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Abstract

Motivation: Characterizing drug–protein interactions (DPIs) is crucial to the high-throughput screening for drug dis-
covery. The deep learning-based approaches have attracted attention because they can predict DPIs without human
trial and error. However, because data labeling requires significant resources, the available protein data size is rela-
tively small, which consequently decreases model performance. Here, we propose two methods to construct a deep
learning framework that exhibits superior performance with a small labeled dataset.

Results: At first, we use transfer learning in encoding protein sequences with a pretrained model, which trains gen-
eral sequence representations in an unsupervised manner. Second, we use a Bayesian neural network to make a ro-
bust model by estimating the data uncertainty. Our resulting model performs better than the previous baselines at
predicting interactions between molecules and proteins. We also show that the quantified uncertainty from the
Bayesian inference is related to confidence and can be used for screening DPI data points.

Availability and implementation: The code is available at https://github.com/QHwan/PretrainDPI.

Contact: whjhe@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying novel drug–protein interactions (DPIs) has been studied
broadly for the prediction of potential side effects (Mizutani et al.,
2012), toxicities (Liebler and Guengerich, 2005) and repositioning
of drugs (Pushpakom et al., 2019; Xue et al., 2018). However, quan-
tifying the DPI of every possible drug–protein pairs is prohibitively
time-consuming and expensive since it requires individual experi-
ments or simulations for each and every pairs.

With the development of public datasets for protein sequences
and molecule–protein interactions (Liu et al., 2007, 2015), machine
learning-based methods (Fokoue et al., 2016; He et al., 2017;
Vamathevan et al., 2019; Wen et al., 2017) have emerged as candi-
dates for fast DPI identification. Recently, deep neural networks
(DNNs) have attracted attention because they outperform other ma-
chine learning-based methods in various tasks, such as computer vi-
sion (He et al., 2015) and natural language processing (Devlin et al.,
2019; Vaswani et al., 2017).

In usual DPI task, a protein is represented as a one-dimensional
long sequence of amino acid characters. Thus, deep learning models
for natural language processing have been broadly used to obtain
useful protein features from the sequences. Previous studies in this

approach include using recurrent neural networks with long short-
term memory (LSTM) (Hochreiter and Schmidhuber, 1997) or gated
recurrent unit (Cho et al., 2014) layers for their ability to identify
long-term dependencies in sequential data (Gao et al., 2018; Karimi
et al., 2019; Wang et al., 2020). Other studies have used convolu-
tional neural networks (CNNs) (Lee et al., 2019; Öztürk et al.,
2018; Shin et al., 2019; Tsubaki et al., 2019; Zhang et al., 2019) to
extract hidden local patterns in sequences. Different representations
of proteins, such as two-dimensional contact maps (Jiang et al.,
2020; Zheng et al., 2020) or three-dimensional atom coordinates
(Lim et al., 2019; Morrone et al., 2020), in addition to one-
dimensional sequences, have also been used to increase model
performance.

Supervised training of high-capacity DNN models from scratch
requires a large amount of labeled training data points. For example,
Mahajan et al. (2018) showed that more labeled data is required to
increase accuracy after training 109 images. However, currently
available DPI datasets usually contain thousands of labeled protein
sequences, a small number compared to the >195 M unrevealed
interaction information in UniProtKB (UniProt Consortium, 2015).
The lack of qualified labeled data points suppresses the usage of
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more elaborated deep learning architectures, which could potential-
ly increase performance and reliability (Brigato and Iocchi, 2020).
In particular, the scarcity of labeled data of biology- and chemistry-
related tasks has been suggested consistently (Ryu et al., 2019;
Vamathevan et al., 2019) although the labeling requires expensive
and time-consuming experiments.

To overcome the difficulties of learning with limited data, sev-
eral studies have proposed methods to increase the expressiveness of
deep learning models without additional endeavor to label gener-
ation. Of those, transfer learning uses a model pretrained with a
large corpus of data on different tasks. This pretrained model is then
transferred to the target tasks by adding classification layers and
fine-tuning with the original small dataset. Transfer learning
approaches have shown substantial performance improvement in
computer vision (Kornblith et al., 2019), natural language process-
ing (Devlin et al., 2019) and structure-property prediction of mole-
cules (Hu et al., 2020; Winter et al., 2019). In cases where labeled
data is expensive, such as in scientific problems, the pretrained
model can be prepared in an unsupervised manner, using large but
unlabeled datasets. Winter et al. (2019) trained an autoencoder
model with a huge corpus of chemical structures and used it to pre-
dict molecular properties. Villegas-Morcillo et al. (2020) showed
that supervised classification tasks with a pretrained protein se-
quence model could achieve competitive performance with other
complicated models. On the other hand, in the study of protein–
drug interactions where encoding long protein sequence is import-
ant, previous works used small protein–drug interaction datasets
which only contain few tens of thousands of protein sequences.
Adopting a pretrained model trained on a vast amount of protein
sequences could be used to construct a more robust protein–drug
interaction classification model.

