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Endocrinological research early recognized the importance of
intercellular interactions, initially in processes involved in lacta-
tion, pubertal maturation, and regulation of the female ovarian
cycle and later in appetite regulation. The importance of gluta-
matergic and GABAergic signaling during all of these events is now
realized. Reference (1) describes existing knowledge of the role
of amino acid neurotransmitters in the mechanism of neuronal
activation during appetite regulation and associated neuronal–
astrocytic metabolic coupling mechanisms. Different responses in
these mechanisms are apparently originated in different feeding
paradigms associated with appetite stimulation (1).

Formation of transmitters glutamate and GABA requires pro-
found interactions between neurons and astrocytes, as does resup-
ply of released transmitters. Both of these amino acid transmitters
are formed in brain from glucose in astrocytes (2, 3), but not in
neurons, which lack the enzyme pyruvate carboxylase (PC). The
most recent progress in measurement of brain glucose transport
and metabolism in vivo and its importance for understanding
of the glial role in glutamatergic and GABAergic neurons are
reviewed in Ref. (4), which also thoroughly describes different
approaches to establish mathematical models of brain metabolism
and apply them to obtain quantitative metabolic rates (4).

Figure 1 shows that both PC and pyruvate dehydrogenase are
needed to form a new molecule of the tricarboxylic acid (TCA)
cycle constituent citrate, from which glutamate is generated via
α-ketoglutarate. An important, debated question is whether this
process is catalyzed by glutamate dehydrogenase (GDH), as gener-
ally assumed, or by aspartate aminotransferase (3, 5), suggested by
a large stimulation of glutamate/glutamine formation in astrocytes
in the presence of aspartate (5). The latter concept is consistent
with extremely high cytosolic and mitochondrial aspartate amino-
transferase activity, allowing rapid nitrogen exchange between
glutamate and aspartate (6).

Glutamate is converted to glutamine by glutamine synthetase
(GS) and transferred to neurons. In glutamatergic neurons, glut-
amine is converted to glutamate within the mitochondrial mem-
brane,enters the mitochondrial matrix, and is returned to the cyto-
plasm in a process requiring the malate–aspartate cycle operation
(2, 3). GABA formation is slightly more complex, since part of the
glutamate – from which GABA is formed by decarboxylation – is

treated similarly, but another major part is first partly metabo-
lized via the TCA cycle (2). Maximal glutamate synthesis rates
in rats/mice are not achieved until postnatal day 30 (3), asso-
ciated with huge increases in energy demand and production,
and probably with functional gains. After neuronal glutamate or
GABA release, some transmitter, mainly GABA, is reaccumulated
into neurons but most glutamate is returned to astrocytes. Here
a part is oxidized, requiring similar de novo synthesis to main-
tain mass balance, and the remainder is returned to neurons for
reuse. Both processes are probably identical in brain (2, 3) and in
retina (7), where Müller cells are the major glial cells. They express
PC (8) and may synthesize glutamate/GABA like brain astrocytes.
By removing most extracellular glutamate in the inner retina and
contributing to glutamate clearance around photoreceptor termi-
nals, they contribute to shape (and terminate) synaptic activity
(7). Reactive Müller cells are neuroprotective, but may also con-
tribute to neuronal degeneration by reversal of glial glutamate
transporters. Dysregulation of retinal glutamate homeostasis is
important in many retinopathies. A hormonally induced increase
in Müller cell GS protects against neuronal injury, whereas GS
inhibition increases cell death (7, 9). The possibility that oxidation
of astrocytically generated glutamate represents a major part of
astrocyte energy metabolism (3) might contribute to this.

