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Abstract: Depression is one of the leading causes of disability worldwide. Given the socioeconomic
burden of depression, appropriate depression screening for community dwellers is necessary. We
used data from the 2014 and 2016 Korea National Health and Nutrition Examination Surveys. The
2014 dataset was used as a training set, whereas the 2016 dataset was used as the hold-out test set.
The synthetic minority oversampling technique (SMOTE) was used to control for class imbalances
between the depression and non-depression groups in the 2014 dataset. The least absolute shrinkage
and selection operator (LASSO) was used for feature reduction and classifiers in the final model. Data
obtained from 9488 participants were used for the machine learning process. The depression group
had poorer socioeconomic, health, functional, and biological measures than the non-depression
group. From the initial 37 variables, 13 were selected using LASSO. All performance measures were
calculated based on the raw 2016 dataset without the SMOTE. The area under the receiver operating
characteristic curve and overall accuracy in the hold-out test set were 0.903 and 0.828, respectively.
Perceived stress had the strongest influence on the classifying model for depression. LASSO can be
practically applied for depression screening of community dwellers with a few variables. Future
studies are needed to develop a more efficient and accurate classification model for depression.

Keywords: mental health; depression; LASSO; logistic regression; machine learning

1. Introduction

Depression causes emotional, cognitive, vegetative, and somatic symptoms, which
lead to functional impairment in everyday activities [1]. The prevalence of depression is as
high as 10.8% worldwide [2], and it is the single most significant contributor to non-fatal
health loss globally [3].

Thus far, increasing evidence indicates that genetic [4], neurogenetic [5], biological [6],
and environmental [7] factors contribute to depression. In particular, biological factors
such as the level of pro-inflammatory cytokines and brain-derived neurotrophic factors
have long been investigated in the field of depression [8–10]. However, the presence of
such risk factors does not necessarily lead to the future onset of depression. Predictive
models capable of indicating who may or may not develop depression are needed. With an
emphasis on the practical usefulness of such models in real-world practice, individual-level
analyses—rather than group-level analyses—are increasingly important in the field of
medicine [11]. Owing to its practical utility, machine learning has received a substantial
amount of attention in the field of medicine, including psychiatry [12].

Treatment of individuals with depression is often unsatisfactory. For example, the
Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study showed that only
one third of the total sample entered remission following initial treatment. In that study,
less than 30% of patients achieved remission throughout four consecutive therapeutic
regimens [13]. The STAR*D study is not the only clinical study of antidepressants for
depression; however, given its large scale and longitudinal style, the influence of the
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STAR*D study continues to this day [14–16]. Therefore, it is necessary to intervene before
the onset of a depressive disorder. If we can identify who is more likely to suffer from
depression in the near term, we can more effectively prevent depression by focusing on
those most at risk.

However, most studies have focused on diagnosing and predicting the prognosis of
depression in clinical samples [17,18]. In addition, studies with neuroimaging modalities,
such as MRI, largely feature an extremely small sample size, typically less than 100 [18].

Some studies have investigated depression in non-clinical samples using modalities
other than machine learning. For example, social media has been widely used, particularly
in non-clinical adolescents and youths [19–21]. These studies reported that social media
usage patterns could meaningfully predict the severity or onset of depression. However,
social media can overrepresent young people’s characteristics. As the age at onset of
depression extends from adolescence into the early 40s, across almost all sociocultural
contexts [22], solely investigating data from social media would limit its applicability to all
age groups.

Recent reviews have suggested that machine learning-based approaches have shown
some promise in the diagnosis and treatment of depression [17,18,23]. One of the most
promising aspects of machine learning is that it provides individual-level results, rather
than group-level estimation, of the risk for depression and/or response to treatment.
However, many of the machine learning studies that were included in the above reviews
suffer from small sample sizes and a lack of separate test sets. These shortcomings can
increase the potential risk of overfitting. In addition, the usefulness of focusing on the
clinical sample could be limited by the low treatment response rate, as proven by the
STAR*D study.

In the present study, we built a predictive model for depression using a machine
learning algorithm based on national survey data. Moreover, we identified which variables
were the most important for predicting depression.

