantly higher average Day7/Day0 quan-
titated ratio than liver, indicating again that AHA proteins are less stable in the liver than in the brain (Fig. 2F; 
Fig. S5A; Table S8). The brain average ratio was also significantly higher than kidney and spleen tissues. Heart 
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tissue had a similar stability profile as brain tissue with significantly higher average ratio than liver, spleen and 
kidney. Overall, QUAD analysis revealed distinct protein stability trends can define a tissue proteome.

Subcellular localization and protein function can influence protein stability.  We investigated 
whether protein stability is associated with any cellular characteristics within a tissue. For this analysis, the brain 
dataset pictured in Fig. 2E was employed because it contained a wide range of PST. Clusters D, E, and F were clas-
sified as “stable” proteins and clusters A, B, and C were classified as “unstable” proteins. GO enrichment analysis 
of subcellular compartments revealed mitochondrial compartments and actin cytoskeleton were enriched in the 
stable dataset, while cytosol, endosomes, axons, and perinuclear compartment were enriched in the unstable 
dataset (Fig. 3A). Since the number of mitochondria can vary between tissues, we tested whether the number 
of mitochondrial proteins found in different tissue datasets (Fig. 2F) accounted for the differences in protein 
stabilities observed in different tissues. Indeed, there were large differences in the proportion of mitochondrial 
proteins, ranging from 46.8% in the heart to 13.1% in the spleen (Fig. 3B). The tissue analysis was repeated, but 
this time we analyzed the mitochondrial and non-mitochondrial proteins separately (Fig. 3C and Table S9). 
The high percentage of mitochondrial proteins in the heart appeared partially responsible the greater stability 
observed in previous analysis. The brain proteome, however, appears to be more stable than other tissues regard-
less of how the data was analyzed.

It was determined whether any signaling pathway or cellular function was associated with protein stability. 
The most significantly enriched pathway in the unstable dataset (p value = 2.05 e-16) was protein metabolism, 
which included protein synthesis (Fig. S5A; Table S10). In contrast, the stable dataset was significantly enriched 
(p value = 1.43 e-16) in the cytoskeleton, which included cytoskeleton proteins and proteins that regulate the 
cytoskeleton (Fig. S5B; and Table S11). To provide further evidence for the results of the enrichment analysis, 
the degradation of a cytoskeleton protein (i.e. β-actin) was compared to the degradation of a translational pro-
tein (i.e. elongation initiation factor 2 alpha (EIF2α)) using antibodies (Fig. 3D). At 14 day immunoreactivity 
for both antibodies was decreased from 3 day, suggesting AHA protein degradation for both antibodies, but the 
decrease was significantly larger for EIF2α. β-actin decreased ~ 30% from 3 to 14 day while EIF2α decreased ~ 75% 
(Fig. 3E). However, there were significantly enriched pathway shared between the stable and unstable datasets. 
Proteins in these shared pathways showed many functional relationships between the stable and unstable pro-
teins (Fig. S6), demonstrating that stable and unstable proteins can interact functionally in signaling networks.

