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Abstract: Self-healing is the capability of materials to repair themselves after the damage has occurred,
usually through the interaction between molecules or chains. Physical and chemical processes
are applied for the preparation of self-healing systems. There are different approaches for these
systems, such as heterogeneous systems, shape memory effects, hydrogen bonding or covalent–bond
interaction, diffusion, and flow dynamics. Self-healing mechanisms can occur in particular through
heat and light exposure or through reconnection without a direct effect. The applications of these
systems display an increasing trend in both the R&D and industry sectors. Moreover, self-healing
systems and their energy storage applications are currently gaining great importance. This review
aims to provide general information on recent developments in self-healing materials and their battery
applications given the critical importance of self-healing systems for lithium-ion batteries (LIBs). In
the first part of the review, an introduction about self-healing mechanisms and design strategies for
self-healing materials is given. Then, selected important healing materials in the literature for the
anodes of LIBs are mentioned in the second part. The results and future perspectives are stated in the
conclusion section.

Keywords: self-healing; polymers; silicon anodes; lithium-ion batteries; energy storage

1. Introduction

The use of composite materials has gradually increased in studies carried out for
electronic devices, including sensors, batteries, conductors, solar cells, supercapacitors,
electronic skin, and the aviation industry, where technological processes that are important
in technology development are rapidly adopted. With the development of technology,
the ability of composite materials to adapt to the conditions of their environments and to
respond appropriately to these conditions is also important. These materials are called
smart materials and develop stimuli in a way that changes their mechanical, electrical,
optical, or magnetic properties in response to external stimuli. The production of such
smart materials leads to the emergence of research topics such as increasing the durability of
use, prolonging their life, and/or reducing the cost of healing, and engineers conduct many
studies on these issues. This can be achieved by a perfect mechanism called self-healing
in biological systems. In order to apply this mechanism to materials, biological systems
are studied and imitated. In this context, studies on new-generation smart materials have
created a new research area called self-healing materials, and research in this area continues
to progress rapidly. Thanks to this behavior, it is argued that the life and reliability of
materials that are defective due to production or damaged as a result of an external effect
can be increased, and thus healing costs can be reduced [1–7].

Self-healing can be defined as the ability of a material to heal (recover/repair) damages
autonomously without any outside intervention. Many general terms are used to describe
such properties in materials, such as self-healing, autonomic healing, and autonomic
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healing. When self-healing properties are added to man-made materials, the self-healing
action often cannot be performed without an external trigger. There are several systems
used to impart self-healing ability to materials (Figure 1). These systems can be classified
into two main groups: capsule-based healing (bead, fiber, and/or vascular type and
mechanochemical), which is autonomous, and healing by the action of nonautonomous
external stimuli [1,8–13].
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Capsule-based healing systems involve microencapsulations and protect micron-sized
solid particles, liquid droplets, or gas by isolating them from the external environment
with an inert shell. The capsule ensures that the healing agent is retained within the system
until a break or crack occurs in the self-healing materials (Figure 2). In capsule-based heal
systems, interfacial, in situ, coacidification, and soluble solution encapsulation techniques
are among the most basic techniques [1,14–17].

Other examples of autonomic self-healing systems are fiber and vascular systems.
Fiber and/or vascular self-healing systems are designed from fibers (hollow fiber) or hollow
reticulated structures. In these systems, the healing agents are stored in the spaces inside
the fiber or reticular structures until damage occurs and are released in case of damage.
Hollow fibers are used as polymer additives in one, two, and three dimensions. In the
region where the crack occurs, the resin and curing agent in the fibers flow into the polymer
matrix and polymerize, and as a result, they allow the closure of the crack. Although hollow
fibers placed in one dimension seem to be advantageous due to their ease of manufacture,
their self-healing capabilities are limited compared to other designs [10,18–23].
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The other method used to gain self-healing ability is nonautonomous mechanisms
and uses latent effects that allow self-healing of damage [24–28]. Supramolecular polymers,
which emerged with the combination of polymer science and supramolecular chemistry,
have created a novel interdisciplinary research field. These noncovalent interactions in
supramolecular systems can be classified as π-π stacking interactions, metal–ligand interac-
tions, ionic interactions, and hydrogen bonds [29–32].

The large volume changes during the repeated insertion/extraction process of lithium
ions can lead to cracking or pulverization of the silicon anodes in the lithium-ion batteries
(Li-ion), which reduces the cycle life of the batteries. It has been realized that damages
by volume changes in the silicon, abrasion, cutting, breakage, and operational fatigue
often produced in practical usage, and degradation over time will result in deterioration
of a device’s properties and significant shorting of the device’s life. Fractures and other
damages that occur in materials start microscopically, and as the fracture energy cannot
be effectively distributed in the structure, the fracture grows and spreads throughout the
material. The synthesis of polymers in which damages can be easily controlled or repaired
has become very significant [15,33–35].

In the last two decades, research interest has been focused on self-healing systems
for energy storage devices. Some tremendous reviews have presented the development of
self-healing electronic devices, including sensors, supercapacitors, batteries, solar cells, and
electronic skin [1,3,17].

In recent years, the “self-healing with smart modifications” approach, which has
attracted increasing attention from the scientific community around the world, gives
priority to systems that allow the use of new-generation polymeric binders in silicon
anodes. Therefore, the self-healing systems in silicon anodes have increased in the past
few years [1,7,9]. A comprehensive review of self-healing systems in silicon anodes for
LIBs is urgently required. In this regard, we aim to present self-healing materials in silicon
anodes and show recent attractive examples of self-healing systems for LIBs. In the first
part of the review, an introduction on self-healing systems and design strategies is given.
Then, selected important healing materials in the literature for the silicon anodes of LIBs
are mentioned in the second part. We hope that the review will provide comprehensive
data to attract more attention to self-healing systems in silicon anodes for LIBs.
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1.1. Various Approaches of Self-Healing Polymers
1.1.1. π-π-Stacking-Interaction-Based Self-Healing Polymers

Although π-π stacking interactions are weaker than hydrogen bonds and ionic interac-
tions, they have an important role in supramolecular systems due to the low probability of
their degradation by environmental factors such as humidity. The interactions between
aromatic rings of different sizes, shapes, and displacement patterns are called π-π stacking
or π-π interactions. Aromatic π interactions first emerged in the early 1980s and have been
applied in many fields, especially self-assembly and organic transistors. The interaction
usually occurs between the π-deficient electron unit and the π-rich electron unit, and the
interaction realizes in mainly two ways: face-to-face stacking and face-to-side stacking. π-π
stacking interactions in self-healing supramolecular polymer materials were first obtained
by Burattini et al. by combining polyimides containing multiple π-deficient electron ac-
ceptor sites and siloxane polymers. In such interactions, the nature of the electron-poor
components is critical in terms of interactions, and it also affects the bond strength of the
material by playing a role in determining the bond strength of the stack [36,37].

1.1.2. Metal–Ligand-Based Self-Healing Polymers

The compound formed by the coordination of a central atom (M) with different
numbers of atoms or groups of atoms called ligands (L) is called a coordination compound
or complex. The central atom, ligands, and coordination compound can be neutral or
ionic. The central atom is usually a positively charged transition element. Ligands, on the
other hand, are anionic or molecular structures and may contain one or more unshared
electron pairs. The coordination compound formation reaction can be thought of as a
Lewis acid–base reaction, considering that the central atom is an electron pair acceptor and
ligands are electron pair donors for joint use [38].