Another method to obtain a more robust and reliable model
with a small dataset is the Bayesian neural network (BNN) (Gal and
Ghahramani, 2015). Compared to a conventional DNN, which
gives a definite point prediction for each given input, a BNN returns
a distribution of predictions, which qualitatively corresponds to the
aggregate prediction of an ensemble of different neural networks
trained on the same dataset. Direct implementation of BNN is in-
feasible because training an ensemble of neural networks requires
enormous computing power. Monte-Carlo dropout (MC-dropout)
approach (Gal and Ghahramani, 2016; Kendall and Gal, 2017) ena-
bles training BNNs in reasonable time by approximating the poster-
ior distribution of network weights by a product of Bernoulli
distributions using dropout layers.

Here, we propose an end-to-end deep learning framework for
highly accurate DPI prediction with transfer learning and BNN. The
transfer learning method is used to obtain protein-level representa-
tions from the pretrained model. We choose the pretrained model as
a stacked transformer architecture trained with 250 million un-
labeled protein sequences in an unsupervised manner (Rives et al.,
2019). The protein embeddings extracted from the pretrained model
are prepared with a large corpus of sequences and are expected to
have a large expression capacity. The molecules are represented by
molecular graphs and are encoded through the graph interaction
network layers. We use three public DPI datasets, and the estimation
of the model performance shows that our proposed model outper-
forms previous baseline approaches. Further study shows that the
choice of the pretrained model and the GraphNet is essential to the
increase of prediction accuracy. From the BNN, we can estimate
the prediction uncertainty by sampling outputs. The proposed model
correctly decomposes estimated uncertainty into model-based and
data-based elements. These uncertainties can further be used to vir-
tually screen data points, which excludes data points with high un-
certainty to increase model prediction. In summary, the main
contributions of our work are as follows.

1. We propose the first approach to predict DPI with the BNN

framework and the pretrained protein sequence model;

2. our method demonstrates highly accurate predictions on three

public DPI datasets; and

3. the output of the BNN can estimate the confidence of the data

points.

2 Materials and methods

2.1 Datasets
We evaluate our model and other baseline models on three public
DPI datasets: the BindingDB dataset (Gao et al., 2018), the Human
dataset (Liu et al., 2015) and the C. elegans dataset (Liu et al.,
2015).

2.1.1 BindingDB

BindingDB is a public database of experimentally measured binding
affinities between small molecules and proteins (Liu et al., 2007).
The original dataset contains 1.3 million interaction labels with
quantitative measurements of IC50; EC50 and Ki. We use the binar-
ized version of the BindingDB dataset constructed by Gao et al.
(2018), which contains 39 747 positive interactions and 31 218
negative interactions. The training/validation/testing split is already
defined in the prepared dataset and no cross-validation is adopted.
The training set contains 28 240 positive and 21 915 negative inter-
actions. The validation set includes 2831 positive and 2776 negative
interactions. The test set contains 2706 positive and 2802 negative
interactions.

In the BindingDB dataset, some molecule/protein data points
exist in both train and test datasets. Following suggestions from pre-
vious works (Gao et al., 2018), we further split the test dataset into
four sub-test sets that the model can be learned and applied to pre-
dict the label between a molecule and protein target. The binary
interaction test data is divided by ‘seen’ and ‘unseen’ depending on
whether the protein and molecule are observed in the training data-
set. The combination of seen and unseen can be applied to a specific
task. For example, one can use the seen drug and unseen protein
pair for the drug repositioning task.