Figure 2.   PST are calculated for liver(A) and brain(B) using average AHA protein ratio for three mice at each 
chase time point. All data has been natural log transformed. (C) The distribution of the slopes of the PST is 
unique for each tissue. The slopes were calculated for the PST reported in Figs. 2A and 2B and plotted in a 
histogram with the percentage of slopes on the y-axis. The average slope for each tissue is in parentheses and 
was significantly (p < 0.0001) different using a two-tail t-test. Clustering analysis was performed on the PST 
from liver (D) and brain (E) separately to identify global trends in each tissue. For each cluster, the average 
protein heavy/light ratio and standard deviation at each time point was plotted. The number of proteins in each 
cluster is in parentheses in the legend. F, Quantitative differences between the average Day7/Day0 AHA protein 
averages of multiple tissues from three mice. One-way ANOVA analysis resulted a p-value of 0.0003. Asterisks 
indicate the p-values from Bonferroni’s post-hoc test between individual tissues. Brain was significantly different 
from liver**, spleen*** and kidney** and heart was also significantly different from liver*, spleen**, and kidney*. 
*p < 0.05, **p < 0.01, ***p < 0.001.
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Protein complexes subunits share similar protein stability.  To investigate whether unstable and 
stable proteins physically interact in vivo, the stable and unstable datasets were analyzed together using the data-
base of mammalian complexes, CORUM32. Seventy-seven percent of the identified protein complexes contained 
either only stable proteins or only unstable proteins (Fig. S7A and Table S12). This is consistent with previous 
publications that reported that subunits of protein complexes possess similar protein turnover rates in mam-
malian tissues15,30. Protein complexes whose subunits possess a wide range of turnover rates have been identified 
(such as the Cop9 signalosome), but this is hypothesized to be related to distinct complex sub-populations with 
unique subunit compositions15. Interestingly, QUAD analysis revealed that the TRIC (TCP-1 Ring Complex) or 
complex chaperonin containing TCP1 complex (CCT) possess subunits with both stable and unstable subunits. 
The well-studied TRiC complex is a molecular chaperonin that consists of two ring structures, with each ring 
comprising eight subunits (CCT 1–8). The subunits are structurally similar, with an ATP-binding equatorial 
domain and an apical substrate-binding domain linked by an intermediate domain33. Statistical analysis con-
firmed that CCT6a, CCT7, and CCT8 are significantly less stable than the CCT4 and CCT5 subunits (Fig. 3F).

Since the TRIC complex structure has not been studied in brain, we postulated that a non-canonical TRIC 
complex may exist in the brain. To provide additional evidence for non-canonical TRIC complexes, experi-
ments were performed to determine if localization differences exist between stable and unstable CCT subunits. 
Commercial CCT antibodies failed to produce specific staining for immunohistochemistry(data not shown), so 
sucrose fractionation was employed to examine the nuclear, synaptosomal, and mitochondrial fractions34. CCT 
subunits have been identified in published MS proteomic datasets of these fractions35–37. We used immunoblots 
to compare the immunoreactivity (IR) of CCT5 and CCT8 in total brain homogenate to these fractions, and 
found that CCT5 was significantly more enriched than CCT8 in the synaptosomal and nuclear compartments 
(Fig. 4A–C). The CCT subunits were detected in the mitochondrial fraction, but in much lower abundance than 

Figure 3.   (A) GO analysis of stable and unstable protein datasets demonstrated significant enrichment of 
different subcellular components. The four most significantly enriched localizations are reported. Y-axis 
represents the negative log2 of p-value of enrichment. B) The percentage of mitochondrial proteins quantified 
in each tissue dataset is shown in Fig. 2F. (C) Re-analysis of the data in Fig. 2F. Comparison of the average 
Day7/Day0 protein ratio of mitochondrial (“mito” in red) and non-mitochondrial (“non-mito” in black) 
proteins in different tissues. One-way ANOVA analysis test computed a p-value of < 0.0001. All p-values from 
a post-hoc Tukey’s multiple comparisons test are in Table S9. The significant differences to the brain non-
mitochondrial dataset from the Tukey’s test are shown in the figure. (D) Immunoblot analysis confirmed 
differences in stability between a translational (EIF2α) and a cytoskeletal (β-actin) protein. Click reaction was 
performed on brain homogenates from three mice at 3 day and 14 day. Samples were analyzed before (Input) 
and after (AHA) neutravidin enrichment. The images represent four separately processed immunoblots. The 
uncropped immunoblot images are in Fig. S8. (E) Significant difference between the stability of actin and 
EIF2α was observed with immunoblot analysis. Quantification of the pixel intensity of the immunoreactivity 
of the enrichment samples in Fig. 3D demonstrated a larger significant (p < 0.05*) difference between 3 and 
14 day with EIF2α than with actin. The y-axis shows the percent decrease in immunoreactivity between 3 and 
14 day. A two-tailed t-test was performed. (F) Significant differences in the stability of different TRIC complex 
subunits were observed in brain tissue. The average protein heavy/light ratio from biological replicates at each 
time point was plotted for subunits of the TRiC complex from brain tissue. One-way ANOVA analysis was 
performed on the subunit ratios at each time point. There was a significant difference observed at 7 day(p < 0.01 
) and 14 day(p < 0.0001). Multiple Comparison post-hoc test was performed to determine which subunits were 
significantly different. At 7 day, CCT4 vs CCT6a* and CCT4 vs CCT8*. At 14 day, CCT4 vs CCT6a***,CCT4 vs 
CCT7*, and CCT4 vs CCT8**, CCT5 vs CCT6a****, CCT5 vs CCT7**, and CCT5 vs CCT8***. Figures depict 
the Bonferroni’s p-values. *p < 0.05, **p < 0.01, ***p < 0.001,****p < 0.0001.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15983  | https://doi.org/10.1038/s41598-020-72410-y