Unlike polymers healed through hydrogen bonds or π-π stacking interactions, the
stimulus–response and reversibility of metallopolymers can have better healing perfor-
mance due to metal–ligand binding resistance.

1.1.3. Ionic-Interaction-Based Self-Healing Polymers

Ionic interactions in polymers are mainly manifested by the formation of ionomers.
Ionomers can be defined as polymers in which the volumetric properties are governed
by ionic interactions in discrete regions of the material. Since ionomers contain ionic,
dipole–dipole, and/or ion–dipole bonds, they also occupy an important place among
supramolecular polymer materials. Ionic groups can aggregate together to form a complex.
When ionomers crack, self-healing occurs through resilient intermolecular interactions
between the ionic groups. In self-healing polymers, the polymer matrix must provide
sufficient mobility for the polymer chains so that ionic interactions can take place at the
damaged sites, thus allowing the chains to be intertwined and rearranged. In addition,
many factors, such as the ionic groups and counter-ions, temperature, degree of neutral-
ization, dielectric constant, and content of ionic groups, also play an important role in the
properties of materials that self-heal through ionic interactions [14,39].

1.1.4. Hydrogen-Bond-Based Self-Healing Polymers

Among the various self-healing mechanisms in supramolecular polymers, healing
through hydrogen bonding has attracted the attention of many research groups because
the hydrogen bonds can be easily separated and reconnected at room temperature, and the
recovery properties can be easily adjusted by manipulating the number of hydrogen bonds.
Self-healing supramolecular polymers contain both covalent and noncovalent bonds in
their structure. The basis of damage to materials is the breaking of chemical bonds. In
self-healing materials containing hydrogen bonds, hydrogen bonds are easier to break
than covalent bonds. When cracks occur as a result of applying an external force to a
supramolecular polymer, multiple free, unbonded hydrogen bonds are formed at the new
interfaces. These free hydrogen bonding parts come together and form new hydrogen
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bonds, allowing the cracks to close and the damaged areas to heal. However, the activity
of free hydrogens can continue for a while; the self-healing abilities of the new surfaces
will decrease due to the recombination of free hydrogens in the same regions. On the other
hand, the reduced self-healing property can be significantly increased by the heat treatment
applied to the fracture surfaces [18,40,41].

Most of the work on self-healing constitutes research on understanding and improving
mechanisms. In this section, studies on supramolecular healing mechanisms are mentioned,
including those of self-healing systems that heal through reversible hydrogen bonding,
which is the main subject of this research, are included. Cordier et al. used reversible
hydrogen bonds to form supramolecular self-healing rubber. They took advantage of the
natural recycling of hydrogen bonds and the bond orientation that allows the chains in
the network structure to self-assemble. A mechanical stimulus was needed to initiate the
healing of the material obtained by Cordier et al., and the polymer structure was brought
together by contacting the damaged surfaces. Thus, hydrogen bonds were allowed to
form the reticulated structure. Hydrogen bond formation in this material was provided
by aminoethyl imidazolidone and diaminoethyl urea groups, and it was observed that no
crystalline region was formed during self-healing. It has been reported that the material
produced by this method elongates up to the breaking point with 500% strain. In addition,
it has been explained that less than 5% residual stress is seen with the removal of the
applied force, and it has the capacity to recover after 300% strain. The visually self-healing
test for damage in rubber has been performed by observing the specimens’ healing at room
temperature. It has been emphasized that the healed sample can be deformed by up to
200% without breaking with a contact time of 15 min. It was also stated that the ability of
the materials to recover decreased as the time elapsed before reassembling the damaged
surfaces. With this mechanical intervention, it has been proven by the tests that the healing
cycle can be successfully performed many times by contacting the broken or broken parts
without using any chemicals [13,41–45].

1.2. Effect of Nanoparticle Additive on Self-Healing Properties

Nanoparticle doping has been carried out to increase the healing properties of self-
healing systems in the literature. The healing process in nanoparticle-doped polymers does
not consist of steps such as breaking or recombining polymer chains. As cracks and defects
occur, nanoparticles dispersed in the polymer phase fill the cracked or damaged part.
Firstly, Lee et al. combined computer simulation with micromechanics to demonstrate the
self-healing effect of nanoparticles in polymers and conducted research on the multilayer
composites produced [46]. It has been observed that such polymer–nanoparticle composites
actively respond to damage and potentially repeated self-healing of the polymer system
as long as the nanoparticles continue to exist in the system. In another publication, they
modeled the functionality of applied nanocomposite coatings to heal nanoscale defects on
the surface with molecular dynamics and lattice spring simulations. The modeling results
show that nanoparticles tend to migrate to the damaged areas with a polymer-induced
attraction force, that small particles are more effective at healing the damaged area than
large particles, and that those small particles are transported to the damaged area in a
shorter time interval. Gupta et al. experimentally proved the transport and aggregation of
nanoparticles around cracks in multilayer composite structures in the simulation studies
in the literature. In the study, 3.8 nm CdSe/ZnS nanoparticles were embedded in the
SiO2 layer (50 nm) deposited on the PMMA film (300 nm), and it was observed that the
nanoparticles in the fragile SiO2 layer were transported to the polymer phase along the
crack. It was stated that the transport of nanoparticles depends on the enthalpic and
entropic interactions between the PMMA matrix and the nanoparticles. As a result of
the TEM analysis applied to the cross-sectional area of the composite material, it was
observed that nanoparticles whose surface was modified with fluorescent PEO ligands
were deposited on the interface of PMMA and SiO2 layers. The role of nanoparticles in the
self-healing phenomenon is explained by the stretching and stretching movements of the
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polymer chains close to the damaged area, and the tendency to decrease the nanoparticle–
polymer interaction with the accumulation of nanoparticles in the crack and precrack
regions is stated to be the driving force [47]. Bing et al. presented a novel approach
providing a composite system to heal the damage of material which was prepared liquid-
metal (LM)-mediated spontaneous repairing conductive-additive-free Si anode for a Li-ion
battery. The as-prepared nanocomposite of LM/Si showed superior performances as
characterized by high capacity utilization (2300 mAh g−1, long-term stability (968 mAh g−1

after 1500 charge–discharge cycles), and high rate capability (360 mAh g−1 at 20 A g−1) [48].

