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Abstract 
The recent, rapid advances in immuno-oncology have revolutionized cancer treatment and spurred further research into tumor biology. Yet, 
cancer patients respond variably to immunotherapy despite mounting evidence to support its efficacy. Current methods for predicting immuno-
therapy response are unreliable, as these tests cannot fully account for tumor heterogeneity and microenvironment. An improved method for 
predicting response to immunotherapy is needed. Recent studies have proposed radiomics—the process of converting medical images into 
quantitative data (features) that can be processed using machine learning algorithms to identify complex patterns and trends—for predicting 
response to immunotherapy. Because patients undergo numerous imaging procedures throughout the course of the disease, there exists a 
wealth of radiological imaging data available for training radiomics models. And because radiomic features reflect cancer biology, such as tumor 
heterogeneity and microenvironment, these models have enormous potential to predict immunotherapy response more accurately than current 
methods. Models trained on preexisting biomarkers and/or clinical outcomes have demonstrated potential to improve patient stratification and 
treatment outcomes. In this review, we discuss current applications of radiomics in oncology, followed by a discussion on recent studies that 
use radiomics to predict immunotherapy response and toxicity.
Key words: radiomics; response prediction; machine learning; immunotherapy; tumor heterogeneity; immuno-oncology; automated intelligence; biomarker.

Implications for Practice
The current FDA-approved biomarkers for predicting immunotherapy response are programmed cell death-ligand-1 (PD-L1), tumor 
mutational burden (TMB), and microsatellite instability/defective mismatch repair (MSI/dMMR). Sampling through tissue biopsy, liquid 
biopsy, or cytology is required for immunohistochemical (IHC) detection of PD-L1 and dMMR, next-generation sequencing (NGS) analysis 
of TMB and MSI-high (MSI-H), and polymerase chain reaction (PCR) testing of MSI-H. However, the current sampling techniques often fall 
short of identifying individuals who will lack response, owing to inter- and intra-tumor heterogeneity in tumors. This review encompasses 
recent studies evaluating the application of radiomic models in cancer care, particularly in the era of immuno-oncology (IO). In summary, 
radiomic models may fill the current knowledge gap and allow for a more integrated and dynamic prediction of immunotherapy outcomes.

Introduction
Advances in immuno-oncology (IO) are creating more options 
for patients with unresectable, metastatic, or chemorefractory 
malignancies lacking driver mutations. Decisions to treat 

patients with cancer using immunotherapy are often guided 
by molecular biomarkers that reflect a patient’s genetic back-
ground and immune profile. Unfortunately, up to 40% of 

https://creativecommons.org/licenses/by/4.0/
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patients do not respond consistently to immune checkpoint 
inhibitors (ICIs).1

The variable response to treatment has partially been ex-
plained by tumor heterogeneity, which is defined as the exist-
ence of distinct subclonal populations of cancer cells within 
a tumor.2-4 These subclones have different genetic profiles, 
resulting in differential protein expression that may render 
some cells resistant to immunotherapy.5 Biopsy has been 
used as a gold standard for predicting immunotherapy re-
sponse. However, geographic heterogeneity is difficult to 
capture using biopsy because a single biopsy may not rep-
resent the entire tumor parenchyma.6 Additional challenges 
in cancer immunotherapy include cost, toxicity, and con-
cerns over evaluating objective response. Various approaches 
based on clinical, molecular, immunologic, histologic, and 
radiomic profiles have been explored to account for tumor 
heterogeneity.

Radiomics refer to the process of converting medical images 
into quantitative data (features), which can be mined to reveal 
complex patterns that reflect tumor biology at the macro- and 
microscopic levels. The process of constructing radiomics 
models is summarized in Fig. 1 along with Supplementary 
Appendix 1. The rationale behind this emerging technology 
is that disease processes at the molecular level manifest as 
distinctive macroscopic patterns on imaging that are diffi-
cult to discern by unaided visual assessment. Radiomic sig-
natures (RS) built from chosen features can enhance clinical 
decision-making regarding cancer diagnosis, prognosis, and 
treatment. Artificial intelligence (AI) has improved radiomic 
model building by selecting the most salient radiomic features 
and incorporating clinical data into predictive models.

Radiomics has particularly important implications in 
cancer because of tumor heterogeneity. Compared to biopsy-
based methods, radiomics can provide a more comprehensive 
assessment of the tumor by extracting features across the en-
tire tumor microenvironment (TME). Additionally, radiomic 
models can be used on multiple scans, allowing clinicians to 

serially and non-invasively track changes in tumor phenotype 
and clinical response. In this review, we focus on applications 
of radiomics in IO, with special emphasis on studies that pre-
dict response to immunotherapy.

Materials and Methods
Our review encompasses studies published before May 31, 
2021, including full manuscripts, conference abstracts, pres-
entations, and ongoing clinical trials. The search terms run 
in PubMed and EMBASE include “diagnosis,” “prognosis,” 
“treatment,” “chemotherapy,” “target therapy,” “therapy,” 
“immunotherapy,” and “immuno-oncology” in association 
with “radiomics.” We selected the studies based on their rela-
tion to oncology, use of AI, the inclusion of externally validated 
cohorts, validation metrics, cohort size greater than 100, and 
novel study designs as discussed in “future directions”. For the 
fairness of the assessment, we focus on studies that measure 
model performance by the area under the receiver operating 
characteristic curve (AUC) or the concordance index (CI).