www.nature.com/scientificreports/

the other fractions. Detection of mitochondrial CCT IR led to saturation of the CCT IR in the total homogenate, 
preventing quantitation of the immunoblots.

Age influences protein stability in brain tissue.  Proteostasis dysfunction has been implicated in age-
related neurological disorders38. To assess how age affects protein stability, QUAD analysis was applied to brain 
and liver tissue from 1-year old mice and compared to the two-month old mouse dataset (Fig. 2F) using the 
Day7 chase time point. There was a higher percentage of heavy Day7 peptides in brain than in liver regardless 
of age. In addition, there was a significantly higher percentage of heavy Day7 peptides identified in 1-year old 
brains than in 2-month old brains, but there was no significant difference between 2-month old and 1-year old 
livers (Fig. 4D). Next, the AHA proteins that were quantified in three mice at 2-months and at 1-year were com-
pared. At 1-year, the Day7/Day0 protein ratios were equal to or greater than the ratios of the 2-month old brains 
(Fig. 4E; Table S13), but these ratios were evenly distributed in liver (Fig. 4F; Table S14). Annotation of protein 
functions of the proteins significantly altered in brain with age revealed a wide variety of functional classes, most 
of which were also observed in the liver analysis (Fig. S7B). Furthermore, there were four proteins in the brain 
that were significantly altered with age; these proteins were quantified in the liver analysis but were not found 

Figure 4.   (A) Representative immunoblot of fractionated brain tissue. A = unfractionated brain, B = nuclear 
fraction, C = synaptosomal fraction, and D = mitochondrial fraction. Fractionation was validated by the 
enrichment of proteins known to reside in each compartment: HDAC2(nuclear protein), SynGAP(synaptic 
protein), and COX IV (mitochondrial protein). The images represent five separately processed immunoblots. 
The uncropped immunoblot images are in Fig. S9. (B) Quantitation of the CCT5 and 8 IR in the synaptosomal 
(B) and nuclear (C) fraction normalized to the CCT IR in unfractionated brain; N = 4. (D) The number of AHA 
peptides identified from a 7 day chase period was decreased in 2-month old brains compared with 1-year old 
brain. The average percentages of heavy AHA peptide identified (y-axis) from the total AHA identifications 
(i.e. light plus heavy) were calculated from MS analysis. N = 3. One-ANOVA analysis with Bonferroni’s post-
hoc test was performed. Figure depicts the Bonferroni p-values for 1-year old brain. *p < 0.05, **p < 0.01, 
***p < 0.001,****p < 0.0001. Bonferroni p-values not in the figure: 2mo-Brain vs. 2mo-Liver **, 2mo-Brain vs. 
1 yr-Liver **, and 2mo-Liver vs. 1 yr-Liver not significant. (E) AHA proteins have a slower degradation rate in 
brains from 1-year old mice than 2-month old mice. (F) AHA proteins have similar degradation rate in livers 
from 1-year old mice than 2-month old mice. x-axis is the log2 fold change plotted as 1-year/2-month. Each 
point represents the average Day7/Day0 protein ratio, calculated from three mice in each age group. The y-axis 
is the log10 p-value with the red line representing the significant value filter 0.05.
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to be significantly altered (Fig.  S7C). Thus, this QUAD analysis demonstrates that global protein stability is 
enhanced with age in brain tissue, but age has no detectable effect on protein stability in liver tissue.