2. Recently Reported Self-Healing Anode Systems
2.1. Physical-Interaction-Based Self-Healing Materials

For self-healing materials that can exhibit reversible properties, there were originally
two noncovalent approaches, hydrogen bonding and π-π stacking [2,49]. In addition,
Harada et al. applied the host–guest molecular gels for macroscopic self-healing [50].
Nakahata et al. showed supramolecular materials that have self-healing properties and in-
duce a sol–gel phase transition through host–guest interactions provided with poly(acrylic
acid) (PAA)-possessing β-CD as a host polymer with PAA-possessing ferrocene as a guest
polymer [51]. Kakuta et al. reported supramolecular hydrogels with β-cyclodextrin and
adamantane guest molecules mended through a host–guest interaction show self-healing
features [52]. Deng et al. synthesized curable crosslinked polymer gels under acidic con-
ditions with reversible covalent acylhydrazone bonds [53]. Matyjaszewski et al. reported
trithiocarbonate units activated by external stimuli in their structures for the synthesis
of self-healing crosslinked polymers and gels [54,55]. Lehn et al. investigated new Diels–
Alder self-healing materials that exhibit structural transformation in the absence of external
stimuli [56]. Scaiano et al. showed a DABBF that works as a dynamic covalent bond for
autonomous self-healing [57]. Fox et al. reported reinforcement with cellulose nanocrystals
to afford a healable nanocomposite material that supramolecular polymer mixture formed
through π-π interactions [36]. Ying et al. reported nitrogen-bound urea and its use to make
polyureas and poly(urethane-urea) capable of catalyst-free dynamic property change and
auto-repair at low temperatures [24]. For the first time, a self-assembled supramolecular
gel of metal–ligand and polypyrrole hydrogel with high conductivity and a hybrid gel
based on nanostructured polypyrrole was created [38]. Li et al. reported a self-healing
network crosslinked by coordination complexes that consisted of ligands via both nitrogen
and oxygen atoms of the carboxamide groups under room temperature [28]. Yan et al.
demonstrated, for the first time, that a synthetic hydrogel material prepared from polyethy-
lene glycol and polyethyleneimine exhibits self-healing abilities. [58]. Nishimura et al.
demonstrated networks of silyl ether linkages incorporated into covalently crosslinked
polymer reprocessability [59]. Urban et al. demonstrated that commodity copolymers, such
as poly(methyl methacrylate)/n-butyl acrylate (p(MMA/nBA)) and their derivatives, can
self-heal upon mechanical damage with key-and-lock commodity self-healing behavior [6].
Zn2+ imidazole crosslinks are distributed in a hydrogen-bonded–Diels–Alder dynamic
covalent double-crosslinked network [26].

2.1.1. Hydrogen-Bonded Supramolecular Self-Healing

Phase separation effects at polymeric interfaces are also determinants of self-healing.
Kovalenko et al. has used sodium alginate (Algae) as a binder instead of commercial
PVdF. In contrast to PVdF, NaAlg contains carboxyl groups that have hydrogen bonds
on the oxidized Si surface. This self-healing binder prevents the volume expansion with
these bonds during lithiation/delithation. It is the first example of the use of algae as a
binder for the Si anode, which exhibited a specific discharge capacity of 1700 mAh g−1

after 100 cycles at 4200 mA g−1 [60]. The electrode material developed with the self-healing
binder proposed by Wang showed a more stable cycling performance with a capacity of up
to 2000 mAh g−1 100 cycles at a current density of 0.4 A g−1 [61]. Chen et al. provided the
3D spatial distribution of self-healing polymers in silicon nanoparticles with the interaction
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of hydrogen bonds and healed cracks through the interaction between polymer and silicon,
as shown in Figure 3a–c [62]. The fatty acid starting materials were first reacted with
diethylene triamine and then subsequently with urea to provide hydrogen bonding end
groups at the termination of the fatty acid chains. Kim et al. used a self-healing polymer
that serves for minimization of the volume expansion of the silicon. The electrode exhibited
a specific discharge capacity of 2100 mAh g−1 after 100 cycles at C/10 rate [63].
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copyright 2015, Advanced Energy Materials. (b). Scheme of the self-healing electrode with a homoge-
nous distribution of silicon microparticles and self-healing polymer with hydrogen bond. Reprinted
with permission from ref. [63], copyright 2018, Royal Society of Chemistry. (c). Scheme of silicon
anode with self-healing polymer and SEM images of silicon anode with self-healing polymer coating,
reprinted with permission from ref. [62], copyright 2015, Advanced Energy Materials.

Yue et al. improved a carboxymethyl chitosan for the Si anode of Li-ion batteries,
as shown in Figure 4a. This water-soluble binder-based electrode showed a high specific
discharge capacity of 4270 mAh g−1 with a first coulombic efficiency of 89% [64]. Self-
healing polymers with a high silicon nanoparticle filling cycling stability of trifunctional
crosslinked polymer electrodes showed 3–4 mAh cm−2 aerial capacity and 140 cycles [29].
Sun et al. reported the flexible carbon/Si foam material that is shown in Figure 4b,c and
coated it with a polymer with self-healing functionalization with covalent and hydrogen
bonds. The thickness of the self-healing polymer coating on the electrode was affecting
the percent of strain and electrochemical capacity of the cell. It was determined that
more coating caused rapid capacity fading [65]. The dual-crosslinking polymer shown in
Figure 4f heals visible cracks on the electrodes, and no obvious delamination between the
electrode surface and copper foil was found by Gendensuren and Oh [66]. H-bond-based
self-healing systems and their LIB applications have been summarized in Table 1.
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Figure 4. (a). The mechanism of the synthesis of self-healing polymers. Reprinted with permission 
from ref. [29], copyright 2016, ACS Applied Materials & Interfaces. (b). Structure of PAA–UPy binder 
and dimers bottomed on quadruple hydrogen bond and the illustration of the large volume expan-
sion of silicon particles, reprinted with permission from ref. [40], copyright 2018, Advanced Science 

Figure 4. (a). The mechanism of the synthesis of self-healing polymers. Reprinted with permission
from ref. [29], copyright 2016, ACS Applied Materials & Interfaces. (b). Structure of PAA–UPy binder
and dimers bottomed on quadruple hydrogen bond and the illustration of the large volume expansion
of silicon particles, reprinted with permission from ref. [40], copyright 2018, Advanced Science News.
(c). Mechanism with CMC binder crosslinked CMC–PAA binder, and self-healing CMC–CPAM binder,
reprinted with permission from ref. [59], copyright 2020, Elsevier. (d). Synthesis mechanism of the
carboxylic acid functional self-healing polymer, from ref. [65], copyright 2019, Advanced Materials.
(e). Scheme of silicon anode with ultrasonic assisted by PEDOT:PSS binder self-healing conductive
hydrogel binder, reprinted with permission from ref. [35], copyright 2020, Elsevier. (f). Synthesis of
alginic acid and acrylamide-based dual-crosslinking polymers, from ref. [66], copyright 2019, Journal
of Power Sources. (g). C-chitosan/Si nanoparticles surface structure and the capacity–cycle graph of
silicon anode with CMC, C-chitosan, and alginate, reprinted with permission from ref. [64], copyright
2014, Journal of Power Source.

Zhang et al. improved the self-healing ability of Si electrodes. Reconstruction of
the crosslinked self-healable supramolecular polymer, which was facilely synthesized by
copolymerization of tert-butyl acrylate and an ureido-pyrimidinone (PAA-UPy) monomer,
followed by hydrolysis, is shown in Figure 4. A Si composite anode using a PAA-UPy
binder gave an initial discharge capacity of 4194 mAh g−1 and a coulombic efficiency
of 86.4% and maintained a high capacity of 2638 mAh g−1 after 110 cycles. The results
reveal significant improvement of the electrochemical performance with PAA-UPy-based
electrodes in comparison with that of Si anodes using conventional binders. It retained
about 85% of the capacity in the long cycle. The self-healing PAA-UPy binder improved the
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electrochemical performance. They preferred using an ureidopyrimidinone-functionalized
polyethylene glycol. This binder has important properties for resisting large volume ex-
pansion and healing cracks [40]. Zhang et al. reported a cyclic solid mesh binder for
high-performance Si-based anodes. They took advantage of the interactions of cationic
polyacrylamides (CPAM) and carboxymethyl cellulose (CMC). Electrodes prepared with
this composite binder, as shown in Figure 4d,e, protected the electrochemical capacity of
1906.4 mAh g−1 after 100 cycles [67]. Hu et al. fabricated a self-healing gel by mixing PE-
DOT:PSS polymer and poly(vinyl alcohol). After modification with 4-carboxybenzaldehyde
(CBA), hydrogen bonds were formed (Figure 4g). The half-cell of prepared electrodes with
this binder showed a capacity of 1786 mAh g−1 at 500 mA g−1 after 200 cycles [35].