2.1.2 Human and Caenorhabditis elegans
Created by Liu et al. (2015), these datasets include highly credible
negative samples of the compound-protein pairs obtained using a
systematic screening framework. Following Tsubaki et al. (2019),
we use the balanced and the unbalanced dataset, where the ratios of
the positive to negative samples are 1:1 and 1:3, respectively. The
human dataset contains 3369 positive interactions between 1052
unique molecules and 852 unique proteins; the C.elegans dataset
contains 4000 positive interactions between 1434 unique molecules
and 2504 unique proteins. Also, we use an 80%/10%/10% training/
validation/testing random split with a five-fold cross-validation
strategy. The ratio of classes (1:1 and 1:3) in the training/validation/
testing sets is preserved.

2.2 Proposed model
In this study, the DPI is defined as a binary label representing the
presence of an interaction. Figure 1a shows the schematic of the pro-
posed model. The input data is a pair of strings consisting of a pro-
tein sequence and a drug SMILES string. The input data passes
embedding layers to be encoded as a pair of representation vectors.
These protein and drug representation vectors are then concatenated
and passed through fully connected layers, resulting in a binary pre-
diction for interaction. In each training cycle, this prediction is com-
pared with the ground truth, and model parameters are tuned to
decrease the difference between the two using the backpropagation
algorithm. To implement BNNs, we apply dropout layers in every
layer except the pretrained layer, the concatenation layer, and the
final fully-connected layer. Detailed descriptions of the model are
given below.

2.2.1 Feature extraction of proteins

A protein sequence is represented as a list of amino acids provided
in the raw training data. Note that we do not use a set of gene
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ontology annotations that provides high-level information on the
protein functions. To extract protein-level embeddings, we use the
pretrained models from Rives et al. (2019), which were trained with
250 million protein sequences in an unsupervised manner. Rives
et al. (2019) used an attention-based transformer architecture
(Vaswani et al., 2017) and found that their model outperforms other
recurrent network-based methods for predicting protein functional-
ity. We select three models, Trans6, Trans12 and Trans34, which
are pretrained with 6, 12 and 34 transformer layers, respectively.

For each protein sequence of length Lp, the pretrained models
output an embedding matrix Xp 2 R

L�d, where d¼768 for Trans6,
Trans12 and d¼1, 280 for Trans34 model. From amino-acid level
feature Xp, we obtain the protein level feature x

ð0Þ
p 2 R

d by averag-
ing over the L amino acids features.

With the protein-level embedding x
ð0Þ
p , we use three 1-dimensional

convolutional neural networks (1D-CNN) to smooth patterns in pro-
tein features. Note that the 1D-CNN gives slightly better performance
than the fully-connected layers.

2.2.2 Feature extraction of drugs

The raw training data of drugs is in the SMILES (Simplified
Molecular Input Line Entry System) format (Weininger, 1988). For
each input SMILES string, we construct a corresponding molecular
graph that contains connectivity and structure information of the
compound.

In the molecular graph, atoms and bonds are represented with
vectors with structural features that characterize the surrounding
chemical environment. The details of the attributes are shown in
Supplementary Table S1, which follow the feature design from

DeepChem (Wu et al., 2018). The graph construction and corre-
sponding feature extraction processes are conducted using RDKit
(Landrum, 2006)—an open-source chemical informatics software.
Initial encodings of the i-th atom and bond between the i- and j-th
atoms are denoted as vectors, v

ð0Þ
i and e

ð0Þ
ij , respectively. These atom

and bond features are updated by a message passing-based graph
network during model inference.

The message passing framework of graph data has been used broad-
ly to predict the properties of crystal (Xie and Grossman, 2018), organ-
ic molecules (Ryu et al., 2019), ice (Kim et al., 2020) and glasses (Bapst
et al., 2020). To extract the drug molecule features, we use the graph
interaction network (GraphNet) model (Battaglia et al., 2016). Figure
1b shows the schematic of the GraphNet mechanism. First proposed by
Battaglia et al. (2016) to infer interactions between objects, the
GraphNet exchanges information between graph edges and nodes and
recursively updates them.

The GraphNet first updates an edge between the i- and j-th
nodes as,

e
ðlþ1Þ
ij ¼ ReLU

�
e
ðlÞ
ij �v

ðlÞ
i �v

ðlÞ
j

�
WðlÞ

e þ bðlÞe

� �
; (1)

where � is the concatenation operator, WðlÞ
e is the weight matrix of

the edge update, and b
ðlÞ
e is the bias. Then the update of the i-th node

is carried out using the features of the node and the sum of its linked
edge features as,

v
ðlþ1Þ
i ¼ ReLU

�
v
ðlÞ
i �

X
j2NðiÞ

e
ðlþ1Þ
ij

�
WðlÞ

v þ bðlÞv

" #
; (2)

where WðlÞ
v is the weight matrix of node update, and bðlÞv is the bias.

