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ABSTRACT

Genome analysis relies on reference data like se-
quences, feature annotations, and aligner indexes.
These data can be found in many versions from many
sources, making it challenging to identify and assess
compatibility among them. For example, how can you
determine which indexes are derived from identical
raw sequence files, or which annotations share a
compatible coordinate system? Here, we describe a
novel approach to establish identity and compatibil-
ity of reference genome resources. We approach this
with three advances: first, we derive unique identi-
fiers for each resource; second, we record parent–
child relationships among resources; and third, we
describe recursive identifiers that determine identity
as well as compatibility of coordinate systems and
sequence names. These advances facilitate portabil-
ity, reproducibility, and re-use of genome reference
data. Available at https://refgenie.databio.org.

INTRODUCTION

Reference genome assemblies are representations of a
genome (1–5) that are the basis of many prerequisites of
genome analysis, such as alignment indexes (6–9) and fea-
ture annotations (10–12). Several tools under development
aid in organizing and sharing such genome-related data
(13–16), including our recent software called refgenie (17).
Refgenie is a genome resource asset manager that provides
two ways to obtain genome assets: users may pull pre-built
assets from a remote server or build equivalent assets locally.
This flexibility increases interoperability of tools that rely on
genome assets; however, it also raises challenges with iden-
tity and compatibility of these assets.

One common challenge is identifier mismatches. Relying
on simple human-readable identifiers such as ‘hg38’ means
two users may refer to different things with the same identi-
fier. As a case in point, there are many variations of the hu-

man genome that are all referred to in different analysis as
‘hg38’ or ‘GRCh38’. This leads to compatibility issues that
incur the wrath of bioinformaticians everywhere. A step to-
ward solving this problem is to use unique identifiers that
unambiguously identify a particular assembly, such as those
provided by the NCBI Assembly database (4); however, this
approach relies on a central authority, and therefore cannot
apply to custom genomes or assets.

Another weakness of centralized unique identifiers is that
they are insufficient to confirm identity, which must also
consider the content of the genome. For example, if some-
one makes a minor adjustment to reference data content,
but continues referring to it with the centralized identifier,
this can lead to reproducibility issues. To ensure that assets
from different locations are identical not only in name, but
in content, we require a more substantial way to uniquely
identify and confirm identity of both assets and genomes.
The situation is further complicated by assets that are de-
rived from other assets. For example, a bowtie2 index is de-
rived from a fasta file; trading around bowtie2 indexes with-
out the underlying fasta asset can lead to downstream anal-
ysis incompatibilities. To solve this problem requires a way
to record not just the identity of genomes, but the relation-
ships among assets that are derived from them.

A method that is capable of confirming both the iden-
tity of and the relationships among assets solves these chal-
lenges, but what if we only need to confirm that a coordinate
system is compatible? This is a less stringent comparison
because it does not require identical genomes but a more
nuanced comparison among them. A common example is
sharing feature annotation data across related genomes that
do not necessarily have identical sequences but do have an
identical coordinate system. Establishing compatibility in
this sense requires a more detailed comparison between the
assets that cannot be accomplished with only unique iden-
tifiers and relationships. This requires capacity to assess not
just identity but compatibility between non-identical assets.

Recent advances partially address some of these chal-
lenges. First, refget (16) computes identifiers for a sequence
from the sequence itself and provides a lookup database to
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Figure 1. Unique asset-derived identifiers. (A) Assets built on different systems using the same human-readable identifier may not be identical. Refgenie
requires a way to establish the identity of assets on different servers. (B) Refgenie’s unique asset-derived identifiers, such as shown here for a bowtie2 index,
work by calculating a digest of each individual file in the asset, sorting these digests, concatenating them, and then calculating a final digest, which is the
unique identifier for the asset. The files in this example are the 4 bowtie2 Burrows-Wheeler index files for hg38, which is an arbitrary example asset. Digests
are shortened for illustration.

retrieve the sequence given its identifier. Refget thus pro-
vides a globally unique, content-derived identifier and re-
trieval system for raw sequences. A similar approach is also
taken by the Variant Representation Specification (VRS)
for identifying genetic variants (18). The tximeta package
(19) similarly identifies transcriptomes based on similar se-
quence identifiers. But no existing approach provides a way
to establish identity, relationships and compatibility among
genomes and arbitrary assets derived from them.

Here, we address each of these issues. Our approach can
guarantee identity, relationships, and compatibility among
reference genome assets, which we have implemented in
our refgenie software. Refgenie accomplishes this with three
concepts: First, for each asset, it computes unique asset
identifiers that are derived from the assets themselves. Sec-
ond, it records which parent assets were used to create each
derived asset. Third, it employs a genome identifier system
that allows it to not only establish the identity of a genome
but also to quickly compute multiple levels of compatibility
between them. Together, these tools improve the interoper-
ability and reproducibility of analytical pipelines that rely
on reference genome assembly assets.