Table 1. Several self-healing materials for hydrogen bond interaction.

Self-Healing Material Anode Active Materials Electrolyte Electrochemical Performance Ref.

Na-alginate Si-C composite anodes,
100 nm

1 M LiPF6 in
EC/DEC/EMC

2850 mAh g−1 (first cycle capacity),
1250 mAh g−1 after 50 cycles at 0.1 A g−1 [60]

PAAH0.2Na0.8 Si/graphite < 100 nm 1 M LiPF6 in
EC/DEC/EMC 1100 mAh g−1 after 30 cycles at 50 mA g−1, [68]

Self-healing polymers
(SHPs)

Silicon
microparticle

(SiMP)

1 M LiPF6 in
EC/DEC/EMC 2617 mAh g−1 after 90 cycles at 0.4 A g−1 [62]

Carboxymethyl chitosan Silicon, 100 nm 1 M LiPF6 in
EC/DEC/EMC

950 mAh g−1 over 50 cycles at
500 mA g−1 [64]

Self-healing polymers
(SHPs)

Silicon
microparticle

(SiMP), 1–3 µm

1 M LiPF6 in
EC/DEC/VC/FEC 2736 mAh g−1 at C/20 after 500 cycles [62]

Self-healing-type
binder PAABS
content binder

9 PAABS+6
CMC

Silicon 20–30 nm/graphite
electrode

1 M LiPF6 in
EC/DEC/EMC

1150 mAh g−1 (First cycle capacity),
About 500 mAh g−1

after 50 cycles at 0.5 C
[69]

Native-XG, Na-CMC,
alginate Si/graphite, 100 nm Si 1 M LiPF6 in

EC/DEC/EMC

14.2%, 22.8%, and
34.6% of capacities after 200 cycles at 1 C,

respectively
[70]

Urea via hydrogen bonds Silicon particles (~0.9 µm) 1 M LiPF6 in
EC/DEC/VC/FEC

1700 mAh g−1; 80% retained after 175 cycles
at C/20

[24]

Self-healing polymers
(SHPs) Silicon, 100 nm 1 M LiPF6 in EC/DEC 719 mAh g−1; 81% retained after 100 cycles

at 1 C
[29]

Crosslinked
chitosan
(CS-GA)

Silicon, 100 nm 1 M LiPF6 in
EC/DEC/EMC

1969 mAh g−1 after
100 cycles at 500 mA g−1 [71]

Pyrene–poly(acrylic acid)–
polyrotaxane Silicon 1 M LiPF6 in

EC/DEC/EMC

82.5% retained
after 150 cycles

at 0.5 C
[40]

Dual-crosslinked network
binder of alginate Silicon/graphite anodes 1 M LiPF6 in

EC/DEC/VC/FEC
1743 mAh g−1; 74% retained after 200 cycles

at 2000 mA g−1 [66]

PAA-UPy Silicon 1 M LiPF6 in
EC/EMC/DMC

2000 mAh g−1; 74% retained after 110 cycles
at 1 C

[40]

UPy-functionalized PEG Silicon 1 M LiPF6 in EC/DMC 1847 mAh g−1; 81% ICE at 1 C [72]

CMC-CPAM Silicon-based 1 M LiPF6 in
EC/DEC/EMC 2103 mAh g−1; 92% ICE at 2 C [67]

PEDOT-PSS-PVA Silicon 1 M LiPF6 in
EC/DEC/EMC

1743 mAh g−1; 74% retained after 200 cycles
at 2000 mA g−1 [35]

PAU-g-PEG, Silicon 1 M LiPF6 in
EC/DEC/EMC

2831 mAh g−1/3.2 mAh cm−2; 85% retained
after 120 cycles at 0.1 C

[41]

Self-healing polymers
(SHPs)

Silicon
microparticle

(SiMP)

1 M LiPF6 in
EC/DEC/EMC

2100 mAh g−1; 91.8% capacity retention after
100 cycles at C/10

[63]
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Table 1 provides comprehensive details on the self-healing materials with H-bonds
used as electrodes, the cell system in which self-healing electrodes are used, and its elec-
trochemical evaluation. According to Table 1, the Si@PAU-g-PEG electrode showed an
outstanding electrochemical performance of over 2500 mAh g−1 over 100 cycles under a C
ratio of 0.1C. A ureido-pyrimidinone (UPy)-functionalized poly(acrylic acid) grafted with
poly(ethylene glycol)(PEG) showed electronic integrity at an electrode during repeated
charge–discharge cycles in the self-healing mechanism-formed structure within molecules
and via dynamic hydrogen bonds with silicon. It can be said that silicon effectively accom-
modated volume changes compared to other anodes in the table, which showed self-healing
properties with hydrogen bonding. As seen in the table, while the electrochemical per-
formance of carboxymethyl chitosan was close to 1000 mAh g−1, the Si anodes using the
self-healing mechanism formed by carboxymethyl cellulose and the cationic polyacry-
lamides added polymer showed two times the electrochemical performance at 2C. To make
a comparison between Si/C electrodes, the cell prepared from a self-healing structure with
a dual-crosslinked network binder of alginate maintained excellent cyclability with a high
capacity of approximately 1700 mAh g−1, even after one hundred cycles.

2.1.2. Metal Interaction of Self-Healing Materials

A self-healing mechanism occurs when a metal atom is attached to the side chains as
part of the backbone or to the ends of the polymer chains or coordinated with covalently
bonded ligands within the polymer backbone. Liquid metal gallium (Ga) was used for
the first time by Deshpande et al. as a negative electrode with self-healing properties. It
has been observed that low-melting-point liquid metals heal cracks during a reversible
solid–liquid transition during charge–discharge [73]. Desphande et al. investigated the
reversibility of lithiation of the LM pure Ga as a negative electrode for an LIB. Ga hosts
two Li atoms per Ga atom upon full lithiation, delivers a theoretical gravimetric capacity
of 769 mAh g−1 by forming Li2Ga alloy, and shows a discharge potential close to that of
the Li/Li+ reaction. It has been shown that LiGa alloys, CuGa alloys, and Ga confined
in a carbon matrix deliver capacities of about 200–400 mAh g−1 upon extended cycling.
The capillary cell concept has been illustrated in Figure 5a–d. Glass capillary cells were
prepared by assembling with liquid gallium as the working electrode and lithium metal
as the counter electrode. An EC/DEC electrolyte was used. The capillary was filled with
liquid Ga at one end, and solid lithium attached to a copper current collector was placed at
the other end. The space between the electrodes was filled with the electrolyte.