2. Materials and Methods
2.1. Participants and Data

The Korea National Health and Nutrition Examination Survey (KNHANES) is an
annual nationwide survey that collects a variety of data on health behaviors, the prevalence
of chronic diseases, and food and nutrition status. A detailed description of the KNHANES
can be found in Kweon et al. [24]. According to guidelines established by the Korean Cen-
ters for Disease Control and Prevention (KCDC), depression has been measured biannually
since 2014 [25]. We used data from 2014 (n = 7550) and 2016 (n = 8150).

Only participants who responded to questions that focused on depression and its
predictive factors were included in this study. All participants received a full explanation
of the aims and protocol of the KNHANES and provided written informed consent. All
data processing procedures were approved by the Institutional Review Board of the KCDC
(2013-12EXP-03-5C).

2.2. Depression and Other Variables

The nine-item version of the Patient Health Questionnaire (PHQ-9) was used to
measure depression [26]. As suggested by the KCDC [27], the presence of depression was
defined as a score of 10 or higher on the PHQ-9.

Other variables included sociodemographic characteristics (e.g., age, sex, marital
status, family income, basic living allowance, and private medical insurance), health (e.g.,
the prevalence of chronic diseases such as hypertension, diabetes mellitus, and arthritis),
quality of life (EuroQol EQ-5D), and laboratory findings (e.g., hemoglobin, hematocrit,
white blood cell count, platelet count, blood urea nitrogen level, and urine specific gravity).
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2.3. Data Preprocessing and Machine Learning

All machine learning processes were conducted using the scikit-learn library imple-
mented in Python 3.7. The 2014 dataset was used as the training and validation sets. Given
the unbalanced ratio of depression and non-depression, a synthetic minority oversampling
technique (SMOTE) was used [28]. To tune the hyperparameters, 10-fold cross-validation
was conducted within the training set. The 2016 dataset was used as a test set to estimate
the performance of the classification algorithms built from the 2014 dataset. Categorical
variables were converted to dummy variables, whereas continuous variables were trans-
formed into z-scores to ensure that they could be fitted into the linear model, such as
regularized logistic regression analysis.

Regularizing the logistic regression model attenuated the overfitting and allowed
the classifying model to learn from the training data, not just copy it. Both L1 regular-
ization (also called the least absolute shrinkage and selection operator (LASSO)) and L2
regularization (also called ridge regression) provide a practical solution for overfitting. In

a linear regression model, y = ω0 + λ
l

∑
k=1

ωkχk, and LASSO uses a regularization term,

λE(ω) = λ
l

∑
k=1
|ωk| [29]. As the coefficients of weak predictive variables decrease to zero,

LASSO can also be practically used as a feature reduction method.
The regularized logistic regression model has low computing costs and easy-to-

understand algorithms, contrary to most other machine learning algorithms that have high
computing costs with the black box model.

In this study, we first applied LASSO with the initial 37 contributing variables for
feature reduction. Subsequently, we re-entered the resultant 13 variables with non-zero
coefficients in the final model. The hyperparameter C, which inversely reflects the strength
of the regularization parameter λ, was set to 0.0076. As we used LASSO, the penalty
option was set to “l1.” Other hyperparameters were set to default in the LogisticRegression
scikit-learn library.

2.4. Performance Metrics

The area under the receiver operating characteristic curve (AUC) was used as the
primary performance metric. Generally, an AUC of 0.8 to 0.9 is considered good, and that
>0.9 is regarded as excellent [30]. Other performance metrics such as overall accuracy(

True positive (TP)+True negative (TN)
Positive+Negative

)
, sensitivity

(
TP

TP+False negative (FN)

)
, specificity(

TN
False positive (FP)+TN

)
, precision

(
TP

TP+FP

)
, and Matthew’s correlation coefficient (MCC)

were also used
(

(TP×TN)−(FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

)
. The MCC is superior in utilizing all

four principal components (TP, TN, FP, and FN) of the confusion matrix. As the MCC is a
discretized form of Pearson’s correlational analysis, the value can also be interpreted on
the basis of Pearson’s correlational coefficient r [31]. Hence, the MCC values range from
−1 to 1, unlike other performance metrics with a range of 0 to 1. A value of −1 indicates
total disagreement between the actual and predicted values, which coincides with 0 for
accuracy. The value of 1 in the MCC indicates a complete agreement between the actual
and predicted values, corresponding to 1 for accuracy.