Synthesis of pyruvate from glucose involves one oxidative reac-
tion, leading to cytosolic formation of NADH from NAD+. For
regeneration of NAD+, reducing equivalents must be transferred
to mitochondria. In brain, this is generally supposed to occur via
the malate–aspartate shuttle. Immunohistochemical expression of
aralar, an essential constituent of this shuttle, is low in astrocytes
(5), but determination of mRNA for its gene in freshly obtained
astrocytes and neurons shows equal expression in each cell type (3,
10). A study of the ability of different techniques to demonstrate
gene expression in astrocytes showed that a multitude of astrocytic
genes, including aralar, seem almost impossible to demonstrate
by immunohistochemistry/in situ hybridization. Unfortunately,
astrocytic gene expression is also occasionally missed by newer
microarray studies. Another study evaluated data for GS expres-
sion (11), a key enzyme in glutamate/GABA synthesis (Figure 1)
first shown immunohistochemically in Ref. (12). Anti-GS was
concluded to be the most general astrocytic marker, covering all

www.frontiersin.org April 2014 | Volume 5 | Article 42 | 1

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00042/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00042/abstract
http://www.frontiersin.org/people/u/46981
http://www.frontiersin.org/people/u/3217
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Endocrinology/archive
mailto:leifhertz@xplornet.ca
mailto:tiago.rodrigues@cruk.cam.ac.uk


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hertz and Rodrigues Glutamate/GABA formation and degradation

FIGURE 1 |The astrocytic part of the synapse provides net synthesis
of glutamine (GLN), via the concerted action of pyruvate carboxylase
(PC) and pyruvate dehydrogenase (PDH), generating oxaloacetate
(OAA) and acetyl-CoA, the combination of which leads to synthesis of
citrate (CIT). This subsequently leads to a net synthesis of α-ketoglutarate
(α-KG) allowing synthesis of glutamate (GLU), catalyzed by either
glutamate dehydrogenase (GDH) or an amino acid aminotransferase (AA).
GLU is used for synthesis of GLN catalyzed by glutamine synthetase (GS).
GLN is transferred to the glutamatergic neuron to be used for synthesis of
GLU catalyzed by phosphate-activated glutaminase (PAG). Released GLU
is taken up into the astrocyte and transformed into GLN completing the
GLU–GLN cycle. Alternatively, the GLU taken up may be oxidatively

metabolized, which subsequently requires de novo synthesis of GLN via
the anaplerotic processes indicated in bold arrows. Reproduced from Ref.
(2), which together with other contributions discusses metabolic
interactions in detail, even in the brain in vivo. However, the Figure also
shows that NH4

+ is required in astrocytes and released in neurons, and
mechanisms transferring NH4

+/NH3 between the two cell types are
discussed in other articles. So are the transporters releasing glutamine
from astrocytes and accumulating it in neurons and the powerful
transporters accumulating glutamate in astrocytes, as well as associations
between glutamate uptake and metabolism. AT, aminotransferase; MAL,
malate; ME, malic enzyme; PYR, pyruvate. Figure from Schousboe
et al. (2).

astrocytic subtypes, and labeling astrocytic cells but no other cell
types in situ, in culture or in tumors (11). In spite of several reports
to the contrary, anti-GS does not label oligodendrocytes, empha-
sizing the difficulty of evaluation of cellular localization and the
importance of cell-specific features for histological verification.
Nevertheless, interactions between oligodendrocytes, astrocytes,
and neurons are important for many aspects of brain function
(13). It is essential to obtain more information about these basic
metabolic interactions, which remain under-studied in spite of
the importance of white matter disease. Vesicular release of gluta-
mate occurs in white matter, cells of the oligodendrocytic lineage
express glutamate receptors, and oligodendrocytic glutamate tox-
icity is co-implicated in hypoxic–ischemic, inflammatory, and
traumatic brain damage (13). Involvement of astrocytes in white
matter disease is also shown in tissue from patients having suf-
fered from multiple sclerosis, through the absence of β1-adrenergic
receptor, and has potentially wide-ranging consequences (14).
Moreover, a normal metabolic response to highly elevated K+

concentrations is absent in cultured astrocytes from the convulsing
Jimpy mice (15).