For the first time, Han et al. reported the production of a gallium–indium–tin (GaInSn)
alloy Si composite anode was healed by covering the cracks after Ga particles damaged
during cycling (Figure 5) [73].

Various and excellent studies in the literature have been summarized in Table 2. Anode
active material from Ga to Si with different polymer binders showed very high capacities
in a long cycle life.

As mentioned above, Bing et al. presented a novel approach involving a composite
system to heal the damage of material which was prepared through liquid-metal (LM)-
mediated spontaneous repairing of a conductive-additive-free Si anode for a Li-ion bat-
tery [48]. The as-prepared nanocomposite of LM/Si showed superior performances, as
characterized by high capacity utilization (2300 mAh g−1 after 200 cycles, long-term stabil-
ity (968 mAh g−1 after 1500 charge–discharge cycles) and high rate capability (360 mAh g−1

at 20 A g−1). The surface morphology of the electrode and a Nyquist graph of the liq-
uid metal anode are given in Figure 6a and b, respectively. As shown in Figure 6b, LM
and Si nanoparticles had good electrochemical performance together, and the overall cell
impedance was lower in the Si-LM anode than in pure LM and pure Si [48].
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Table 2. Several self-healing electrode examples over metal interaction.

Self-Healing Properties Anode Active Material Electrolyte Electrochemical Performance Ref.

Solid–liquid transition
of gallium Liquid gallium 1M LiPF6 EC/DEC/DMC 626 mAh g−1

at C/5
[73]

Alginate binder with Ca2+ ions
Silicon sub-microparticule

200 nm
1M LiPF6 EC/DEC/DMC

(1:1:1 volume ratio)
2522 mAh g−1 after 500 cycles

at 20 C
[74]

Ca-alginate binder Silicon, 100 nm 1.3 M LiPF6 EC/EMC, 3:7
10wt% FEC

1711 mAh g−1 at 0.2 A g−1 1

after 300 cycles
[75]

Low melting temperature Ga-In-Sn alloy 1M LiPF6 in
EC/EMC/DMC 2300 mAh g−1 at 0.25 C [48]

Fe-ß-catechol
coordination

bonds

Silicon microparticule.
300 nm

1M LiPF6 in
DMC/EC

81.9% capacity retention after
350 cycles at 1 C [76]

The lithiation–delithiation
mechanism

Liquid CuGa2/Si
nanocomposite 1M LiPF6 in EC/DEC 630 mAh g−1 at 200 mA g−1 [77]

Metals not only benefit from their low melting point temperature but also contribute
to displaying reversible properties by coordinating with polymeric networks. It helps
maintain electrical and mechanical integrity and significantly suppresses the volume ex-
pansion of the silicon anode by forming coordination bonds with the Ca2+ cations of
the alginate chain self-healing mechanism with hydrogen bonds (Figure 7a). As a result,
this structure showed a capacity of 2522 mAh g−1 with 76.5% capacity retention after
500 cycles [74]. Metals are used to coordinate more alginate chains with the alginate, which
is expected to crosslink. The results show that Si anodes with Al-algae or Ba-algae binding
are more robust and represent higher capacity retention with their reversible properties.
Yoon et al. developed a simple Ca spray treatment method with a Ca2+-doped alginate
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Si anode composite. (Figure 7b). LIBs are anticipated to have a longer life and higher
charge capacity than others. The Si-Ca electrodes have a 1711 mAh g−1 charge capacity at
0.2 A g−1, and even at a high current density of 2000 mA g−1 [75]. It has been shown that
it gains self-healing properties with the coordination of Fe3+ (tris)catechol. An anode in
this coordination structure exhibits 81.9% capacity retention after 350 cycles at 1C. Fe3+,
and (tris)catechol is like a crosslinked polymeric network (Figure 7c) that gives it flexibility.
A tridentate ligand structure, Fe3+ and (tris)catechol, gained flexibility [76].
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Figure 6. (a). Morphology of liquid metal–silicon electrode before the cycle, after the 200th cycle, and
after the 1500th cycle. (b). Capacity–cycle graph of liquid metal anode and Si anode cycled using
different current densities for 500 cycles; Nyquist graph of the liquid metal anode, liquid metal–silicon
anode, and silicon anode. Reprinted with permission from ref. [48], copyright 2018, Elsevier.

Table 2 provides comprehensive details on the self-healing materials used as elec-
trodes, the cell system in which self-healing electrodes are used, and its electrochemical
evaluation. According to Table 2, the Si@ Alginate binder with Ca2+ ion electrodes showed
an outstanding electrochemical performance of over 2500 mAh g−1 over 500 cycles under a
C ratio of 20 C. The calcium-mediated electrostatic crosslinking of alginate improves the
flexibility of the alginate binder and electrolyte desolvation. The improved mechanical
properties of the calcium alginate binder compared to the sodium alginate binder overcome
the barriers to volume expansion of silicon and increase the capacity of the Si anodes.
For the discharge capacity, the Ga-In-Sn alloy electrode showed 2300 mAh g−1 at 0.25 C.
The self-healing mechanism takes place at the low melting temperature of gallium. On
the other hand, the electrochemical performance of liquid gallium, which has properties
of self-healing with a solid–liquid transition, was observed to have a value close to the
electrochemical performance of the gallium–silicon composite electrode.
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Figure 7. (a). Scheme of coordinate bonds between alginate chains and calcium cations, reprinted with
permission from ref. [74], copyright 2014, Elsevier. (b). Self-healing illustration of Ca–alginate–silicon
anode during cycling, reprinted with permission from ref. [75], copyright 2014, Elsevier. (c). Scheme
of silicon–self-healing binder over Fe+3/cathecol–based bond cleave and rearrangement type
(metal–ligand complex) healing system, reprinted with permission from ref. [76], copyright 2019,
Advanced Materials.

2.1.3. Host–Guest Interactions

Kwon et al. fabricated host–guest interactions with a hyperbranched β-cyclodextrin
polymer, a hydrophobic guest, adamantine, a guest moiety with high affinity and selective
binding to β-cyclodextrin, and a dendritic gallic acid crosslinker with six adamantine units
as the host [78]. This system between the guest and host polymer chains provides crosslink-
ing polymer binders for silicon anodes during volume variations, resulting in a 90% capacity
retention after 150 cycles (Figure 8) [78]. Crosslinked hyperbranched β-cyclodextrin and
a gallic-acid-based silicon anode with electrolytes of 1M lithium hexafluorophosphate
solution in ethylene carbonate, diethyl carbonate, vinylene carbonate, and fluoroethylene
carbonate (1M LiPF6 in EC/DEC/VC/FEC) achieved a 1500 mAh g−1 at 0.5 C cycling
performance, and 90% was retained after 150 cycles.
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Figure 8. The mechanism of dynamic crosslinking for silicon nanoparticle anodes by engaging host–
guest interactions between hyperbranched βcyclodextrin polymer and a dendritic-gallic-acid-derived
supramolecular crosslinker incorporating six adamantane units. Reprinted with permission from
ref. [78], copyright 2015, American Chemical Society.