After the updates of node and edge states are finalized, we obtain a
graph feature (molecular feature) by gathering all the node and edge
states. As a gathering function, we choose the most typical readout
function, which is an average of every atom and bond states proc-
essed by,

xd ¼
1

Nv

X
i

vi

 !
�

1

Ne

X
i;j

eij

 !
; (3)

where Nv and Ne are the numbers of nodes and edges in the molecu-
lar graph, respectively.

2.2.3 Classifier

We prepare the drug-protein feature vector x by concatenating xp

and xd,

x ¼ xp � xd: (4)

In the classifier block, the feature vector x passes fully connected
layers with ReLU activation to output the final prediction value.
The dimension of the last layer is 2, corresponding to the one-hot
encoding of the binary classification labels.

2.2.4 Bayesian neural network

For a given training set fX;Yg, let pðYjX;wÞ and pðwÞ be model
likelihood and a prior distribution for a vector of model parameters
w ¼ fW1; . . . ;Wkg, where k is the number of layers. In a Bayesian
framework, model parameters are considered as random variables
and the output is defined as

pðy�jx�;X;YÞ ¼
ð

X
pðy�jx�;wÞpðwjX;YÞdw (5)

for a new input x� and a new output y�.
The direct computation of Equation (5) in the neural network is

often infeasible because of the heavy computational cost required to
train an ensemble of weights. Here, we use variational inference,
approximating the posterior distribution with a distribution
pðwjX;YÞ � qhðwÞ parameterized by a low-dimensional variational
parameter h.

(a)

(b)

Fig. 1. An overview of the proposed neural network architecture schematic. (a) The

protein and molecule representations are obtained by passing through the pretrained

transformer model and GraphNet layers, respectively. The protein and molecule

representation vectors are then concatenated and fed into a classifier consisting of

fully connected layers. (b) Mechanism of the message passing in GraphNet. The

GraphNet performs message passing on the molecular graph, recursively updating

graph edges eðlÞ and nodes vðlÞ
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The quality of the variational distribution qhðwÞ is crucial to the
implementation of the BNN. The recently proposed MC-dropout
approach attaches dropout layers to every neural network layer to
approximate the posterior distribution with a product of Bernoulli
distributions (Gal and Ghahramani, 2016). The MC-dropout
method is practical because it does not need a model ensemble dir-
ectly to obtain the variational posterior distribution. Also, the ex-
pectation and the variance of an output can be easily obtained with
the collection of outputs sampled by the repeated inference of a new
input x� while the dropout layers are turned on. Thus, we adopt
MC-dropout in this work.

Performing variational inference with the variational distribution
qhðwÞ results in the variational predictive distribution of a new out-
put y� given a new input x� as

q�hðy�jx�Þ ¼
ð

X
qhðwÞp

�
ŷ�ðwÞjx�;w

�
dw; (6)

where ŷ�ðwÞ is the output of input x� for a given w. In BNN, the in-
tegration in Equation (6) is replaced with a predictive mean over T
times of MC sampling, which is estimated by

Ê½y�jx�� ¼ 1

T

XT

t¼1

ŷ�t : (7)

where ŷ�t is t-th estimation of BNN with input x�.
In estimating the predictive variance of the model, we decom-

pose the source of uncertainty into aleatoric and epistemic, which
was first suggested by Kendall and Gal (2017) and optimized for
classification tasks by Kwon et al. (2020). Aleatoric uncertainty
originates from the inherent noise of data points, while epistemic un-
certainty arises due to model prediction variability. Here, we use the
method suggested by Kwon et al. (2020), which does not involve
extra parameters.

The predictive variance is estimated by

V̂ar½y�jx�� ¼ 1

T

XT

t¼1

ðŷ�t � yÞðŷ�t � yÞT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
epistemic

þ 1

T

XT

t¼1

�
diagðŷ�t Þ � ðŷ�t Þðŷ�t Þ

T
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aleatoric

; (8)

where y ¼
PT
t¼1

ŷ�t =T and ŷ�t ¼ softmax
�

fŵ t ðx�Þ
�

.

2.3 Implementation and evaluation strategy
We implement our proposed model with Pytorch 1.5.1 (Paszke
et al., 2019). The training process takes at most 200 epochs on all
the datasets using the Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.001 and a batch size of 32. The hidden layer
dimensions of GraphNet in the molecular feature extractor and
MLP in the classifier are 256 and 512, respectively. The number of
layers of both the protein and drug feature extractors is set to 3. The
coefficient of L2 regularization is 0.001. These hyperparameters are
searched in a wide range.