Applications of Radiomics in IO
Artificial intelligence-based radiomics has been investigated 
in many aspects of oncology (Supplementary Table S1, Tables 
1 and 2). Radiomic models have demonstrated equally good 
performance as standard biopsy in correctly diagnosing and 
staging cancers.7-24 The models have also successfully pre-
dicted metastases, overall survivals, and regressions in various 
types of cancers.25-41 Most importantly, radiomic features have 
shown promise in treatment planning and evaluation.42-98

Radiomics models carry insurmountable value especially in 
predicting systemic treatment response by way of noninvasive 
and comprehensive evaluation of the tumor. However, the 
aforementioned radiomics features require external valid-
ation ideally with datasets collected prospectively across  
multiple centers.44

Figure 1. Radiomic model development. Radiomic models can be trained on many types of medical imaging. Images undergo segmentation to 
delineate ROI(s) and/or VOI(s) using a manual, semiautomatic or automatic approach. Feature extraction is performed on a training dataset using data 
processing software. Feature selection and model building are performed using machine learning methods to reduce redundant features, eliminate 
irrelevant features, and identify top features with high prognostic value. Clinical information can also be incorporated into model development. Model 
performance is measured using a validation dataset to assess overfitting and generalizability. Test datasets can be used to assess a final model fit. 
Performance is typically assessed in an independent validation dataset using AUC-ROC analysis, though studies lacking independent validation datasets 
may rely on internal validation techniques (random sampling, k-fold, bootstrap cross-validation, etc.).

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyac036#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyac036#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyac036#supplementary-data
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Table 1. Radiomics models trained on established biomarkers for cancer immunotherapy.

Reference Tumor Application Train, validate, test (n) Image Performance§ (train, validate, test) 

Sun et al.66 MST Biomarker 
(CD8+ TIL1),
Treatment 
(I; response, OS)

T 135
V1 (external) 119
V2 (internal) 100
V3 (internal) 137 

CT ML AUC T 0.74, V1 0.67, V2 0.76, V3 N/A

Li et al.56 Brain Biomarker 
(TME1)

T 68
V (external) 56

MRI DL AUC T 0.821, V 0.708

Tian et al.68 Lung Biomarker 
(PD-L12)

T 750
V (internal) 93
Ts (internal) 96

CT ML AUC T 0.71, V 0.67, Ts 0.75
DL AUC T 0.63, V 0.67, Ts 0.68
Hybrid AUC T 0.78, V 0.71, Ts 0.76

Sun et al.67 Lung Biomarker 
(PD-L12)

T 260
V (internal) 130

CT ML AUC T 0.786, V 0.807
ML-Combined AUC T 0.829, V 0.848

Jiang et al 46 Lung Biomarker 
(PD-L12)

T 266
Ts (internal) 133 

PET/
CT

PD-L1 ≥1%: 
ML AUC T N/A, Ts 0.97
PD-L1 ≥50%: 
ML AUC T N/A, Ts 0.88

Yoon et al.50 Lung Biomarker 
(PD-L12)

T 153
V (internal) N/A

CT ML CI T 0.550, V 0.550
ML-Combined CI T 0.667, V 0.667 

Mu et al 63 Lung Biomarker 
(PD-L12),
Treatment 
(I; DCB, PFS, OS)

PD-L1: 
T1 284
Ts1 (internal) 116
DCB: 
T2 99
Ts2 (internal) 47
PFS, OS:
T3 146
Ts3 (prospective) 48

PET/
CT

PD-L1:
ML AUC T1 0.89, Ts1 0.84
DCB: 
ML AUC T2 0.86, Ts2 0.83
PFS: 
ML CI T3 0.75, Ts3 0.79
OS: 
ML CI T3 0.79, Ts3 0.76

He et al.45 Lung Biomarker 
(TMB1)

T 262
Ts (internal) 65

CT ML AUC T 0.85, Ts 0.81
ML-Combined AUC T 0.75, Ts 0.74

Yoon et al 73 Lung Biomarker 
(TIL1)

T 89
Ts (internal) 60

CT Th1: 
ML AUC T 0.751, Ts 0.564
Th2: 
ML AUC T 0.795, Ts 0.684
CTL: 
ML AUC T 0.681, Ts 0.612

Yu et al. 74 Breast Biomarker 
(TIL1)

T 85
V (internal)36

MG TITreg: 
ML AUC T 0.83, V 0.79

Wen et al.71 Esophageal Biomarker 
(PD-L12, TIL1)

T 160
V (internal) 60

CT PD-L1: 
ML AUC T 0.784, V 0.750
ML-Combined AUC T 0.871, V 0.692
CD8+ TIL: 
ML AUC T 0.764, V 0.728
ML-Combined AUC T 0.832, V 0.795

Gao et al.54 Gastric Biomarker
(TIL1)

T 90
V (internal) 45
Ts (internal) 30

CT ML AUC T 0.884, V 0.869, Ts 0.847

Pernicka et al.48 Colon Biomarker 
(MSI2)