RESULTS

Identity: unique asset-derived identifiers

Refgenie asset keys are human-readable, which is great for
humans, but can lead to name collisions; for instance, how
can a user be sure that the bowtie2 index keyed at one lo-
cation is the same as another? In a closed system where
all assets are downloaded from a single server, this is not
a problem; however, the refgenie system is flexible, allowing
multiple servers, building custom assets locally, and human-
readable identifiers that give the user total control. This
makes refgenie flexible and powerful, but also means that
identity cannot be guaranteed by name alone (Figure 1A).

To address this issue, Refgenie requires a unique identi-
fier for each asset. Critically, these identifiers must be com-
putable for arbitrary, custom assets rather than created by
a central authority, so they must be derived from the as-
sets themselves. Furthermore, refgenie makes no assump-
tions about the data types of assets, so the identifiers must
be compatible with any kind of data.

Refgenie accomplishes this with a simple hashing algo-
rithm: we take all files in the asset folder, calculate the md5

digest on each file independently, lexographically sort the
digests, and then calculate the md5 digest on the resulting
list (Figure 1B). This is a straightforward method to derive
a digest for a set of arbitrary files and is thus compatible
with any type of asset. This identifier is automatically com-
puted by the refgenie build process, thereby assigning
a unique identifier to every asset.

The refgenie command-line interface (CLI) allows users
to retrieve this identifier using the id command. For exam-
ple, refgenie id hg38/bowtie2 index:tag would
return the unique identifier for the specified asset. These
identifiers establish an automated way to identify any pos-
sible asset and can also be re-computed to confirm the true
identity of an asset, regardless of its human-readable iden-
tifier. Refgenie relies on these globally unique and repro-
ducible identifiers to refer to assets uniquely. This approach
establishes universal identifiers that allow users to confirm
asset identity across systems.

Consistency: recording asset relationships

One of refgenie’s strengths is derived assets: that is, as-
sets that are easily built from other assets. For exam-
ple, if a user has a hg38/fasta asset, then building a
hg38/bowtie2 index asset requires no further inputs,
as refgenie will automatically use the existing fasta asset to
build the index. This is convenient for the user, but it can
also lead to a potential conflict if a user then tries to pull
an asset for the same genome that was derived from a dif-
ferent parent. For example, perhaps the user issues ref-
genie pull hg38/bwa index. The critical question is
this: was the fasta file that was used to create the bwa in-
dex on the server identical to the one the user has tagged
as ‘hg38’ locally? If not, the pull should fail. The only way
to guarantee that derived assets have identical parents is to
record the relationships among them (Figure 2A).

To solve this problem, refgenie build records not only
the unique asset identifier, but also parent–child relation-
ships. For example, the remote refgenie server entry for
the hg38/bowtie2 index asset retains a pointer to the
hg38/fasta asset that was used to build it (Figure 2B).
You can think of this as each built asset remembers the
unique identifier (not the human-readable identifier) of any
assets used to build it. Most assets have only a single parent
but refgenie allows assets to have multiple parents. When the
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Figure 2. Recording relationships ensures compatibility of derived assets. (A) Derived assets naturally form a parent-child structure. Refgenie records
parent–child relationships by storing the unique identifier of all parent assets. (B) For assets that can be built from other assets, we require a way to ensure
that all parent assets match when using either build or pull to obtain the asset. Derived assets must be derived from the same parent assets to be compatible.
For assets with multiple parents, all identifiers must match.

pull command is issued, the CLI checks the parent identi-
fiers against the local ones. If any digests do not match, ref-
genie aborts the pull request, preventing a user from mixing
assets that have been derived from different parents. With-
out this check, the user could introduce an inconsistency
because pulled assets were not built from the same input as
built assets.

To make this procedure complete, refgenie stores the
parent–child relationships and the CLI makes sure that
these relationships are kept intact when users remove, re-tag
or rename assets. The digest check is fast because it does not
require pulling the parent asset in its entirety, only checking
for its unique identifier. To enable this, the refgenie server
presents this information as an API endpoint. If a user pulls
a derived asset when the parent does not exist locally, ref-
genie will populate the parent asset digest in the config file.
In a sense, the first stage of pulling a derived asset from an
unknown parent asset ‘locks’ the parent asset, preventing
pulling further assets from other sources that claim to be
derived from the same parent, but are not.

Compatibility: decomposable genome identifiers

Computing unique asset-derived identifiers plus storing as-
set relationships together allow us to record and compare
asset identity and assure a consistent lineage of derived as-
sets. This solves many challenges that require strictly identi-
cal assets. For example, to reproduce the result of a bowtie2
alignment requires an identical bowtie2 index asset. An in-
dex built from a fasta file that is identical in sequence con-
tent but differs in identifier names or order will yield a dif-
ferent result. The strict asset-derived identifiers can ensure
this level of reproducibility. Storing the relationships ex-
tends this assurance to derived assets, making it possible to
ensure that they share identical parents.