3. Results
3.1. Participants

After excluding missing cases from the initial 37 variables, 4186 of 7550 (55.4%)
participants in 2014 and 5302 of 8150 (65.1%) participants in 2016 were included in the
machine learning (Table 1). Table 2 shows the differences in the variables between the
depression and non-depression groups.
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Table 1. Sociodemographic, economic, and clinical variables by year.

Variables 2014 (n = 4186) 2016 (n = 5302) t or χ2 p-Value

Age 50.50 (16.03) 50.81 (16.41) −0.91 0.365
Sex, male 1827 (43.65) 2333 (44.00) 0.121 0.728

Education level 15.108 0.002
Elementary school 903 (21.57) 1091 (20.58)

Middle school 477 (11.40) 552 (10.41)
High school 1416 (33.83) 1697 (32.01)
≥College 1390 (33.21) 1962 (37.00)

Marital status 6.517 0.089
Unmarried 627 (14.98) 807 (15.22)

Married 3085 (73.70) 3807 (71.80)
Widow 174 (4.16) 248 (4.68)

Divorced or separated 300 (7.17) 440 (8.30)
Possessing house 0.574 0.751

None 1283 (30.65) 1587 (29.93)
1 2310 (55.18) 2958 (55.79)
≥2 593 (14.17) 757 (14.28)

Basic living allowance, yes 242 (6.26) 336 (6.34) 0.024 0.876
House income, five grades 6.704 0.152

1 787 (18.80) 1105 (20.84)
2 827 (19.76) 1021 (19.26)
3 855 (20.43) 1039 (19.60)
4 836 (19.97) 1018 (19.20)
5 881 (21.05) 1119 (21.11)

Private health insurance,
yes 3162 (75.54) 4145 (78.18) 9.213 0.002

Hypertension, yes 869 (20.76) 1299 (24.50) 18.56 <0.001
Dyslipidemia, yes 589 (14.07) 899 (16.96) 14.725 <0.001

Cerebrovascular disease,
yes 95 (2.27) 109 (2.06) 0.508 0.476

Cardiovascular disease, yes 96 (2.29) 157 (2.96) 4.019 0.045
Arthritis, yes 1018 (11.43) 145 (24.83) 91.44 <0.001

Diabetes mellitus, yes 339 (8.10) 525 (9.90) 9.19 0.002
Thyroid disease, yes 143 (3.42) 211 (3.98) 2.067 0.150

Subjective health 2.87 (0.84) 2.89 (0.86) −1.206 0.228
Limited activity, yes 285 (6.81) 444 (8.37) 8.085 0.004

Diseased recent
1 month, yes 367 (8.77) 387 (7.30) 6.893 0.009

Aerobic exercise, yes 2263 (54.06) 2407 (45.40) 70.240 <0.001
EQ-5D

Mobility 1.14 (0.37) 1.15 (0.37) −0.318 0.751
Self-care 1.03 (0.19) 1.04 (0.20) −1.661 0.097

Daily activities 1.08 (0.29) 1.08 (0.29) 0.262 0.793
Pain 1.25 (0.48) 1.24 (0.48) 1.004 0.315

Anxiety/depression 1.12 (0.36) 1.11(0.33) 2.167 0.030
Perceived stress 2.91 (0.73) 2.85 (0.74) 3.744 <0.001

Waist circumference (cm) 81.08 (9.75) 82.94 (10.07) −9.053 <0.001
Hemoglobin (g/dL) 14.09 (1.52) 14.01 (1.60) 2.47 0.014

Hematocrit (%) 41.80 (3.89) 43.17 (4.44) −15.795 <0.001
Platelet (103/mm3) 254.51 (58.87) 258.65 (62.06) −3.300 0.001
Blood urea nitrogen

(mmol/L) 14.45 (4.24) 14.52 (4.71) −0.743 0.458

Urine specific gravity 1.02 (0.01) 1.02 (0.01) −2.321 0.987
PHQ-9 2.76 (3.73) 2.68 (3.78) 0.992 0.321

PHQ-9: Patient Health Questionnaire 9 items. All data are presented as mean (standard deviation) for continuous
variables and as frequency (%) for categorical variables.
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Table 2. Sociodemographic, economic, and clinical variables by depression.