T 139
Ts (internal) 59

CT ML AUC T 0.74, Ts 0.76
ML-Combined AUC T 0.80, Ts 0.79

Liao et al.57 Liver Biomarker 
(TIL1) 

T 100
V (internal) 42

CT ML AUC T 0.751, V 0.705

Chen et al.43 Liver Biomarker 
(TIL1)

T 150
V (internal) 57

MRI¶ ML AUC T 0.904, V 0.899
ML-Combined AUC T 0.926, V 0.934

Iwatate et al.55 Pancreatic Biomarker 
(PD-L12)

T 107 CT ML AUC T 0.683

All studies were retrospective unless otherwise specified. 
Abbreviations: Tumor type MST: multiple solid tumors; Application CD: cluster of differentiation; DCB: durable clinical benefit; I: immunotherapy; MSI: 
microsatellite instability; OS: overall survival; PD-L1: programmed death-ligand 1; PFS: progression-free survival; TIL: tumor-infiltrating lymphocytes; 
TMB: tumor mutational burden; TME: tumor microenvironment; Train, validate, test T: training cohort; Ts: test cohort; V: validation cohort; Image 
CT: computed tomography; MG: mammography; MRI: magnetic resonance imaging; PET: positron emission tomography; Performance AUC: area 
under receiver operating characteristic curve; CI: concordance index, Combined: radiomics model combining handcrafted or DL features with clinical, 
radiologic, histologic, genetic, transcriptomic, proteomic, or metabolomic features; DL: deep learning-based radiomics; Hybrid: radiomics model combining 
handcrafted and DL features; ML: machine learning-based radiomics built on handcrafted features; N/A: not available.
§Highest performing AUC and/or CI (other reported statistical analyses not included).
¶Peritumoral features included in analysis.
1Assessed by next-generation sequencing
2Assessed by immunohistochemistry
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Table 2. Radiomics models trained on clinical outcomes of cancer immunotherapy.

Reference Tumor Application Train, validate, test (n) Image Performance§ (train, validate, test) 

Ligero et al.58 MST Treatment 
(I; response)

T 115
V1 (internal) N/A
V2 (external) 62

CT ML AUC T 0.81, V1 0.72, V2 0.76 
ML-Combined AUC T N/A, V1 N/A, V2 0.84

Dercle et al.44 Lung Treatment 
(I, C, TT; response)

I: 
T1 72
V1 (internal) 20
C: 
T2 32
V2 (internal) 18
TT: 
T3 31
V3 (internal) 15

CT I: 
ML AUC T1 0.80, V1 0.77
C: 
ML AUC T2 0.68, V2 0.67
TT: 
ML AUC T3 0.81 V3 0.82

Mu et al.64 Lung Treatment 
(I; irSAE)

T 97
Ts1 (internal) 49
Ts2 (prospective) 48

PET/
CT

ML AUC T 0.88, Ts1 0.90, Ts2 0.86
ML-Combined AUC T 0.92, Ts1 0.92, Ts2 0.88

Vaidya et al.70 Lung Treatment 
(I; HPD)

T 30
V (internal) 79

CT¶ ML AUC T 0.85, V 0.96

Tunali et al.69 Lung Treatment 
(I; TTP, HPD)

T 228 CT TTP <2 months:
ML-Combined AUC T 0.812
TTP ≥2 months:
ML-Combined AUC T 0.804
HPD:
ML-Combined AUC T 0.843

Mu et al.62 Lung Treatment 
(I; DCB, PFS, OS)

T 99
Ts1 (internal) 47
Ts2 (prospective) 48 

PET/
CT

DCB: 
ML AUC T 0.86, Ts1 0.83, Ts2 0.81
ML-Combined AUC T 0.89, Ts1 0.86, Ts2 0.86
PFS: 
ML-Combined CI T 0.74, Ts1 0.74, Ts2 0.77
OS: 
ML-Combined CI T 0.83, Ts1 0.83, Ts2 0.80

Khorrami et al.47 Lung Treatment 
(I; response)

T 50
V1 (internal) 62
V2 (external) 27 

CT¶ ML AUC T 0.88, V1 0.85, V2 0.81

Liu et al.59 Lung Treatment 

(I; response)

Baseline-radiomic dataset: 
T1 137
Ts1 (internal) 60
Delta-radiomic dataset: 
T2 112
Ts2 (internal) 49

CT Baseline-radiomic dataset: 
ML AUC T1 0.59, Ts1 0.53
ML-Combined AUC T1 0.65, Ts1 0.61
Delta-radiomic dataset: 
ML AUC T2 0.82, Ts2 0.81
ML-Combined AUC T2 0.83, Ts2 0.81

Elkrief et al.53 Lung Treatment 

(I; ORR)

T 141 CT ML AUC T 0.67
DL-Combined AUC T 0.78

Yang et al.72 Lung Treatment 

(I; response)

T 200 CT 60-day response:
DL-Combined AUC T 0.77
90-day response: 
DL AUC T 0.69
DL-Combined AUC T 0.80

Mu et al.61 Lung Treatment 

(I; cachexia, DCB, PFS, 
OS)

T 123
Ts1 (internal) 52
Ts2 (external) 35

PET/
CT

Cachexia: 
ML AUC T 0.77, Ts1 0.75, Ts2 0.74
ML-Combined AUC T 0.78, Ts1 0.76, Ts2 0.70
DCB: 
ML AUC T 0.71, Ts1 0.66, Ts2 0.70