Discussion
The QUAD method directly quantitates the loss of AHA proteins from tissue proteomes to accurately quantitate 
the stability of individual proteins. In contrast, previous publications have reported global protein turnover rates 
in tissues by measuring both increase of unlabeled peptides with the loss of identical labeled peptides or vice 
versa. These synthesis and degradation measurements data are used to calculate the protein turnover. Another 
difference between QUAD analysis and previous protein turnover studies is that the protein degradation rates 
were calculated using the slopes of the PSTs while the protein turnover studies calculate half-lives. However, it was 
demonstrated that slopes and half-lives calculations are highly correlated with each other. In addition, tissues have 
different AA incorporation rates which can interfere with comparisons between tissues13. The QUAD method 
ignores the variability of AA incorporation and protein synthesis and solely measures protein degradation rates 
in tissues. The nature of AHA offers a clear advantage of QUAD over protein turnover studies, because results can 
be verified by immunoblots as shown here and possibly by imaging using FUNCAT​39. One important factor in 
protein turnover studies is the uptake and recycling of heavy and light AAs after protein degradation. However, 
mathematical models have helped reduce this problem in turnover calculations30, and the unique nature of AHA 
may further minimize it. After the AHA diet without Met, the mice are placed on normal Met containing mouse 
diet. Met affinity for the Met tRNA synthetase is more than 300 fold greater than AHA, and even a small amount 
of Met has been reported to decrease AHA incorporation40,41. Since the first timepoint was recorded at 3 days 
chase, uptake and recycling of AAs will have minimal or no effect on calculated stability, but it is still a caveat 
that should be taken into consideration, especially if examining timepoints < 3 days.

Nevertheless, our analysis using QUAD and the protein turnover studies both demonstrated that differences 
exist between tissues providing verification of our novel method. For example, Price et al. reported that the 
average protein turnover in liver was faster than in brain, similar to the findings of this study15. The difference 
between liver and brain protein stabilities is mostly likely due to the higher metabolic rate of liver than brain. 
This metabolic difference stems from liver being composed of dividing cells while the brain is a mixture of 
dividing (i.e. glia) and non-dividing cells(i.e. neurons)13,42. Our analysis also demonstrated that heart and brain 
tissue exhibit high protein stability compared to other tissues. Further analysis indicated that the high number 
of mitochondria in the heart was partly responsible for this high protein stability, but mitochondria did not 
appear to contribute to the high stability observed in brain tissue. Fornasiero et al. also reported that removing 
mitochondrial proteins from their protein turnover study revealed that brain was more stable than heart tissue30. 
This is strong evidence that the cellular environment is one of the main factors that determine protein stability 
and that measurement of degradation alone can define the uniqueness of tissue proteomes. Although the specifics 
of the cellular environment that contribute to a tissue characteristic degradation pattern is not entirely known, 
the presence of non-dividing cells is most likely an important trait as they are present in the most stable tissues 
(i.e. brain and heart). Further investigation, however, is required to fully elucidate the mechanism underlying 
these tissue specific protein stability patterns.