The training objective is to minimize the loss function L, given
by the sum of the cross-entropy loss and the regularization as
follows

LðwÞ ¼ �
XN
i¼1

yi½log ŷi þ ð1� yiÞ log ð1� ŷiÞ� þ
k
2
jjwjj22; (9)

where w is the set of model parameters, N is the number of inter-
action labels, and k is the L2 regularization hyperparameter.

To implement MC-dropout sampling, we turn on dropout layers
during inference on test datasets with T¼30 samplings. The mean
performance and the decomposed uncertainties of the output are
calculated with Equations (7) and (8), respectively.

The main performance metric was chosen to be the area under
the receiver operating curve (ROC-AUC). ROC-AUC is defined as
the area under the ROC curve whose x- and y-axis is a false positive
rate and true positive rate, respectively. It is broadly used as the
main metric of binary classification because it takes into account all
classification thresholds from 0 to 1. We also report some additional
performance metrics—accuracy for the BindingDB dataset, and pre-
cision and recall for the Human and C.elegans dataset in line with
the original studies.

3 Results and discussions

To train DPI datasets, we prepare six models, Trans6, Trans12,
Trans34, Trans6þDrop, Trans12þDrop and Trans34þDrop. The
latter three models use the pretrained protein model and implement
the BNN architecture with MC-Dropout (Fig. 1a), while the former
three models only use the pretrained model. The numbers 6, 12 and
34 correspond to the number of transformer layers in the pretrained
model.

3.1 Performance of the proposed model
With the BindingDB dataset, we compare our model against three
baselines: Tiresias, DBN, and E2E. Tiresias uses similarity measures
of drug and protein pairs (Fokoue et al., 2016). DBN uses stacked
restricted Boltzmann machines with the inputs as extended connect-
ivity fingerprints (Wen et al., 2017). E2E uses graph convolutional
networks and LSTM to process drug-protein pair information with
Gene Ontology annotations (Gao et al., 2018).

As described in Section 2, we further split the test dataset into
four sub-test sets with seen/unseen protein/drug. Figure 2 shows that
the proposed method consistently performs well on all four sub-test
sets. The tables for the performance evaluation with Figure 2 are
included in Supplementary Table S2. The models with pretraining
and MC-dropout give consistently high performance in all four cate-
gories. The sub-test dataset with unseen protein is difficult to clas-
sify, and only the E2E model shows comparable performance with
our proposed model. Tiresias and DBN perform well on seen pro-
teins and outperform E2E but have much worse performances on
unseen proteins. The features used in these two models, similarity

Fig. 2. Performance comparison of proposed models, similarity-based approach

(Tiresias), stacked restricted Boltzmann layers (DBN) and graph convolutional

networks—long short-term memory-based approach (E2E). For each model, two

metrics are reported: area under receiver operating characteristic curve (ROC-AUC)

and accuracy. The binary interaction test data is divided into ‘seen’ and ‘unseen’ de-

pending on whether the protein and drug are observed in the training dataset. The

accuracy scores of Tiresias are not seen in the bottom graphs because they are lower

than the lower bound of the y-axis
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score and predefined molecular fingerprints, do not generalize mole-
cules well. E2E uses machine-based molecular features and performs
better than the Tiresias and DBM on unseen proteins, but its overall
performance is lower than TransþDrop. The TransþDrop models
consistently perform better than the Trans models as well as other
baselines. Only for the unseen protein and unseen drug,
TransþDrop shows similar performances with Trans and E2E.

The protein embeddings extracted from TransþDrop can have a
large expression capacity because the pretrained protein model is
prepared with 250 M sequences (Rives et al., 2019). It implies that
the extraction of generalized protein embedding with a long se-
quence plays an essential role in DPI classification. If we measure
scores by aggregating four test sub-datasets, the ROC-AUC of
Trans6þDrop, which achieves the best score amongst the proposed
models, is 0.943 while those of Tiresias, DBN and E2E are 0.818,
0.881 and 0.913, respectively. The overall ROC-AUC scores of
other models are shown in Supplementary Table S3.