Glutamine exit from astrocytes and entry into neurons are
of equal importance to glutamine synthesis for regulation of de
novo synthesis of glutamate/GABA and for the return of released
transmitter via astrocytes to neurons. The system N transporter
SN1 resides on perisynaptic astroglial cell membranes and medi-
ates electroneutral and bidirectional glutamine transport (16).
Its activity is regulated at many levels, e.g., by extracellular pH,
because protons compete with Na+ required for its transport activ-
ity. There are consistent observations that SN1 is down-regulated
by protein kinase C phosphorylation, probably by internaliza-
tion (16). Secretion of insulin and glucagon from pancreatic islets
resembles other endocrine secretions in their glutamate and GABA
dependence, but an even closer resemblance with brain cells is
revealed by expression of similar transport processes (17). Islet β-
and α-cells contain high levels of glutamate, GABA, and glutamine
and their respective vesicular and plasma membrane transporters,
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which may play important roles in hormone maturation and secre-
tion. Dependent upon secretion needs, glutamine may enter or
leave β-cells via SN1 and be taken up by α-cells by SAT2, one of
the SAT isoforms that accumulates glutamine in neurons (17).

Since both glutamate and GABA cycles require ammonia fix-
ation in the astrocytic cytosol, and glutamine deamidation to
glutamate in neurons, ammonia shortage occurs in the astrocytic,
and ammonia excess in the neuronal cytosol (6, 18). This imbal-
ance requires that excess ammonia in neurons either diffuses via
the extracellular space to the astrocyte, probably as NH3, or that it
diffuses into mitochondria, becomes fixed to α-ketoglutarate, and
forms glutamate, from which ammonia is returned to astrocytes
through the aid of amino acid shuttles. Both Ref. (18), an advanced
statistical computational model, and Ref. (6), discussing exper-
imental observations, consider the requirement of this process
for neuronal GDH to run in its reductive direction as evidence
against its occurrence. This and Ref. (19) contradict a previously
suggested major role of branched-chain amino acids or alanine
shuttles. However, it is suggested that leucine, which enters the
brain from the circulation, might supplement glutamine as an
astrocytic–neuronal nitrogen carrier (18).

Glutamatergic and GABAergic activity is terminated by cellu-
lar uptake (20). The various transporters have different properties
and different regulatory mechanisms, and some also act as ion
channels. To understand the physiological roles of the individ-
ual transporter subtypes, their anatomical distribution must be
known. Quantitative information about the expression is essen-
tial since functional capacity is determined by the number of
transporter molecules. The most important and most abundant
transporters for removal of transmitter glutamate in the brain
are EAAT2 (GLT-1) and EAAT1 (GLAST), which both catalyze
rapid uptake into astrocytes. GAT1 and GAT3 are the major GABA
transporters in the brain, with GAT3 being astrocyte-specific.

Inhibition of GDH-mediated glutamate conversion to α-
ketoglutarate with any of three inhibitors (epigallocatechin–
monogallate, hexachlorophene, and bithionol) impedes glutamate
uptake in the brain through cortical membranes expressing GLT-
1 (21). This is consistent with this group’s previous observations
of anatomical and physical linkages between astrocytic glutamate
transporters and mitochondria. The inhibitors had no effect in
cerebellar membranes, where glutamate is accumulated by GLAST,
but they did inhibit GABA uptake, suggesting that the GDH plays a
role also in GABA metabolism. GABA enters the TCA cycle via suc-
cinate and succinic semialdehyde, but glutamate is required if the
succinic semialdehyde formation occurs by transamination (3).

The high rate of glutamate uptake (20) together with the close
association between glutamate uptake and metabolism (21) sug-
gests that glutamate must be metabolized at high rates in astro-
cytes. This is convincingly shown in a review (22), pointing to
several studies showing that glutamate uptake in astrocytes is
more than high enough to meet the demand for its own energy-
consuming uptake, and providing an excellent illustration of the
metabolic processes in which ATP is generated. They include those
involved in complete oxidation of malate via pyruvate recycling
and the cytosolic enzyme malic enzyme (ME) (Figure 1). Both
Ref. (21) and (22) assume that the initial conversion of gluta-
mate to α-ketoglutarate is mediated by GDH, as always found with

isolated cells. However, Balazs found that transaminase-dependent
glutamate oxidation accounted for most, but not all, mitochon-
drial glutamate oxidation (23). Furthermore, in GDH knockout
mice most functions remain unchanged (24), except for a reduced
glutamate oxidation in cultured, and thus isolated astrocytes.
Accordingly,more studies are needed of glutamate/α-ketoglutarate
interconversion in intact preparations, a difficult undertaking.
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