Within a tissue, there is also a large range of protein stabilities, and stability was not correlated with intrinsic 
protein characteristics, such as abundance, size, or structure (i.e. transmembrane regions). Price et al. did not 
observe any significant correlation between abundance and protein turnover, and while Fornasiero et al. found a 
correlation, it was a weak association (r2 = 0.11). Fornasiero et al. and our study both show a significant negative 
correlation between stability and intrinsic protein disorder, and both studies had similar weak correlation values 
(i.e. Fornasiero et al. r2 = 0.009 and this study r2 = 0.046). This supports the hypothesis that increased intrinsic 
protein disorder contributes to protein instability, but with a weak association, and it suggests that it has a minor 
influence31. In addition, our analysis observed that specific protein localizations and functions could be distin-
guished by protein stability, which has also been reported in tissue protein turnover studies15,30. Compared with 
the rest of the proteome, mitochondrial proteins were observed to be more stable. It is unclear if this is related 
to the mitochondrial function or the organelle microenvironment. Translational machinery was enriched in 
unstable proteins, and cytoskeletal proteins were enriched in stable proteins. Since the cytoskeleton provides the 
basis for cell polarity and intracellular transport, stability would be needed for these essential structural functions. 
Translation is just as essential for cellular function as the cytoskeleton, but stability of translation machinery may 
be deleterious to the cell since the overproduction of translational initiation factors is observed in cancer43. In 
animal models, it has also been reported that overexpression of initiation factors can increase the susceptibility 
to tumors, and reduction can suppress tumor development44–47. This suggests that tight control of translation 
factors through degradation is a crucial mechanism to prevent tumorigenesis.

It has been suggested that metabolism of coordinated subunits within a protein complex would prevent 
the presence of incomplete or non-functional complexes15. It also has been suggested that finding common 
degradation trends in the proteome may lead to the identification of new protein complexes30. Surprisingly, we 
detected significant stability differences between protein subunits of the TRIC chaperonin complex and postu-
lated that this might indicate a non-canonical chaperonin in the brain. The identification of subunit differences 
in different subcellular compartments provides further evidence for this hypothesis. It has been reported that 
all subunits are required for chaperonin function, as deletion or mutation of any subunits is sufficient to impair 
the function of the chaperonin in cultured cells48. Detailed structure analyses have confirmed the existence of 
the eight-subunit chaperonin49–51, but there has been indirect evidence to suggest an alternative structure. This 
evidence includes the large difference in the subunit mRNA levels in mouse testes52 and brain regions53. In cul-
tured cells, exogenously expressed subunits have been localized to different subcellular compartments54–56 and 
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revealed subunit-specific phenotypes54,57–59. In summary, we believe the data demonstrates that the quantitation 
of protein stability rates in tissues can lead to new insights and hypotheses in basic and translational research.

Protein degradation is a crucial component of proteostasis, which has been postulated to decline with age. 
In C. elegans, protein turnover was reported to be slower in the adult worm than in the developing worm60, but 
no global studies in mammalian tissues could be found in the literature. Age-related decline of proteostasis in 
the brain has received considerable attention because age is a major risk factor for neurodegenerative diseases. 
A common pathological feature of these disorders is the accumulation and aggregation of misfolded proteins61. 
It has been hypothesized that age-related impairment of protein folding machinery leads to the observations 
of pathological misfolded proteins62. Our data suggests there is an age-related decline in protein degradation. 
Although this is the first study to quantify global degradation rates in tissues, other laboratories have demon-
strated that chemical or genetic modification of autophagy or proteasomal degradation can affect neurological 
health in old mice. For example, induction of autophagy by rapamycin in vivo lowers intracellular amyloid beta 
levels and improves cognition63, and long-term rapamycin treatment reduces plaque load in Alzheimer’s disease 
mouse models64. Thus, we postulate that a global decline in protein degradation in brain tissue contributes to the 
vulnerability of the elderly to neurological diseases associated with protein misfolding.

In summary, deleterious changes in protein degradation have been implicated in diseases in almost every 
human tissue. QUAD analysis allows the global quantification of protein stability rates in any mouse tissue, 
which then can be extended to any mouse model of disease. Identification of changes in protein stability rates 
can precede detectable changes in the whole proteome, and possibly portend a disease phenotype. Interventions 
early in a disease have the greatest potential to prevent permanent damage to cells and tissues and early pertur-
bations in the proteome may indicate that something is starting to go wrong. Thus, the temporal resolution of 
QUAD can identify alterations in protein stability prior to development of disease phenotypes, thus identifying 
potential targets to ameliorate or prevent pathogenesis. With the development of non-canonical amino acids with 
cell-type specificity65, AHA can be replaced to allow QUAD analysis to quantitate cell-specific protein stability 
in animal models of disease.