Also, we compare our proposed method with previous DPI
approaches on the Human and the C.elegans datasets. The models
used for comparison are the k-nearest neighbor (k-NN), random for-
est (RF), L2-logistic (L2), support vector machine (SVM) and graph
neural network (GNN) models. The k-NN, RF, L2 and SVM models
use similarity features of drug structures and protein sequences. The
GNN model uses n-grams to encode protein sequences and molecu-
lar embeddings based on subgraphs defined within a given radius.
We note that the baseline models of these datasets are different from
those of BindingDB because we choose models from the previous
studies of each dataset. For the Human and the C.elegans, we refer
Tsubaki et al. (2019).

As shown in Table 1, our best performing model achieves the
highest ROC-AUC, precision, and recall scores among the neural
network-based methods. In the human dataset, SVM shows better
performance for the Precision score, but our proposed model outper-
forms in the other metrics. In the C.elegans dataset, Trans6þDrop
shows the best performance over all metrics, except for the recall
score of the balanced dataset where Trans34þDrop performs best.

Our results show that models with transfer learning and BNN
(Trans6þDrop, Trans12þDrop, Trans34þDrop) outperform other
baseline models when evaluated with the three public DPI datasets.
We note that only the pretrained protein sequence can train models
(Trans6, Trans12, Trans34) competitive with the baselines, but an
additional Bayesian frameworks further increase performance. The
BNN model is also a good predictor for an unbalanced dataset, a
common problem in real drug-protein interaction applications. It
suggests that the role of BNN, training robust model is another key
figure of performance enhancement.

To characterize the importance of the encoding methods we pro-
posed, we compare ROC-AUC curves with different protein and
drug representations. Figure 3a shows ROC-AUC curves of different
protein embedding methods with (Trans34þDrop) and without
(Drop) pretrained layer. In the Drop model, we use one-hot encod-
ing for the protein sequence and use three 1D-CNN layers. The re-
sult shows that the extraction of protein level encoding obtained
from the pretrained layer increases model performance. We also
consider the importance of the molecular graph encoding method by
using the graph convolutional network (GCN) (Kipf and Welling,
2017) and comparing it to GraphNet. Figure 3b shows that the
choice of message passing algorithms also determines prediction ac-
curacy. The GraphNet architecture, which uses node and edge fea-
tures and updates them iteratively, shows relatively better results
than the GCN, which uses the node feature alone.

The additional point is that the most complex model,
Trans34þDrop, does not always give the best results. This is in
agreement with the literature, where it was found that the prediction
accuracy is not strictly proportional to the sequence model complex-
ity (Rives et al., 2019). We increase the number of 1D-CNN and
GraphNet layers, respectively, and characterize the relation between
model complexity and model performance. Supplementary Figure
S1 shows that the validation ROC-AUC score of Trans34þDrop is
maximized when the number of layers of both the protein and drug
encoding layers is set to 3. If the architecture is larger than this size,

Table 1. ROC-AUC, Precision and Recall scores of human and

C.elegans dataset with proposed models, k-nearest neighbor

(k-NN), random forest (RF), L2 logistic (L2), support vector machine

(SVM) and graph neural network (GNN) proposed by Tsubaki et al.

(2019)

Human

Balanced Dataset (1: 1) Unbalanced Dataset (1: 3)

Methods ROC-

AUC

Precision Recall ROC-

AUC

Precision Recall

KNN 0.860 0.798 0.927 0.904 0.716 0.882

RF 0.940 0.861 0.897 0.954 0.847 0.824

L2 0.911 0.891 0.913 0.920 0.837 0.773

SVM 0.910 0.966 0.950 0.942 0.969 0.883

GNN 0.970 0.923 0.918 0.950 0.949 0.913

Trans6 0.968 0.902 0.901 0.971 0.915 0.910

Trans12 0.960 0.881 0.949 0.969 0.958 0.863

Trans34 0.973 0.914 0.925 0.971 0.930 0.863

Trans6þDrop 0.975 0.932 0.922 0.976 0.939 0.902

Trans12þDrop 0.971 0.914 0.924 0.963 0.932 0.902

Trans34þDrop 0.975 0.945 0.935 0.970 0.925 0.923

C.elegans

Balanced Dataset (1: 1) Unbalanced Dataset (1: 3)