Trebeschi et al.49 Lung, 

Skin 

(Melanoma)

Treatment 

(I; response)

T 133
Ts (internal) 70

CT NSCLC: 
ML AUC T N/A, Ts 0.76
Melanoma: 
ML AUC T N/A, Ts 0.77

Lucas et al.51 Skin 

(Melanoma)

Treatment 

(I; PP)

T 112 PET/
CT

ML AUC T 0.78
ML-Combined AUC T 0.82

All studies were retrospective unless otherwise specified.
Abbreviations: Tumor type MST: multiple solid tumors; Application C: chemotherapy; DCB: durable clinical benefit; HPD: hyperprogressive disease; 
I: immunotherapy; irSAE: severe immune-related adverse event; ORR: overall response rate; OS: overall survival; PFS: progression-free survival; PP: 
pseudoprogression; TT: targeted therapy; TTP: time-to-progression; Train, validate, test T: training cohort; Ts: test cohort; V: validation cohort; Image CT: 
computed tomography; PET: positron emission tomography; Performance AUC: area under receiver operating characteristic curve; CI: concordance index; 
Combined: radiomics model combining handcrafted or DL features with clinical, radiologic, histologic, genetic, transcriptomic, proteomic, or metabolomic 
features; DL: deep learning-based radiomics; ML: machine learning-based radiomics built on handcrafted features; N/A: not available.
§Highest performing AUC and/or CI (other reported statistical analyses not included).
¶Peritumoral features included in analysis.
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Current Methods for Predicting and Evaluating 
Response to Immunotherapy
Treating patients with immunotherapy can be challenging 
due to a lack of reliable biomarkers for predicting and 
evaluating response.99-102 For example, an analysis of 45 
PD-L1 FDA approvals from 2011 to April 2019 reveals 
that PD-L1 expression was predictive in only 28.9% of the 
approvals.103

The predictive ability of PD-L1, TMB, and MSI/dMMR 
remains uncertain largely due to the lack of standardized as-
says for determining biomarker status.104 Variability of com-
mercial PD-L1 assays stems from the use of different PD-1/
PD-1 antibodies, scoring systems, stained cells, cut-offs 
for PD-L1, and tumor types. Factors like the prevalence of 
MSI across tumor types as well as panel selection for IHC, 
PCR, and NGS contribute to the variability of MSI/dMMR 
testing. The large variation in TMB values is attributed to 
only limited attempts to standardize TMB calculation and 
reporting. Recent efforts by Friends of Cancer Research 
have yielded a TMB calibration tool that may resolve inter-
assay variation; the tool has undergone 2 phases of analyt-
ical validation and will further require clinical validation to 
determine its clinical utility.105

Evaluating on-treatment response is also difficult given the 
current guidelines, namely Response Evaluation Criteria in 
Solid Tumors (RECIST), neither consider tumor structure nor 
appreciate immunotherapy-specific response events.106 Many 
patients receiving immunotherapy who experience atypical 
responses classified as progression by RECIST eventually 
show a durable and lasting response to therapy.107,108

Atypical responses to immunotherapy have been classi-
fied as pseudoprogression (PSPD), mixed response (MR), 
and hyperprogressive disease (HPD). PSPD demonstrates 
an initial enlargement of existing lesions and/or appearance 
of new lesions, followed by a delayed response and tumor 
shrinkage. MR characterizes a relative decrease in the size 
of existing lesions and the simultaneous appearance of new 
lesions. HPD is another poorly understood radiographic 
pattern observed in 9%-29% of patients treated with im-
munotherapy.107 This phenomenon reflects rapid disease pro-
gression after initiation of ICI therapy and often prompts 
treatment discontinuation.107,109

A number of modified criteria have been proposed to account 
for the novel patterns of immunotherapy response: immune-
related response criteria (irRC), and immune-related RECIST 
(irRECIST), immune RECIST (iRECIST), and immune-modified 
RECIST (imRECIST)..110-113 PET-based assessments have also 
been proposed to account for metabolic and functional changes 
in tumors with greater sensitivity: PET Response Criteria in 
Solid Tumors version (PERCIST), the immunotherapy-modified 
PET Response Criteria in Solid Tumors (imPERCIST), PET 
Response Evaluation Criteria for Immunotherapy (PERCIMT), 
and Lymphoma Response to Immunomodulatory Therapy 
Criteria (LYRIC).114-117 Nonetheless, there exists no standard-
ized evaluation tool that can be used consistently across clinical 
trials and in clinical practice.

Each of the preexisting criteria has some value. However, 
each possesses inherent limitations owing to the restricted 
metrics it employs. Artificial intelligence-based radiomics can 
potentially help to incorporate these varied metrics, including 
but not limited to tumor morphology and functional activity, 
thereby enhancing the predictive and prognostic power of the 
radiologic biomarkers.

Radiomics for Predicting and Evaluating Response 
to Immunotherapy
Associations between RS and immunotherapy response can 
be determined using prediction algorithms built on existing 
biomarkers and/or clinical outcomes. Radiomic models can 
be trained to evaluate the established biomarker status, a 
measure that has traditionally been used to predict response 
to immunotherapy and guide treatment decisions. Thus, the 
RS is indirectly associated with response through biomarker 
status. In clinical outcome-based training, models learn to dis-
tinguish radiomic features that are directly associated with 
certain clinical outcomes.