2.1.4. Ionically Bonded Interaction

Polymeric materials with macromolecules consisting of ionic and/or ionizable groups
can be developed that show the advantage of reversible physical crosslinks for self-healing
functions, forming interactions not found in nonionic polymers. The ionic content can assist
the diffusion/sealing process and stabilize the fracture resistance of the polymer material.
Kwon et al. presented a material in which each monomeric group has a functionality in the
main chain, ranging from stiffness, cross-linking, and flexibility to self-healing. Lithium
2-methyl-2-(4-vinylbenzyl)malonate can be prepared in one step as seen in Figure 9 upon
hydrolysis of Meldrum’s acid for a self-healing effect via ion–dipole interactions between
polymers and also with the native silanol groups on the Si surface [79].

The cycling performance of polymer composites and silicon achieved 51% capacity
retention after 500 cycles [79]. Wu et al. created a self-healing porous scaffold structure
by exploiting the electrostatic interaction between the carboxylate (–COO−) of Alg and
the protonated amines (–NH3+) of C-chitosan in the alginate–carboxymethyl–chitosan
(Alg-C-chitosan) composite polymer. A Si-based anode using an Alg-C-chitosan composite
binder exhibited excellent cycle stability with a residual capacity of 750 mAh g−1 after the
100th cycle [20].

The polymer binder found by Zeng et al. shows 14- and 90-times higher lithium-ion
dispersion and electron conductivity, respectively, than the commonly used carboxymethyl
cellulose and acetylene black. When prepared from this ionic (polyethylene oxide and
polyethylenimine) polymer binder, the silicon anode had a high capacity of approximately
2000 mAh g−1 at 500 cycles at 1C [67]. Huang et al. developed a self-healing ionomer-
electrode that presented a better initial discharge areal capacity of 2.9964 mAh cm−2

compared with 2.9748 mAh cm−2, 2.895 mAh cm−2, 2.991 mAh cm−2 at a rate of 0.1 C for
electrodes with PVDF, SBR, and uncrosslinked ionomer binders, respectively [11]. Several
self-healing materials for ionically bonded interactions have been summarized in Table 3.
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Table 3. Self-healing materials for ionically bonded healing mechanism.

Self-Healing Material Anode Active Materials Electrolyte Electrochemical Performance Ref.

Meldrum’s acid Silicon 1M LiPF6 in EC/DEC 1743 mAh g−1; 74% retained after
200 cycles at 2000 mA g−1 [79]

Alg–C-chitosan Silicon 1M LiPF6 in EC/DEC 750 mAh g−1 after the 100th cycle [20]

Ionic polymer with
PEDOT:PSS, PEO, and PEI Silicon 1M LiPF6 EC/DEC (1:1

volume ratio with 5% FEC
over 2000 mAh g−1 after 500 cycles

at 1.0 A g−1 [80]

Content of binder/
conductive additive (%)

1.8/8
Si/graphite 1M LiPF6 EC/DEC/EMC

(2:3:1 volume ratio)
71.7% capacity retention after

100 cycles at 0.5 C [11]

Table 3 provides comprehensive details on the self-healing materials used as electrodes,
the cell system in which self-healing electrodes are used, and its electrochemical evalua-
tion. The silicon anode with the polymer binder had a high reversible capacity of over
2000 mA h g−1 after 500 cycles at a current density of 1.0 A g−1, while, as seen in Table 1,
the electrochemical performance of carboxymethyl chitosan was close to 1000 mAh g−1.
With the addition of alginate to CMC, the self-healing properties of the structure may be
reduced due to hydrogen bonds with an ionic effect.

2.1.5. Multiple Functional Interactions of Self-healing Mechanism

Self-healing properties can be intramolecular and intermolecular, as well as a self-
healing material with physical interaction combined with chain movements and multilevel
chemical interactions obtained by repairing more than one type of chemical entity in a
single material. Lim et al. reported poly(acrylic acid) (PAA)—poly(benzimidazole) (PBI)
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binding using a supramolecular interaction with an ionic bond and a hydrogen bond.
This highlights that the structure using only the PAA binder with 0.45 peeling and the
structure using 2% by weight PBI relative to PAA show close mechanical properties. Thus,
it shows that a tight conducting network (Figure 10a) was obtained using PAA-PBI-2.
This mechanical property is related to the proportional reversibility of hydrogen bonding
and ionic interactions. The electrode with the PAA-PBI-2 connector showed a high initial
capacity of 1376.7 mAh g−1 and improved capacity retention of 54.6% after 100 cycles,
which was much better than the other two connectors. The bond strength of the bonding
network with Si will decrease with an increasing PBI ratio because the ionic interaction
between PBI and PAA provides a lower amount of carboxylic acid to adhere to the Si
surface [81]. The cycle performance of the electrodes can be improved with two or more
different types of dynamic bonds in a well-designed binder. Xu et al. showed that a
polymer that has multiple interactions of poly(acrylic acid)-poly(2-hydroxyethyl acrylate-
co-dopamine methacrylate) (Figure 10b) was prepared by mixing PAA with P(HEAco-
DMA). Kim et al. reported a polymer linker composed of DNA (reDNA) and NaAlg using
two supramolecular interactions. This supramolecular interaction suppresses the volume
change in the Si electrode by physically crosslinking the hydrogen bond and the ionic
bond, which has been illustrated in Figure 10c. The Si/reDNA/NaAlg electrode exhibited
a capacitance efficiency of 80.1% after 160 cycles at a current density of 1.75 Ag1, while the
blank trials Si/reDNA, Si/DNA, and Si/NaAlg electrodes achieved efficiencies of 67.8%,
61.3%, and 48.6%, respectively [82]. An extremely stable cycle life was demonstrated with
the PAA-connected electrode alone, which showed a much faster capacitance drop over
100 cycles than this combined polymer [15]. Several self-healing materials for multiple
functional interactions have been summarized in Table 4.
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Figure 10. (a). The chemical structure of PAA-PBI, reprinted with permission from ref. [81], copyright
2015, American Chemical Society. (b). Self-healing interaction with silicon and binder, reprinted
with permission from ref. [15], copyright 2018, Elsevier. (c). The interactions between binder, silicon
particles, and CB and the structure of reDNA/alginate, reprinted with permission from ref. [82],
copyright 2018, Advanced Materials.
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Table 4. Several self-healing materials for multiple functional interactions mechanisms.

Self-Healing Material Anode Active Materials Electrolyte Electrochemical Performance Ref.

PAA-PBI with
H-bond–ionic bond Silicon, 100 nm 1M LiPF6 in EC/DEC

1376.7 mAh g−1 and improved
capacity retention of 54.6% after

100 cycles at 1 C
[81]

reDNA/NaAlg
Hydrophobic interaction Silicon, 50 nm 1M LiPF6 in EC/DEC 80.1% capacity retention after

160 cycles at 1.75 A g−1 [82]

PAA-P (HEAco-DMA)
H bond–covalent bond Silicon, 50–100 nm 1M LiPF6 EC/DEC 1855 mAh g−1 under Si loading of

1 mg cm−2 at 5 A g−1 [15]

Table 4 provides comprehensive details on the self-healing materials used as electrodes,
the cell system in which self-healing electrodes are used, and its electrochemical evaluation.
According to Table 4, the Si@ PAA-P(HEA-co-DMA) electrode showed an outstanding
electrochemical performance of over 1800 mAh g−1 over 160 cycles at 1.75 A/g−1. The high
content of hydrogen bonding sites and the covalent structure with catechol groups provided
some self-healing capability to the flexible poly(acrylic acid)-poly(2-hydroxyethyl acrylate-
co-dopamine methacrylate) polymer. Thus, the cycle stability and speed performance of
the Si anode was significantly improved.