Variables Non-Depression
(n = 8904)

Depression
(n = 584) t or χ2 p-Value

Age 50.57 (16.13) 52.21 (17.77) −2.360 0.0183
Sex, male 3993 (44.85) 167 (28.60) 58.77 <0.001

Education level 108.51 <0.001
Elementary school 1777 (19,96) 217 (37.16)

Middle school 962 (10.80) 67 (11.47)
High school 2946 (33.09) 167 (28.60)
≥College 3219 (36.15) 133 (22.77)

Marital status 181.50 <0.001
Unmarried 1317 (14.79) 1317 (20.03)

Married 6588 (73.99) 304 (52.05)
Widow 350 (3.93) 72 (12.33)

Divorced or separated 649 (7.29) 91 (15.58)
Possessing house 46.99 <0.001

None 2621 (29.44) 249 (42.64)
1 4991 (56.05) 277 (47.43)
≥2 1292 (14.51) 58 (9.93)

Basic living allowance, yes 481 (5.40) 117 (20.03) 198.89 <0.001
House income, five grades 216.70 <0.001

1 1645 (18.47) 247 (42.49)
2 1732 (19.45) 116 (19.86)
3 1808 (20.31) 86 (14.73)
4 1772 (19.90) 82 (14.04)
5 1947 (21.87) 53 (9.08)

Private health insurance,
yes 6943 (77.98) 364 (62.33) 77.36 <0.001

Hypertension, yes 1992 (22.37) 176 (30.14) 18.75 <0.001
Dyslipidemia, yes 1358 (15.25) 130 (22.26) 20.36 <0.001

Cerebrovascular disease,
yes 170 (1.91) 34 (5.82) 39.88 <0.001

Cardiovascular disease, yes 215 (2.41) 38 (6.51) 35.36 <0.001
Arthritis, yes 1018 (11.43) 145 (24.83) 91.44 <0.001

Diabetes mellitus, yes 771 (8.66) 93 (15.92) 34.95 <0.001
Thyroid disease, yes 322 (3.62) 32 (5.48) 5.30 <0.001

Subjective health 2.82 (0.82) 3.78 (0.90) −27.21 <0.001
Limited activity, yes 528 (5.93) 201 (34.42) 627.06 <0.001

Diseased recent
1 month, yes 589 (6.62) 165 (28.25) 350.78 <0.001

Aerobic exercise, yes 4422 (49.66) 248 (42.47) 11.36 <0.001
EQ-5D

Mobility 1.12 (0.34) 1.46 (0.59) −21.59 <0.001
Self-care 1.03 (0.17) 1.16 (0.40) −15.84 <0.001

Daily activities 1.06 (0.25) 1.35 (0.53) −23.80 <0.001
Pain 1.21 (0.44) 1.71 (0.70) −25.05 <0.001

Anxiety/depression 1.08 (0.28) 1.65 (0.64) −42.33 <0.001
Perceived stress 2.93 (0.70) 2.02 (0.81) 30.20 <0.001

Waist circumference (cm) 82.14 (9.91) 81.88 (10.91) 0.597 0.551
Hemoglobin (g/dL) 14.07 (1.56) 13.72 (1.57) 5.204 <0.001

Hematocrit (%) 42.62 (4.24) 41.64 (4.30) 5.400 <0.001
Platelet (103/mm3) 256.22 (60.21) 266.00 (67.18) −3.773 <0.001
Blood urea nitrogen

(mmol/L) 14.53 (4.48) 13.88 (4.84) 3.333 <0.001

Urine specific gravity 1.02 (0.01) 1.02 (0.01) 2.6249 0.009
PHQ-9 1.98 (2.34) 13.89 (3.63) −110.0 <0.001

PHQ-9: Patient Health Questionnaire 9 items. All data are presented as mean (standard deviation) for continuous
variables and as frequency (%) for categorical variables.
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The prevalence of the minority class (i.e., depression) was 6.16% (584 out of 9488) in
the total sample, 6.45% (270 out of 4186) in the 2014 dataset, and 5.92% (314 out of 5302) in
the 2016 dataset.