Here, we highlight recent radiomic studies that assess im-
munotherapy response predictions according to the study ap-
proach (Table 2).

Radiomics Models Trained on Established 
Molecular Biomarkers
Radiomics models can identify patients who will benefit the 
most from ICIs. The first machine learning (ML)-based RS 
capable of predicting PD-L1 expression is developed using 
CT, PET, or PET/CT scans from 399 patients with NSCLC.46 
The model shows excellent performance in predicting over 
1% and 50% expression in a test cohort (n = 133, AUC 0.97, 
0.88, respectively).

While ML techniques generally require manual or 
semi-automatic extraction of features from segmented im-
ages, new approaches through deep learning (DL) can reduce 
the inconvenience. Deep learning enables direct use of raw 
images to automatically build a model and maximize its per-
formance.118 Deep learning features can also train ML clas-
sifiers or merge with ML features to create a hybrid model. 
One study compares the models built using the ML or DL 
alone approaches with the hybrid of ML and DL approaches 
in their ability to identify patients with high PD-L1 expres-
sion.68 The radiomic features are extracted from pretreatment 
CT images of 939 NSCLC patients. The results demonstrate 
hybrid approach is superior to models built using the ML or 
DL alone. Its diagnostic efficacy is confirmed in training (n = 
750, AUC 0.78, 0.71, 0.63 for hybrid, ML, and DL models, 
respectively), validation (n = 93, AUC 0.71, 0.67, 0.67), and 
test (n = 96, AUC 0.76, 0.75, 0.68) cohorts. Interestingly, the 
primary focus of the DL model lies in the peritumoral region 
and the textural differences between high and low PD-L1 
expressions.

By integrating features from intra- and peritumoral re-
gions, radiomic models may provide more reliable esti-
mates of another important biomarker, tumor-infiltrating 
lymphocyte (TIL) abundance. Tumor-infiltrating lympho-
cytes indicate the robustness of immune response against a 
tumor and serve as strong prognostic indicators of clinical 
efficacy related to anti-PD-1 and anti-PD-L1 therapy.119,120 
In a Chinese cohort study with 207 hepatocellular cancer 
patients, an MRI-based RS is trained to evaluate the density 
of CD3+ and CD8+ T-cells.43 The radiomic model, which 
includes features extracted from intra- and peri-tumoral re-
gions, shows nearly excellent performance in a validation 
cohort (n = 57, AUC 0.899) and outperforms a model based 
on intra-tumoral features alone (AUC 0.639). Future studies 
may benefit from including peritumoral analysis, as this re-
gion is likely to hold prognostic value that enhances pre-
dictive ability.
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A recent landmark study applies a radiomics model 
trained for TIL assessment in predicting clinical outcomes 
of immunotherapy.66 Using CT images and RNA-seq data 
evaluating CD8B gene expression from 135 patients with 
advanced solid malignant tumors, the study establishes 
and externally validates a radiomic biomarker of CD8+ 
T cells (n = 119, AUC 0.67, P =.0019). The study further 
validates its ability to discriminate between immune-desert 
and immune-inflamed phenotypes (n = 100, AUC 0.76, P < 
.0001). Higher radiomic scores are found to be associated 
with improved OS and objective response to anti-PD-1/
anti-PD-L1 monotherapy (hazard ratio [HR] of 0.58, 95% 
CI 0.39-0.87; P = .0081). Although preliminary, this study 
serves as a foundation for subsequent research in radiomic 
analysis of the TME as a predictor of immunotherapy 
response.

Radiomic features can also capture various aspects of tissue 
heterogeneity that may be associated with the tumor geno-
type and genomic heterogeneity. As one example, a recent 
study identifies the TMB radiomic biomarker (TMBRB) using 
CT images from 327 patients with adenocarcinoma or squa-
mous cell carcinoma.45 TMBRB shows good performance in 
distinguishing High-TMB (≥10 mut/Mb) and Low-TMB (<10 
mut/Mb) in a test cohort (n = 65, AUC 0.81). Additionally, 
high- and low-risk groups established by TMBRB are shown 
to have significantly different OS and PFS (OS: HR 0.54, P = 
.03; PFS: HR 1.78, P = .023). Thus, a radiomics biomarker 
for TMB may provide insight into the genomic landscape of 
tumors which can guide treatment decisions.

Microsatellite instability (MSI) is another biomarker that 
may advance the current understanding of genetic variability 
and heterogeneous response to treatment. A radiomics bio-
marker for MSI status combined with clinical risk factors has 
shown efficacy in training and test cohorts (n = 139, 59; AUC 
0.80, 0.79 for MSI).48 Preoperative radiomic identification of 
MSI colon cancers may shed light on patient stratification for 
neoadjuvant chemotherapy or immunotherapy (specificity 
92.5%).