Methods ROC-

AUC

Precision Recall ROC-

AUC

Precision Recall

KNN 0.858 0.801 0.827 0.892 0.787 0.743

RF 0.902 0.821 0.844 0.926 0.836 0.705

L2 0.892 0.890 0.877 0.896 0.875 0.681

SVM 0.894 0.785 0.818 0.901 0.837 0.576

GNN 0.978 0.938 0.929 0.971 0.916 0.921

Trans6 0.981 0.937 0.949 0.977 0.871 0.917

Trans12 0.975 0.949 0.910 0.967 0.876 0.861

Trans34 0.973 0.914 0.925 0.969 0.900 0.915

Trans6þDrop 0.986 0.955 0.933 0.983 0.923 0.944

Trans12þDrop 0.980 0.946 0.928 0.981 0.890 0.940

Trans34þDrop 0.981 0.946 0.940 0.980 0.914 0.937

Note: The best scores for each of the proposed models are emphasized in

bold. The italicized scores correspond to the best scores for the baseline

models.

(a)

(b)

Fig. 3. Comparison of ROC-AUC curves on the validation set as a function of epoch

with different embedding methods. (a) Performance comparison of protein embed-

ding methods with (Trans34þDrop) and without (Drop) pretrained layer. (b)

Performance comparison of drug molecule embedding methods with GraphNet and

graph convolutional network (GCN) in Trans34þDrop architecture
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the ROC-AUC score saturates or even decreases because an over-
smoothing occurs. Therefore, when using transfer learning, we rec-
ommend preparing several pretrained models and comparing their
results before making the final choice.

3.2 Robustness of proposed model
In this section, we test the robustness of the Bayesian models by
varying the protein data quality. The robustness is estimated by
tracking the degradation of the model performance as more and
more external noise is added to the dataset. The type of noise for the
experiment is chosen to be the Gaussian noise Nð0;r2Þ, where 0 is
the mean and r is the standard deviation of the distribution.

Figure 4 shows the ROC-AUC scores of the two models Trans6
and Trans6þDrop applied to three DPI datasets as a function of the
noise level r. As the noise level increases, the ROC-AUC of
Trans6þDrop remains more robust to the additive noise than
Trans6. In the BindingDB dataset, the ROC-AUC score of Bayesian
Trans6þDrop does not fall under 0.8 when noise standard deviation
increases until 0.5, whereas Trans6 loses its predictability. For
Human and C.elegans datasets, the models maintain relatively good
performance regardless of the additive noise, but the Bayesian model
consistently outperforms the other. It indicates that the BNN archi-
tecture trains model more robust to noise, a point we attribute to
the overall enhanced performance of our proposed model.

Note that the predictions on the BindingDB dataset are more vul-
nerable to external noise than those for the other two datasets. We
relate this behavior with the ‘classification difficulty’ of the datasets.
Because the datasets are curated in different sample pools, some
datasets could contain more points near the classification boundary
than other datasets. The dataset with a large subset of data points
lying on the classification boundary can be more obfuscated by
noise. One can indirectly estimate the classification difficulty of the
datasets by comparing the classification scores without the noise.
When we consider the Trans6þDrop model, the ROC-AUC score of
BindingDB (0.943) is smaller than those of the other two datasets
(0.975, 0.986). It indicates that the BindingDB is more challenging
to classify and therefore more vulnerable to external noise.

3.3 Quality of estimated uncertainties
We first test whether the uncertainties obtained from the proposed
BNN model are correctly estimated. This is accomplished by reduc-
ing the training set sizes and observing the resulting changes in the
uncertainties. When dataset size is decreased, aleatoric uncertainty,
which is related to the inherent noise of the data, should stay con-
stant. In contrast, the model error-related epistemic noise should in-
crease due to the lack of sufficient training data.

Table 2 shows the uncertainties obtained from the reduced train-
ing set sizes (1, 1/2, 1/4) and the entire test set. The uncertainties are
obtained via Eq. (8). It shows that the epistemic uncertainty
increases as the training size gets smaller, while the aleatoric uncer-
tainty remains relatively constant. It indicates that our proposed
model reliably estimates uncertainties.

Because the model successfully estimates uncertainties, we can
plot confidence-accuracy graphs, as shown in Figure 5. We use three
uncertainties, epistemic uncertainty, aleatoric uncertainty and the
sum of the two. Here confidence percentile means that we only con-
sider the top n percent of data points in the test set ranked by the

confidence, which is defined as the inverse of uncertainty. The plots
show how the test set accuracy varies as a function of the confidence
percentile. In every dataset, the accuracy is an increasing function of
model confidence. Thus the data points with low confidence can be
interpreted as the outlier and can be screened in DPI datasets in drug
development applications. For example, if we delete 50% of the
lowest confident points of the Human dataset, we can achieve nearly
100% accuracy. Note that there is no consistent trend regarding
which uncertainty is more important, and the two uncertainties
should be treated equally to achieve an accurate estimation.