Materials and methods
Animals.  Mice were housed in plastic cages located inside a temperature- and humidity-controlled animal 
colony and were maintained on a reversed day/night cycle (lights on from 7:00 P.M. to 7:00 A.M.). Animal facili-
ties were AAALAC (Association for Assessment and Accreditation of Laboratory Animal Care ) approved, and 
protocols were in accordance with the IACUC(Institutional Animal Care and Use Committee). Male C57BL/6 
1 month old mice were used for all experiments except those represented in Fig. 4E,F where 2-month and 1-year 
old mice were used. For the QUAD analysis, mice were fed the AHA diet for 4 days, as previously described29. 
AHA was purchased from Click Chemistry Tools (Scottsdale, AZ) and given to Envigo (Madison, WI) to manu-
facture the AHA mouse pellets. After 4 days, the mice were either sacrificed or returned to normal mouse feed 
for various times, as described in the Results section. Animals were anesthetized with halothane and sacrificed 
by decapitation. The whole tissues were quickly removed, dissected, and snap-frozen in liquid nitrogen.

Tissue preparation.  Tissues were prepared as previously described29. Briefly, the tissues were dissected 
into small pieces and homogenized at 4 °C using the Precellys 24 homogenizer in PBS with protease and phos-
phatase inhibitors (Roche,Indianapolis, Indiana). For fractionation, brain tissue was homogenized in a teflon 
dounce grinder on ice in PBS with protease and phosphatase inhibitors (Roche, Indianapolis, Indiana). After 
homogenization, protein concentration was determined with a Pierce BCA protein assay (Life Technologies, 
Grand Island, NY).

Click chemistry.  For MS analysis, 10 mg of each biological replicate plus 10 mg for the internal standard 
(Day0) were used, except in the experiments described in Fig. 4E,F where 5 mg were used for each biological 
replicate plus 5 mg for the internal standard (Day0). For immunoblot analysis (Fig. 3D), 4 mg of starting mate-
rial was used. Sodium dodecyl sulfate was added to the homogenized tissues at final concentration of 0.5%. The 
homogenate was then sonicated with a tip sonicator and was divided into 0.5 mg aliquots. A click reaction was 
performed on each aliquot. The click reaction protocol has been previously published66. In brief, for each click 
reaction, the following reagents were added in this order: (1) 30 μL of 1.7 mM TBTA, (2) 8 μL of 50 mM cop-
per sulfate, (3) 8 μL of 5 mM light biotin-alkyne (C16H24N4O3S, Seterah, Eugene, OR) or heavy biotin-alkyne 
(C13H24N3O3S13C3

15N, Seterah, Eugene, OR), and (4) 8 μL of 50 mM TCEP. For the reaction described in Fig. 3D, 
biotin-PEG4-alkyne from Click Chemistry Tools (Scottsdale, AZ) was used. PBS was then added to a final vol-
ume of 400 μL and the reaction was incubated for 1 h at room temperature. The click reactions for each sample 
were combined and precipitation was performed with 25% TCA.