Radiomics Models Trained on Clinical Outcome
The first radiomics-based models trained on clinical out-
come utilize baseline and follow-up CT scans obtained after 
a 12-week course of anti-PD-1 therapy in 123 NSCLC and 
80 melanoma patients.49 The RS performs well on individual 
NSCLC lesions (AUC 0.83, P < .001) but poorly on individual 
melanoma lesions (AUC 0.64, P = .05) likely due to prior ex-
posure to other regimens and small cohort size. Performance 
varies widely among metastases at different anatomical loca-
tions in both cancer types, as imaging patterns may vary by 
anatomic site. When predictions from individual lesions are 
combined to assess patient-wide response, both cancers re-
sult in fair performance (AUC 0.76, P < .01). Certain texture 
and morphological features may be used universally to assess 
response; several features, including increased heterogeneity, 
non-uniform density, and compact borders, have been found 
to be associated with increased response regardless of organ 
or cancer type. Specificity of the RS for immunotherapy is 
confirmed in an independent validation cohort of 39 stage 
IV NSCLC patients treated with cytotoxic chemotherapy, as 
the RS fails to achieve significance in OS (P = .07) and re-
sponse prediction (AUC 0.63, P = .09). Gene-set enrichment 
analysis performed externally in 262 NSCLC patients reveals 
radiomic association with cell division signaling pathways, 

suggesting that highly proliferative cancers may respond pref-
erentially to immunotherapy.

Two recent studies identify an RS that can detect 
immunotherapy-related changes within the tumor earlier 
than volume-based assessment. One RS is built using peri- 
and intra-tumoral features extracted from CT scans acquired 
before and after 6-8 weeks of ICI therapy.47 In both internal 
and external validation cohorts, the model shows good per-
formance in predicting response to therapy and OS (n = 62, 
27; AUC up to 0.85). Perinodular features are significantly 
correlated with TIL density from tissue biopsy (P < .05). 
Furthermore, a model combining perinodular radiomic fea-
tures and PD-L1 status (stratified by 50% criteria) better 
predicts OS compared to PD-L1 status alone. The radiomic 
model can differentiate between patient groups with different 
survival outcomes in earlier stages of treatment. In contrast, 
evaluating response based on tumor volume requires imaging 
acquired significantly later in treatment. Thus, integrating 
radiomic features reflective of immune activity with estab-
lished immunotherapy biomarkers may improve models of re-
sponse prediction and allow for earlier treatment evaluation.

Another study constructs a model, called iRADIOMICS, 
consisting of the radiomics features best predictive of im-
munotherapy response.121 Thirty patients with metastatic 
NSCLC treated with pembrolizumab are analyzed using base-
line and follow-up PET/CT images. Radiomic multivariate 
analysis shows the highest performance using baseline images 
(AUC 0.90) as compared to baseline PD-L1 levels (AUC 0.60) 
and iRECIST at months 1 and 4 (AUC 0.79, 0.86, respect-
ively). The standard iRECIST-based assessment requires to 
follow up images to monitor changes, resulting in a delay in 
clinical decision-making. In comparison, iRADIOMICS has 
the potential for pretreatment prediction of the ICI response 
from baseline imaging and therefore can lead to more efficient 
treatment planning.

Fused PET-CT may also serve as a novel basis for RS 
construction as it may offer complementary information in 
comparison to either imaging studies alone. A recent study 
with NSCLC patients extracts features from PET, CT, and 
Kullback-Leibler divergence images derived from fused PET 
and CT images.62 The resulting RS is predictive of durable 
clinical benefit (DCB) from ICI therapy in retrospective and 
prospective validation sets (n = 47, 48; AUC 0.83, 0.81, re-
spectively). A combined clinical-radiomic model shows 
improved performance in both groups (AUC 0.86, 0.86, 
respectively). By capturing radiomic features reflective of 
tumor metabolism as well as tumor anatomy and shape, im-
aging multimodality allows a single radiomics model to gen-
erate a large volume of data linked to tumor heterogeneity. 
Therefore, enhanced assessment of heterogeneity can refine 
response predictions.

One multi-institution study takes a novel approach by 
linking cachexia with ICI resistance.61 The RS constructed 
from the features associated with cachexia in the PET/CTs of 
210 ICI-treated NSCLC patients can identify those with DCB 
in training (n = 123, AUC 0.77, 0.71 for cachexia and DCB, 
respectively), test (n = 52, AUC 0.75, 0.66), and external test 
(n = 35, AUC 0.74, 0.70) cohorts. The high RS scores for 
cachexia are associated with shorter PFS and OS (P < .01), 
potentially due to cachexia-induced PD-1 downregulation. 
Furthermore, among the PD-L1 positive patients who are 
potentially sensitive to ICI, a low RS, defined as below me-
dian value of 0.04, correlates to longer PFS and OS (P < .01, 
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P = .035, respectively). The results suggest that the cachexia 
RS can serve as a complementary prognostic marker to iden-
tify non-responders among PD-L1 positive patients. Further 
evaluation of the RS reveals that the features representative 
of heterogeneity increases the risk of cachexia and can also 
explain ICI resistance, as postulated previously.