2.2. Chemical-Interaction-Based Self-Healing Materials

The reversibility of covalent bonds can use condensation, exchange, and addition
reactions. For the first time, Kim et al. developed self-healing processed by a thermoplastic
polyurethane (TPU) designed by easy-to-process aromatic disulfides that can properly
self-heal within 2 h through aromatic disulfide metathesis [82]. Xu et al. was inspired by
nature to prepare a new poly(urea-urethane)–graphite carbon nitride nanolayer composite
material in which multiple hydrogen bonds in the PUU matrix impart graphitic carbon
nitride with self-healing ability at room temperature to the composite material. Improved
mechanical properties of the composite material are provided by nanolayers that serve as
both chemical and physical crosslinkers [83]. Li et al. reported a supramolecular polymer
type using a host–guest complex of visible-light labile picolinium β-cyclodextrin nanogels
(β-CD) with ultrastability against electrolytes and photodegradation properties [27]. Most
self-healing artificial materials are polymer-based [17]. Self-healing mechanisms can be
classified in various ways according to the way in which bonds are broken and joined
and the nature of intramolecular and intermolecular interactions, external excitations, and
polymer network structures. In its simplest form, it has two main types: covalent and
noncovalent. Self-healing mechanisms with dynamic noncovalent bonds are hydrogen
bonding, ionic interactions, metal coordination, π-π stacking, and hydrophobic interactions,
while self-healing mechanisms with dynamic covalent bonds include the Diels–Alder
reaction, disulfide, acylhydrazone, ester, and imine. The Diels–Alder (DA) reaction for
crosslinking linear polymers has been pioneered by Kennedy and Wagener over the last four
decades [84,85]. The reversible groups of the thermo-reversible polymers were attached
to linear polymer backbones, but the links of crosslinkers to polymer backbones were
not reversible, using a completely reversible covalently formed macromolecular network,
as reported by Chen et al. [86]. A mechanically self-healing electrode was successfully
developed by Lee et al. with combining Ag nanowires and polydimethylsiloxane-based
polyurethane (PDMS-CPU) crosslinked with Diels–Alder (DA) adducts. A combination of
the DA reaction with coated AgNWs on the surface of the polymer smoothed the polymer
surface, greatly improving the mechanical sustainability of the electrode’s surface [87].
Similarly to this work, a transparent electrode, a thermally replaceable electrode, was
developed by Pyo et al., again using polyurethane Ag nanowires as crosslinkers [88].

As an alternative to the self-healing chemistry of covalently bonded rubber materials,
the disulfide mechanism has been used [89]. Disulfide groups can be cleaved by a reduction
reaction to form two thiol groups. Then, it can be regenerated by oxidation. Tesoro et al.
reformed epoxy resins with a disülfide interaction [90,91]. Tobolsky et al. showed the
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change in sulfur–sulfur bonds in poly(ethylene disulfide) and poly(ethylene tetrasulfide),
as well as polyurethanes [92,93]. Finally, thiol-terminated poly(styrene) synthesized via
a disulfide interaction during reduction–oxidation was reported by Tsarevsky et al. [92].
Kuhl et al. studied self-healing polymer networks obtained by polymerization of an
acylhydrazone crosslinker and methacrylates to improve the mechanical properties of
the polymer by adjusting the Tg [93]. Uncrosslinked polymers and those with reversible
crosslinks can be processed but are soluble. Leibler and colleagues demonstrated the
reprocessability of epoxy acid network polymers at high temperatures with ester bonds in a
covalent network. [94]. Yu et al. showed, with thermally malleable polymers that undergo
covalent bond esterification exchange reactions, that the glass transition temperature of the
material increases as the proportion of hard segments in the epoxy increases [95]. Imine
chemistry, also known as Schiff base chemistry, involves reversible covalent interaction [96].
Chao et al. showed that the imine bond exchange is induced by residual primary amino
functionalities in the polymeric network [97].

2.2.1. Imine-Bond-Based Self-Healing Systems

According to Cao et al., catechol-functionalized chitosan crosslinked with glutaralde-
hyde (CS-CG + GA) (Figure 11a), a SiNP-based anode with polymer mesh (CS-CG 10%
+ 6% GA) via catechol grafting, showed a capacity retention of 91.5% after 100 cycles at
2144 ± 14 mAh g−1. [98]. Rajevv et al. showed a self-healing network formed between amino
groups in glycol chitosan and aldehyde groups (Figure 11b). These components include a dy-
namic Schiff base reaction. Si electrodes (GCS-I-OSA) exhibited a high degree of reversibility of
2316 mAh g−1 at 0.2 C after 100 cycles, while Si/graphite composite anodes showed a current
density of 0.2 C after 100 cycles. It exhibited a specific capacity of 1364 mAh g−1 [34]. Several
self-healing materials for imine-bonded interactions have been summarized in Table 5.
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Figure 11. (a). Synthesis of a crosslinking catechol-rich network, reprinted with permission from
ref. [98], copyright 2019, American Chemical Society. (b). The self-healing process between glycol
chitosan and oxidized alginate (OSA) and schematic comparison of GCS-I-OSA binder and traditional
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Table 5. Several self-healing materials for imine-bonded interactions of the healing mechanism.

Self-Healing Material Anode Active Materials Electrolyte Electrochemical Performance Ref.

Catechol-functionalized
chitosan crosslinked by

glutaraldehyde

Silicon nanoparticle,
100 nm 1M LiPF6 in EC/EMC 2144 ± 14 mAh g−1; 91.5% capacity

retention after 100 cyclesat 1 C
[98]

GCS-I-OSA Silicon powder 50 nm 1M LiPF6 in EC/DEC 1364 mAh g−1 after 100 cycles at 0.2 C [34]

Table 5 provides comprehensive details on the self-healing materials used as elec-
trodes, the cell system in which self-healing electrodes are used, and its electrochemical
evaluation. According to Table 5, the Si electrode with catechol-functionalized chitosan
crosslinked by glutaraldehyde showed an outstanding electrochemical performance of
over 2100 mAh g−1 over 100 cycles at 1 C. Gutaraldehyde (CS – CG + GA), serving dual
functions, was crosslinked with the polymer binder, i.e., chitosan with a catechol function.
It is advantageous with its wet-resistant adhesion through catechol grafting and mechanical
strength through the in situ formation of a three-dimensional structure and offers a high
capacity by preventing volume expansion of silicon.

2.2.2. Ester-Bond-Based Self-Healing Systems

Ryu et al. investigated the natural guar gum component BC g (boronic crosslinked
guar) on Si anode. This binder, which will maintain the electrode integrity over long cycles,
adheres strongly to the surface of the Si particles with its hydroxyl content. In the polymer,
the bonding between the boronic acid side groups on the polystyrene backbone and the
hydroxyl groups on the guar gum increases the mechanical strength. Hydroxy H-bonds
and borate ester bonds form the self-healing mechanism. By putting a drop of electrolyte
solvent on the broken surfaces, the polymer was able to reconnect the new surfaces. The
prepared Si electrode containing the developed polymer binders retained 70% capacity
after 300 cycles at 1C [34].