Digestion and biotin peptide enrichment.  Precipitated pellets were resuspended with MS-compatible 
surfactant ProteaseMAX (Promega, Madison, WI) and urea, then reduced, alkylated, and digested with Tryp-
Zean trypsin (St. Louis, MO, Sigma-Aldrich) at 1:25 dilution with the protein sample as previously described29. 
The digested solution was centrifuged at 13 000  g for 10  min. The supernatant was removed, and the pellet 
was resuspended with PBS and centrifuged at 13 000 g for 10 min. Supernatants were combined and 300 μL of 
neutravidin agarose resin (Thermo Fisher Scientific, Rockland, IL) was added. The resin was incubated with the 
peptides for 2 h at room temperature while rotating; then the resin was washed five times with PBS. The peptides 
were eluted four times with 250 µl 80% acetonitrile, 0.2% formic acid, and 0.1% TFA. The elutions were dried 
with a speed-vac and stored at − 80 °C until MS analysis.
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Mass spectrometry analysis.  Enriched dried peptides were resolubilized in Buffer A (5% ACN, 95% 
water, 0.1% formic acid) and were pressure-loaded onto a 250-μm i.d. capillary with a kasil frit. The capillary 
contained 2 cm of 10 μm Jupiter C18-A material (Phenomenex, Ventura, CA), followed by 2 cm 5 μm Parti-
sphere strong cation exchanger (Whatman, Clifton, NJ). This loading column was washed with buffer A. After 
washing, a 100 μm i.d. capillary with a 5 μm pulled tip packed with 15 cm 4 μm Jupiter C18 material (Phe-
nomenex, Ventura, CA) was attached to the loading column with a union, and the entire split-column(loading 
column-union-analytical column) was placed in-line with an Agilent 1,100 quaternary HPLC (Palo Alto, CA). 
The sample was analyzed using an eleven step MudPIT, which is a salt-step separation previously described22. As 
peptides eluted from the microcapillary column, they were electrosprayed directly into a Velos mass spectrom-
eter (ThermoFisher, Palo Alto, CA) with the application of a distal 2.4 kV spray voltage. A cycle of one full-scan 
FT mass spectrum (300 − 1,600 m/z) at 60 000 resolution followed by 20 data-dependent IT MS/MS spectra at a 
35% normalized collision energy was repeated for each step of the multidimensional separation. For the analysis 
described in Fig. 4E,F, a nano-Easy HPLC (ThermoFisher) with an Elite mass spectrometer (ThermoFisher) was 
used with the MS settings previously described22.

Analysis of mass spectra.  MS1 and MS2 (tandem mass spectra) were extracted from the XCalibur data 
system format (.RAW) into MS1 and MS2 formats using RawExtract67. The MS2 files were interpreted by Pro-
lucid and results were filtered, sorted, and displayed using the DTA Select 2 program using a decoy database 
strategy filtering for only fully tryptic peptides with a 5 ppm mass accuracy68,69. Searches were performed against 
UniProt mouse database released on 03-25-2014. No enzyme specificity was considered for any search. The 
following modifications were searched for: (1) static modification of 57.02146 on cysteine for all analyses, and 
(2) differential modification of 351.1774 (heavy) or 347.1702 (light) on methionine for AHA bound to a biotin-
alkyne. The protein false discovery rate was < 1%. pQuant used the MS1 and DTASelect-filter files for the quanti-
fication of the heavy/light ratios using a 0.1 quality filter as previously described29,70. Proteins were only reported 
if at least one unique peptide was quantified. Redundant or subset proteins were not reported.

Sucrose fractionation of brain tissue.  Brain tissue was fractionated as previously described34. Briefly, 
whole brains were homogenized in 4 mM HEPES(pH 7.4), 0.32 M sucrose (i.e. Buffer H) using a Teflon dounce 
grinder. Homogenates were centrifuged at 800 × g at 15 min at 4 °C. The pellet was resuspended in buffer H and 
centrifuged at 800 × g at 15 min at 4 °C. The nuclear pellet was saved and the two supernatants were combined. 
The supernatant was then centrifuged at 10, 000 × g for 15 min at 4 °C. The pellet was resuspended in Buffer H 
and fractionated using a discontinuous sucrose gradient consisting of 0.85, 1.0, and 1.2 M sucrose at 100,000 × g 
for 2 h at 4 °C. After centrifugation, the synaptosomal and mitochondrial fractions were isolated at the 1.0/1.2 
interface and the pellet respectively. The nuclear pellet was resuspended in Buffer H with 0.5% NP-40 and incu-
bated on ice for 1hour. The sample was then centrifuged at 1,000 × g for 10 min. The pellets were washed with 
Buffer H with 0.5% NP-40 three times. Protein concentration was determined with a Pierce BCA protein assay 
(Life Technologies, Grand Island, NY).