Aside from the more typical tumor responses to therapy, 
which the current criteria can define more clearly, there exists 
a subset of atypical responses unique to immunotherapy. 
Pseudoprogression is rare and may even be underreported 
due to difficulty in differentiating it from true progressive 
disease (TPD). Therefore, PSPD still remains a retrospective 
diagnosis in the absence of validated response criteria.107,112,122 
A pioneering study evaluates radiomics features from PET/
CT to differentiate TPD from PSPD at an earlier time point 
at 3 month.51 The best performing model combines PSPD-
associated features derived from imaging 112 metastatic mel-
anoma patients with blood markers associated with OS in 
melanoma, LDH, and S100 (AUC 0.82). A subset of the ana-
lysis demonstrates that the features related to heterogeneous 
texture are more likely to represent true progression. These 
findings seem consistent with the current belief that tumor 
heterogeneity may breed resistance.

Hyperprogressive disease (HPD) is another atypical re-
sponse that remains difficult to predict. A recent study de-
signs a classifier indicative of HPD based on peritumoral 
radiomics features with a particular focus on the tumor blood 
vessels from pre-ICI treatment CTs of 109 advanced NSCLC 
patients.70 This DL algorithm predicts HPD from baseline im-
aging (AUCTest = 0.96) and displays prognostic significance 
by classifying HPD as having a worse OS compared to those 
without HPD (HR = 2.66, 95% CI 1.27-5.55; P = .0009). 
Interestingly, certain genetic mutations associated with HPD 
in previous studies, such as EGFR mutations and MDM2 
amplification, were rare in this study and did not display any 
significant correlation with HPD. The results suggest further 
investigation into radiomic features in the TME may provide 
a novel approach to assessing the risk of HPD. Devising a 
robust AI-based model to predict atypical responses remains 
a challenge given the low incidence of PD and HPD. A large 
multicenter dataset is necessary to better define the role of 
radiomics as a predictive biomarker for atypical responses.

Training radiomic models on either biomarkers or clin-
ical outcomes carries limitations in predicting response to 
immunotherapy. As numerous studies have already proven 
the predictive value of existing biomarkers, radiomic models 
based on molecular biomarkers can be expected to have some 
reliability. However, such models inherit biomarker-associated 
limitations and therefore fail to serve as a gold standard. 
Similarly, models that assess tumor response or progression as 
defined by preexisting guidelines fail to account for subvisual 
structural changes. These models can also suffer from a lack 
of model interpretability; without established biological or 
clinical logic behind the predictive power of such radiomic 
models, incorporating these preliminary models into the cur-
rent treatment paradigm becomes challenging. Nonetheless, 
further validation and testing of such models can instill more 
confidence in radiomics models.

Radiomics for Predicting Immunotherapy Toxicity
Immunotherapy-related adverse events (irAEs) can be se-
vere and lead to premature treatment termination. A recent 
study reports that ≥2/3 of patients treated with anti-PD-1 or 

anti-PD-L1 experience a grade 3 or higher adverse event.123 
Radiomics and other immunological biomarkers are being 
studied for the purposes of accessing the risk of irAEs.

One of the first algorithms predictive of checkpoint in-
hibitor pneumonitis (CIP) includes radiomics features repre-
sentative of heterogeneous intensity.124 Although the training 
sample size is relatively small with only 2 NSCLC patients 
who develop CIP and 30 patients without CIP, the algorithm 
displays a strong predictive power (AUC 1.0, P = .0033).

Additionally, a novel preliminary RS is developed from pre-
treatment images of 9 NSCLC patients, who are later diag-
nosed with CIP.125 This radiomics model is tested on 42 cases 
without a clinical diagnosis of CIP and assigns 7 as greater 
than 50% probability of CIP; 6 out of the 7 misdiagnosed 
cases exhibit symptoms and radiologic signs of CIP based on 
chart review. Radiomics can help identify patients at risk of 
developing CIP with greater sensitivity than clinical findings 
alone.

Similarly, a radiomics nomogram incorporates immuno-
therapy type, dosage, and RS derived from pre-immunotherapy 
PET/CT images.64 The nomogram demonstrates the highest 
predictive value and overall net benefit across training, test, 
and prospective validation cohorts (n = 97, 49, 48; AUC 0.92, 
0.92, 0.88, respectively) compared with RS (AUC 0.88, 0.90, 
0.86) or clinical risk factors (AUC 0.74, 0.76, 0.68) alone. 
For clinical use, the aforementioned models will need to 
undergo refinement with multiple validations in varied co-
horts. Nonetheless, the ability of radiomics to predict irAEs 
from pretreatment images alone shows a great promise in the 
field of IO as it may be tremendously cost-saving and even 
lifesaving in fatal cases.

Limitations and Future Directions
Despite its immense potential, radiomics faces multiple chal-
lenges that ongoing studies attempt to tackle.

The lack of standardization in imaging studies remains a 
major limitation, as it may complicate data sharing and re-
duce the generalizability of models generated from institution-
specific datasets. Additionally, nearly all radiomic studies have 
been retrospective analyses on small cohorts. Prospective, 
multicenter studies using larger cohorts are required for im-
proved model validation and generalizability. As a proof of 
concept, one recent study collects and merges data from 3 
multicenter datasets. The model built from the merged dataset 
performs better in classifying NSCLC phenotypes (AUC 0.78) 
than the models built from each of the 3 datasets separately.21 
The expansion of medical imaging reservoirs combined with 
the development of increasingly advanced image analysis and 
pattern recognition technologies hold promise for improved 
model generation.