The number (%) of the older adults (i.e., age ≥ 65 years) was 2074 (21.86%). There
were significantly higher rates of divorce or separated marital status, older age, and females
in the depression group than in the non-depression group. The depression group had
significantly lower values than the non-depression group in the socioeconomic domain,
such as the number of houses, the number of private insurance policies, receiving a basic
living allowance, and household income. The depression group also had a significantly
higher prevalence of chronic diseases such as hypertension, dyslipidemia, cerebrovascular
disease, cardiovascular disease, thyroid disease, diabetes mellitus, and arthritis compared
to the non-depression group. Regarding the quality of life, the depression group had lower
scores than the non-depression group on all five domains of the EQ-5D.

3.2. Classifying Performance

As shown in Figures 1 and 2 and Table 3, LASSO showed good classification perfor-
mance (AUC = 0.903; overall accuracy, sensitivity, and specificity were 0.828). The total
number in the confusion matrix of Figure 1 was 5474 because the number of variables
was reduced from 37 to 13; accordingly, the number of missing cases decreased. The
LASSO model with 13 variables showed a slightly better performance than the model with
37 variables.
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Table 3. Performance metrics of the LASSO classifying model for depression.

Number of Variables Sensitivity Specificity Accuracy AUC Precision NPV MCC

37 0.828 0.822 0.822 0.903 0.226 0.987 0.372
13 0.828 0.828 0.828 0.903 0.235 0.987 0.381

AUC: area under the receiver operating characteristic curve; NPV: negative predictive value; MCC: Matthew’s correlation coefficient.

3.3. Feature Importance

Feature importance was obtained from the magnitude of the coefficients. The variables
with the greatest importance were perceived stress, subjective health, anxiety/depression
in the EQ-5D, and divorced/separated status (Table 4).
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Table 4. Coefficients of contributing variables.

Coefficients

Perceived stress −0.8507
Subjective health 0.559

Anxiety/depression in EQ-5D 0.4651
Divorced or separated −0.261

Male −0.1446
Possessing ≥ two houses −0.1131

House income −0.0939
Pain of EQ-5D 0.0915

Private health insurance −0.0892
Daily activities of EQ-5D 0.0686

Waist circumference −0.06
Blood urea nitrogen −0.0529

Age −0.006
Bias = −0.5220.

4. Discussion

We built a machine learning-based model for predicting future depression. The AUC
(0.903), overall accuracy (0.828), sensitivity (0.828), and specificity (0.828) showed that this
model could be practically used for screening community-dwelling individuals who may
develop depression.

In the final set of variables, perceived stress was the strongest predictor of depression.
Stress is generally categorized as either eustress or distress. Eustress represents positive
aspects of stress, whereas distress refers to its negative aspects. Perceived stress measures
distress by using questions such as “In the last month, how often have you felt nervous
and stressed?” The negative effects of stress have a well-documented relationship with the
pathophysiology of psychiatric disorders, such as depression [32,33]. As most screening
instruments for depression do not contain the term “stress,” perceived stress should be
included in screenings of community-dwelling individuals. Moreover, subjective health
was ranked as the second most predictive variable for classifying depression. The concept
of subjective health reflects the quality of life or well-being [34,35]. Subjective health plays
an important role in the pathophysiology of depression [36]. Although depression might
contribute to perceived stress and poor subjective health, these factors should be considered
important for the early detection of depression.