For BindingDB, the test dataset is divided into four categories
with the ‘seen’ and ‘unseen’ proteins and drugs. The sub-test data-
sets of the ‘unseen’ categories include data points out of training
data distributions and which are expected to be biased. We plot the
probability density distributions of predicted variance (uncertainty)
of four test sub-datasets of BindingDB in Figure 6. The result shows
that the biased level of a sub-dataset is related to its predicted vari-
ance. The most biased dataset, unseen protein and unseen drug,
shows the highest variances. It indicates that when we screen the test
dataset using the confidence percentile (Fig. 5), the most biased data
points are initially screened. The BNN architecture we proposed can
thus be useful to overcome dataset bias in predicting protein–drug
interactions.

3.4 Case study
To verify the effectiveness of the proposed architecture in practical
problems, we test interactions between antiviral drugs being used
and SARS-CoV-2 proteins. We use the amino acid sequences of
3C-like protease (PDB ID: 6WQF) and RNA-dependent RNA poly-
merase (NCBI: YP_009725307.1) of the SARS-CoV-2 replication
complex from the Protein Data Bank (PDB) database and the
National Center for Biotechnology Information (NCBI). We prepare
five drug candidates for SARS-CoV-2 proteins.

Tables 3 and 4 show the drug-protein interaction prediction list
for 3C-like protease and RNA polymerase proteins. Table 3 shows
that 3C-like protease can bind with Remdesivir (Elfiky, 2020),
Ritonavir (Stower, 2020), Lopinavir (Stower, 2020), Quercetin

(a) (b) (c)

Fig. 4. ROC-AUC scores on the test set as a function of the standard deviation of

the additive noise on (a) BindingDB, (b) Human and (c) C.elegans dataset. The addi-

tive noise is sampled from the Gaussian distribution Nð0; r2Þ

Table 2. Epistemic and aleatoric uncertainties for a range of differ-

ent training dataset sizes (1, 1/2, 1/4 of the original training dataset

size)

Dataset Epistemic Aleatoric

BindingDB/4 0.018 0.036

BindingDB/2 0.013 0.037

BindingDB 0.011 0.037

Human/4 0.0128 0.020

Human/2 0.0096 0.018

Human 0.0082 0.019

C.elegans/4 0.0137 0.0155

C.elegans/2 0.0098 0.0153

C.elegans 0.0053 0.0143

Note: The results show that the aleatoric uncertainty remains constant,

whereas the epistemic uncertainty increases when the training size decreases.

(a) (b) (c)

Fig. 5. Model accuracies on the test set as a function of confidence percentile of (a)

BindingDB, (b) Human and (c) C.elegans dataset. The confidence is estimated based

on the epistemic uncertainty (red line), aleatoric uncertainty (blue line), and the sum

of the two (black line)
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(Sargiacomo et al., 2020) and Baricitnib (Favalli et al., 2020). Table
4 shows that RNA polymerase can bind with Remdesivir (Elfiky,
2020), Ritonavir (Stower, 2020), Lopinavir (Stower, 2020),
Daclatasvir (Lythgoe and Middleton, 2020) and Ivermectin (Caly
et al., 2020). These drug molecules have been estimated as the po-
tential drugs for SARS-Cov-2 through clinical trials (Caly et al.,
2020; Elfiky, 2020; Favalli et al., 2020; Lythgoe and Middleton,
2020; Sargiacomo et al., 2020; Stower, 2020). On the other hand, if
we study weakly related drugs such as aspirin, the result shows the
small interaction score between protein. These prediction results
from proposed model, which correspond with the experimental
results, verify the validity of our proposed model in predicting the
new drugs in the drug discovery pipeline.

4 Conclusion

In this study, we present a novel Bayesian deep learning framework
with a pretrained protein sequence model to predict drug-protein
interactions. Experiments on three public datasets demonstrate that
our proposed model consistently outputs increased prediction accu-
racies. Our estimation of model performance shows that BNNs are
highly robust to additive noise, which explains the superior perform-
ances of the proposed model. Furthermore, from the prediction un-
certainty of our model outputs, one can evaluate the confidence
level, which can then be used to screen the dataset for unreliable
data points.
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