Jung et al. improved a Si anode which has properties stabilizing the SEI layer and
preventing the volumetric expansion of Si aggregation (Figure 12). Jung et al. designed
a binding approach that enables covalent bond formation between −OH groups of the
polyacrylic acid with Si’s surface. This combination exhibited a capacity of 1500 mAh g−1

after 500 cycles at 1000 mA g−1 [99]. Several self-healing materials for boronate ester bonds
have been summarized in Table 6.

Table 6. Several self-healing materials for boronate ester of healing mechanism.

Self-Healing Material Anode Active Materials Electrolyte Electrochemical Performance Ref.

BC-g Silicon powder 50 nm 1.3 M LiPF6 in
DEC/EC

2750 mAh g−1; 87.3% capacity
retention after 100 cycles at 0.2 C

[34]

Esterificated PAA Silicon powder 50 nm 1M LiPF6 in DEC/EC/DMC
1:1:1 10% FEC

1500 mAh g−1 after 500 cycles at
1000 mA g−1 [99]

Table 6 provides comprehensive details on the self-healing materials used as electrodes,
the cell system in which self-healing electrodes are used, and its electrochemical evaluation.
According to Table 6, the Si electrode with esterificated PAA showed an outstanding
electrochemical performance of over 1500 mAh g−1 over 500 cycles at 1 A g−1. Silicon
anode prepared with polyacrylic acid binder consisting of silicon and −COOH groups
treated with piranha solution to produce −OH reached a self-healing structure with the
effect of an effective ester bond and offered a high capacity in long-cycle stability.
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2.2.3. Disulfide-Bond-Based Self-Healing Systems

It affects the molecular behavior of the types and steric hindrance of self-healing frag-
ments between different polymer chains and can self-heal and has mechanical properties.
The urea groups are self-healing due to differences between the thiourea and urea hydrogen
bond moieties.

A double-wrapped binder polyacrylic acid (PAA) and binder using outer polyurethane
(BFPU) polymers (Figure 13a) to address the large internal stress silicone were developed
by Jiao. BFPU acts as a buffer layer to disperse the internal tension and stress during
lithiation. This prevents structural damage to the hard PAA. Thus, large volume changes
are prevented during the charge–discharge process. Si anodes developed with a PAA–BFPU
binder, as can be seen in the illustration in Figure 13b, had a capacity of 3.5 mAh cm−1

and over 88% capacity retention for 200 cycles [100]. Several self-healing materials for
disulfide-bonded interactions have been summarized in Table 7.

Table 7. Some self-healing materials for disulfide-bonded interactions of healing mechanism.

Self-Healing Material Anode Active Materials Electrolyte Electrochemical Performance Ref.

1,6-bismaleimide (BMI)
functionalized poly(acrylic

acid) (FPAA) DA-PAA
Silicon powder 50 nm 1 M LiPF6 in EC/EMC 1:2

(v/v) with 10% FEC
1076 mAh g−1; 99.7% capacity retention

after 200 cycles at 1 C
[22]

Poly(ether-thioureas) Silicon powder, 100 nm 1 M LiPF6 in
DEC/EC/DMC 1325 mAh g−1 at 1 C [100]

PAA–BFPU binder Silicon powder, 100 nm 1 M LiPF6 in
DEC/EC/DMC

over 88% capacity retention after
200 cyclesat 3.5 mAh cm−2 [101]

Table 7 provides comprehensive details on the self-healing materials used as elec-
trodes, the cell system in which self-healing electrodes are used, and its electrochemical
evaluation. According to Table 7, the Si electrode 1,6-bismaleimide-(BMI) functionalized
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poly(acrylic acid) (FPAA) DA-PAA showed an outstanding electrochemical performance
of over 1000 mAh g−1 over 200 cycles at 1 C. The PAA binders, which have self-healing
properties with a disulfide bond, as shown in Table 7, did not yield a better result than
silicone anode prepared with a polyacrylic acid binder.
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reprinted with permission from ref. [101], copyright 2021, Advanced Materials.

2.2.4. Diels–Alder-Reaction-Based Self-Healing Systems

Rajeev et al. reported creating a crosslinked polymer network based on 1,6-bismaleimide
(BMI) as a crosslinker for furfurylamine-functional poly(acrylic acid) (FPAA) and then
thermal Diels–Alder (DA) click chemistry, which was used as a new polymer for silicon
binding. The crosslinked network of Diels–Alder chemistry exhibited self-healing with
Diels–Alder chemistry. The Si electrode with the Diels–Alder binder recorded a high
Coulombic efficiency of 99.7% after 200 cycles. The Diels–Alder-PAA binder shown in
Figure 14a outperformed commercially available silicone binders, such as PAA, CMC, SA,
and PVdF, which were compared in terms of cyclic performances, the results of which can
be seen in Figure 14b [22].
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3. Conclusions

Self-healing materials have been extensively researched, from electronics to the build-
ing industry and the biomedical fields. In addition to these areas, the application of
self-healing materials to electrochemical-based devices, especially lithium-ion batteries or
supercapacitors, is rapidly increasing. Many studies have been conducted on the manu-
facture of other electronic and electrochemical devices, such as dielectric actuators and
electrochemical sensors concerning self-healing systems. Conductive polymers are very
important for solar cells, actuators, sensors, batteries, and other energy storage devices.
However, damage to these materials causes serious problems in device performance. The
main requirement for the development of self-healing and conductive materials is to main-
tain a high conductivity level after damage. One of the most basic strategies for preparing
self-healing conductive materials is to add dynamic reversible bonds to the structure.

The “self-healing with smart modifications” approach, which has attracted increasing
attention from the scientific community around the world, gives priority to systems that
allow the use of new-generation polymeric binders in silicon anodes. Therefore, the
self-healing systems in silicon anodes for LIBs have increased in the past few years. A
comprehensive review of self-healing systems in silicon anodes for LIBs has been prepared
with this approach. In this regard, novel researches about self-healing systems in silicon
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anodes for LIBs have been gathered to present the most recent advances to battery society.
We hope that the self-healing systems in silicon anodes for LIBs will be applied for novel
scientific approaches in near future.

In conclusion, although promising developments have been achieved so far, innovative
materials strategies are still needed at the application level of self-healing materials and
tools for practical use and eventual commercialization.
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Abbreviations

AMPS 2-Acrylamido-2-methylpropanesulfonic acid
AN acrylonitrile
BA acrylic acid n-butyl ester
CBA 4-carboxybenzaldehyde
CE Coulombic efficiency
CMC carboxymethyl cellulose
CPAM cationic polyacrylamides
DC discharge capacity
DEC diethyl carbonate
DMC dimethyl carbonate
EC ethylene carbonate
EMC ethyl methyl carbonate
FEC fluoroethylene carbonate
Ga-In-Sn gallium–indium–tin alloy
IC ionic conductivity
ICE initial coulombic efficiency
LiPF6 lithium hexafluorophosphate
LM liquid metal
PEDOT poly (3, 4-ethylene- dioxythiophene)
PSS poly (styrenesulfonate)
PEGMA poly (ethylene glycol) methyl ether methacrylate
PAA poly(acrylic acid)
PVA polyvinyl alcohol
PEG polyethylene glycol
PEGA poly (ethylene glycol) methyl ether acrylate
RT room temperature
UPy ureido-pyrimidinone
UPyMA (2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate)
VC vinyl carbonate
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