Our study had several strengths. First, we built a model to classify depression among
community dwellers. Although depression causes substantial disability, the treatment of
clinical depression is difficult [13]. Hence, early screening and detection of depression
among community dwellers are particularly important, and many countries have focused
on screening for depression in community settings before the clinical stages of the dis-
ease [37,38]. Thus, we believe our model could be practically used in community mental
health institutions for accurate and prompt screening of depression.

Second, we used various types of variables. As depression is based on a complex
interaction among biopsychosocial variables [39–41], clinicians must utilize the possible
correlates of depression to improve classification. We included peripheral biomarkers (e.g.,
thyroid hormone, hemoglobin, white blood cells, platelets, aspartate aminotransferase,
and alanine aminotransferase), psychosocial functioning (e.g., EQ-5D), and sociodemo-
graphic variables (e.g., age, sex, marital status, educational level, and economic status) to
classify depression.

Third, we used LASSO to reduce features and build a final model to classify depression.
We found that a model with fewer variables resulted in a performance comparable to one
with more variables. We believe that practicality is necessary for such a machine learning
model, and from a practical perspective, a questionnaire with too many questions might
not be suitable for use in routine screening settings. If the performance between the two
models is not substantially different, one with fewer variables could be practically used
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with the benefits of a short screening time and effort. As we developed this model for use
in community health institutions, rather than higher-level facilities, we presumed that low
computing costs with fewer variables are an important point. The reasonable computing
costs of LASSO facilitate its deployment in community health institutions.

Fourth, it is noteworthy to discuss why we used the 2014 dataset for the training set
and the 2016 dataset for the test set, rather than randomly selecting training and test sets.
First, we wanted to test whether the algorithm made with past data (i.e., the 2014 dataset)
could be applied to future data (i.e., the 2016 dataset). There will be some changes in the
frequency or severity of the variables by reflecting the number of times the dataset was
collected. If an algorithm should be useful in the real world over time, it should be robust
for future data. In addition, there were statistical differences in many of the variables
between the 2014 and 2016 datasets, whereas there was no statistical difference in the
severity of depression between the two datasets. We interpreted the results mainly in terms
of sample size and standard deviation. Generally, as the total sample size increases, the
p-value decreases [42]. As the sample size was large (n = 9488), negligible differences were
statistically significant (p < 0.05). Moreover, as the standard deviation (i.e., the degree of
spread) increases, the p-value increases [43]; thus, the non-significant statistical difference
in the severity of depression (i.e., PHQ score) resulted from a high standard deviation.
As the participants of this study were from the general population, the distribution of
the PHQ score would be severely positively skewed, which is associated with a high
standard deviation.

This study had several limitations. First, although we included biopsychosocial factors
for depression, neuroimaging and genetic variables were not available. Neuroimaging
markers, such as structural volumes and functional activity, have long been used to classify
depression [44,45]. Genetic studies have also provided information for understanding
and classifying depression [4]. As this study sought to create a prompt and accurate
tool to classify depression, such expensive tests do not seem applicable for a screening
test. Nonetheless, we should consider whether biological factors are, indeed, helpful for
discriminating depression. For example, a previous study revealed that the singular use of
biomarkers to predict depression prognosis resulted in a poor performance (AUC < 0.6) [46].
The small effects of biological factors were confirmed in our study; only blood urea nitrogen
was included in the final model throughout LASSO. Second, due to the limited sample
size, we could not subdivide the study population by age group (e.g., youth, middle-aged
adults, and older adults); instead, we grouped all ages to build a machine learning model.
Given the different contributors to depression across different age groups [47,48], future
studies with larger sample sizes are needed. Third, the survey data may not sufficiently
reflect respondents’ interpersonal relationships. For example, a recent study revealed that
Facebook entries predicted future clinical depression [49]. Although the sample size was
small (n = 683), and the outcome measure was only moderately predictive (AUC = 0.69 to
0.72), such an approach should be used to supplement future surveys and help construct a
more comprehensive dataset.

In summary, we successfully built a model for classifying depression using the LASSO
algorithm and sociodemographic, psychosocial, and laboratory data obtained from com-
munity dwellers. We believe that this model may help improve the accuracy of depression
screening among community-dwelling individuals.
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