AHA protein enrichment for immunoblot analysis.  The precipitated pellet was re-suspended in 8 M 
urea. This suspension was centrifuged, the supernatant was saved, and the resulting pellet was resuspended in 
5% SDS and heated at 100C for 10 min. After heating, the suspension was centrifuged, and the supernatants were 
combined and enriched with Neutravidin beads for 2hours at room temperature while rotating. The beads were 
washed with PBS. The proteins were eluted with 4X Laemmli Sample Buffer (Bio-Rad) with β-mercaptoethanol, 
and the elution was used for immunoblot analysis.

Immunoblot analysis.  Tissue samples were solubilized with 4X Laemmli Sample Buffer (Bio-
Rad) with β-mercaptoethanol , separated with 4–12% Bis–Tris gradient gel(Life Technologies), trans-
ferred to PVDF blotting paper, and developed as previously described71. The immunoblotting antibod-
ies were β-actin(Sigma#A5441), CCT5(Scbt#sc-377261), CCT8(Scbt#sc-376188), COXIV(CST#4,850), 
EIF1A(CST#2,538), HDAC2(ProteinTech#12,922–3), and SynGAP(Abcam#ab3344). The immunoblots were 
quantitated as previously described34.

Bioinformatic analysis.  Protein function was assigned using Panther, as shown in Fig. S1B72. The slopes 
were calculated with the linear function: y = mx + b. AHA protein half-lives were estimated using a method simi-
lar to that presented by Dörrbaum et al.73. Specifically, average AHA protein ratios at each chase time point were 
calculated for the three mice. For each protein linear regressions were then performed on the ln-transformed 
average AHA protein ratios. If sp is the slope of the resulting linear function for AHA protein p , the degradation 
constant �p is then estimated as −sp . AHA protein half-lives (in days) T1/2p are then estimated as follows:

Transmembrane proteins (Fig. S3C) were determined using UniprotKB74. For the disorder correlation 
(Fig. S3D-F), Mobi-lite software was used to determine the Disorder Consensus75 and Esprite software was 
used to determine disorder from X-ray and NMR databases76. PST clustering analysis was performed using 
Ward’s algorithm77 and Euclidean distance as a distance measure between PSTs. This clustering analysis was 
implemented in R for dendrogram generation using the OompaBase v.3(https​://oompa​.r-forge​.r-proje​ct.org/) 
and ClassDiscovery v.3 (https​://www.rdocu​menta​tion.org/packa​ges/Class​Disco​very) packages. Clusters were 

T1/2p =
ln(2)

�p

https://oompa.r-forge.r-project.org/
https://www.rdocumentation.org/packages/ClassDiscovery
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determined upon dendrogram visual inspection, the average slope, and shape trajectory. Localization analysis 
in Fig. 3A was performed by FunCoup v3.078,79. Mitochondrial proteins in Fig. 3B,C were annotated using the 
UniprotKB database. Ingenuity Pathway Analysis(version: IPA Fall Release (September 2016); https​://digit​alins​
ights​.qiage​n.com/produ​cts-overv​iew/disco​very-insig​hts-portf​olio/analy​sis-and-visua​lizat​ion/qiage​n-ipa/) was 
used to calculate significantly enriched cellular functions (Fig. S5A and B)80. For protein interaction analysis 
(Fig. S7A), the entire CORUM database was searched for complexes with at least two proteins from our data 
and redundant complexes were discarded. For the correlation matrix (Fig. S2), a Pearson’s correlation coefficient 
was calculated for all pair-wise comparisons between the 24 experiments using the log2 ratio values from the 
common proteins between each pair of experiments.
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