Overall, we believe the value of radiomics in predicting 
IO-related outcomes and adverse events can be summarized 
in its ability to generate integrated and dynamic models that 
provide insight into tumor biology.

Integrated Model
Immunotherapy response is variable. Radiomic models are 
built using multiple features that reflect underlying bio-
logical processes, tumor heterogeneity, and pathophysiology. 
Future studies may investigate models integrating radiomic 
features with clinical, radiologic, histopathologic, genomic, 
transcriptomic, epigenomic, proteomic, and metabolomic 



e478 The Oncologist, 2022, Vol. 27, No. 6

information for optimal immunotherapy predictions (Fig. 2). 
As one example, the radiomics landscape is combined with a 
novel TME score that incorporates RNA sequencing or whole-
exome data of 8210 immunotherapy-treated patients for OS 
prediction.126 The combined model (AUC 0.91) performs su-
perior to unimodal predictors (AUC 0.75, 0.87 for radiomics 
landscape and TME score, respectively). The University 
Health Network (UHN) has also taken diverse approaches 
to define characteristics of the patients who develop primary 
or acquired resistance to immunotherapy (ClinicalTrials.
gov. NCT04243720). The trial is in the process of collecting 
radiomic, genomic, transcriptomic, immunophenotypic, epi-
genetic, and fecal microbiome data, which can eventually be 
used to develop an integrated model to predict resistance.

Dynamic Model
Immunotherapy response is dynamic. Evolutionary pres-
sure from immunotherapy may promote the expansion of 
subclonal populations with increased treatment resistance. 
Radiomic models can non-invasively assess the TME at 

different timepoints. Particularly, delta-radiomics measures 
the spatial changes of radiomics features in response to treat-
ment over time. The major limitation of delta-radiomics lies 
in the data collection. Because the frequency of screening 
during treatment differs by case, the validation of the delta-
radiomics model becomes challenging. However, a recent 
study overcame the challenge through cross-validation and 
by utilizing a median predictive value for low and high-risk 
patients. Despite this limitation, radiomics still holds great 
promise, as features can be easily extracted from routine im-
aging studies performed during follow-up visits.

Understanding Heterogeneity and Tumor Biology
Immunotherapy response is complex. Spatial and tem-
poral fluctuations throughout tumors make it difficult to 
discern progression from atypical response patterns, for 
example.6,127 Understanding tumor heterogeneity will re-
fine treatment strategy both on an individual lesion level 
and on a patient level. Numerous attempts have been made 
to indirectly measure heterogeneity through radiomics 

Figure 2. Radiomics as an Integrative and Dynamic Model and Future Applications. (A) Immunotherapy response predictions may benefit from models 
that integrate radiomic features with clinical, pathologic, and genomic information. (B) Radiomic models can non-invasively assess imaging studies 
performed during follow up visits, providing analyses that reflect spatial changes over time. (C) Radiomics can unravel the relationship between 
spatiotemporal heterogeneity of tumor burden and immunotherapy response, thereby allowing for improved immunotherapy strategies on an individual 
lesion and overall patient level. (D) Preliminary studies have shown radiomic models that identify patients at risk of developing an immunotherapy-
related toxicity. Validation of these findings in future studies will allow clinicians to develop better treatment strategies.
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using texture analysis. However, applying radiomics alone 
will not suffice as feature reproducibility remains a major 
concern.128 Radiomic features vary widely across dif-
ferent tumor types, imaging modalities, and even institu-
tions, each with its own contrast enhancement protocols 
that may affect the radiological texture. Selected features 
across existing studies do not usually overlap owing to in-
consistent feature definitions, extraction, interpretations, 
and calculations. Incorporating biological features in RS 
building may strengthen the current knowledge of tumor 
heterogeneity but has not been done. An ongoing clinical 
trial strives to understand tumor heterogeneity through 
multi-omic analysis of the genomic, transcriptomic, epigen-
etic, immunophenotypic, and fecal microbiome profiles in 
patients with resistance to immunotherapy (ClinicalTrials.
gov. NCT04243720).

Toxicity Prediction
Immunotherapy response can be unpredictable. Toxicity re-
lated to ICI therapy is a major factor that precludes its fur-
ther use. The search for improved predictive biomarkers of 
toxicity is ongoing. Notably, Maastricht University Medical 
Center in the Netherlands has been conducting a clinical trial 
to develop an AI-based radiomic model to identify the patients 
at risk of developing ICI-induced pneumonitis (ClinicalTrials.
gov. NCT03305380). The prediction results can be factored 
into a cost-effectiveness analysis that will aid clinicians in 
making treatment strategies with greater precision.

Our institution is pursuing such an integrated approach to 
managing patients treated with immunotherapy. A protocol 
has been developed to identify a retrospective cohort of pa-
tients with available clinical data and to integrate the data with 
radiographic images, digital pathology, and genomic study 
from tissue and liquid biopsy. Multidisciplinary collaboration 
for data integration is underway. Future studies will focus on 
combining these factors (genomic, radiomic, and pathologic 
data) to build a unified predictive model that provides a more 
comprehensive analysis of tumor immune biology in response 
to immunotherapy (Fig. 2). Radiomics will serve as a powerful 
biomarker in this integrated prediction model that will pro-
mote the advancement of personalized medicine in IO.
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