However, many analyses require less stringent compari-
son: simple compatibility between assets that are not nec-
essarily identical. For instance, a motif enrichment analy-
sis is strictly tied to a specific sequence, but the order of

the original sequences may not be relevant for the results
to be comparable. As a result, using a fasta asset with iden-
tical sequence but different order would not be a problem.
Some analysis require even less strict requirements. For ex-
ample, say analysis annotate regions reads an aligned bam
file and annotates it using feature annotations on the hg38
coordinate system. This analysis requires the reads to share
the coordinate system of the annotation, but it does not re-
quire a specific reference assembly sequence at all. In this
case, we would like to confirm that the given bowtie2 index
asset is compatible with the feature annotation coordinate
system. To fulfill this requires only that it shares a coordi-
nate system, not that the exact sequence matches. In short,
sometimes we do not require strict identity, but a more de-
tailed comparison that may ignore order, sequence names
or other attributes. We therefore seek to distinguish between
the comparison of is compatible with versus is identical to.

A system that relies only on unique identifiers cannot
make this fine-grained of a comparison because it requires
directly comparing not just the identifiers but the contents
of the assets of interest. Since this task must consider the
contents of an asset, it is impossible to come up with a uni-
versal solution that works on any data type the way our
generic asset-derived identifiers do. To establish compatibil-
ity related to genomic features such as nucleotide sequences,
sequence names, genome membership, order, and length, we
must therefore develop a more specific solution for this par-
ticular use case. To solve this problem, refgenie relies on a
novel concept we refer to as decomposable identifiers.

Sequence collection identifiers

Refgenie’s approach is based on the refget protocol for iden-
tification and retrieval of sequences (16). In refget, DNA
sequences are hashed to create a unique identifier that is
stored in a database and can be used to retrieve the original
sequence (Figure 3A). Refget identifiers are specialized to
DNA or protein sequences, and it adds a critical component
of allowing lookup of the underlying data given the iden-
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Figure 3. Decomposible recursive unique identifiers. (A) The refget protocol uniquely identifies and retrieves DNA sequences. First, a sequence is hashed
to yield a digest, which is used as a unique identifier to store the sequence in a database. A request using the unique identifier returns the original sequences.
Refget digests uniquely identify a DNA sequence and provide a way to retrieve the sequence using the unique identifier. (B) A sequence collection digest
is made by first computing refget digests for each sequence, concatenating them and computing a digest on the result. (C) Sequence collection digests can
be used to retrieve the sequence collection recursively. In the first step, the string of digests is returned; each sequence digest can then be used to retrieve its
sequence, finally yielding the sequence collection. (D) By adding the sequence lengths to the digest string, a new string and digest can be made that allows
retrieving sequence names, lengths, and digests. (E) A table of flags provide a way to quickly indicate the relationship between two sequence collections.

tifier. Lookup is not necessary for the identity and prove-
nance objectives described above; however, it becomes im-
portant for the compatibility question, which requires asset
content to ask a more fine-grained comparison question.
Nevertheless, the current refget protocol only partially ful-
fills refgenie’s need because refget only accommodates indi-
vidual sequences, and also does not allow for compatibility
comparisons. To answer the compatibility questions, we de-
vised a new digest procedure that extends the refget protocol
in two ways: First, we extend to annotated sets of sequences.
Second, we add the length of the sequence as a metadata
component to the string to digest. We refer to this as a de-
composable identifier because after a retrieval, the original
object is not a simple sequence, but a tuple that can then be
decomposed into constituent parts.

Annotated collections of sequences. We first hash the se-
quences themselves, then we concatenate them with delim-
ited sequence identifiers, and compute the digest of the re-
sulting string (Figure 3B). The dual-delimited string uses
one character, here ',', to delimit items (sequences), and
another character, here'>', to delimit the attributes of the
items (names and sequence digests).

Since one of the attributes of the sequences is itself a di-
gest, the final unique digest is a digest of digests. This re-
cursive approach accomplishes several goals. First, it sat-
isfies the goal of creating a checksum that can be used to
confirm identity of collections of sequences (e.g. fasta files).
Second, it also allows the ability to do more detailed com-
parison between two collections; for example, we can check
the sequence-level checksums to see if two fasta files have

the same sequences, but in different order or with different
names.

In this toy example, a lookup of digest 4d1dcd98 would
return this string:
chr1>64821b2,chr2>d8cd98f,chr3>21c67d1
This string allows us to compare the names and content

of this against another sequence collection. For example,
say another lookup returned this string:
chr1>64821b2,chr3>21c67d1,chr2>d8cd98f
In this case, a quick comparison would identify that these

collections have identical sequences and names but in differ-
ent order. In similar way, a quick comparison could identify
if sequence content matches but names do not, or if one col-
lection is a subset of another, or if two collections are com-
pletely different. These comparisons are all very efficient be-
cause no actual sequences are compared, only names and
digests for each sequence.

The recursion of lookups provides additional power for
comparison (Figure 3C). A single call to the function ac-
cepts a recursion parameter that allows refgenie to return
the complete fasta file. This allows users to reconstruct a
complete reference assembly given nothing but its unique
digest.

Adding sequence lengths for coordinate system identifiers.
The decomposable sequence identifier concept has solved
most of the problems we outlined earlier; we can now com-
pare sequences for differences in order, sequence identifier,
membership, etc. However, there is still one common sce-
nario that this does not accommodate: compatibility of co-
ordinate systems. A coordinate system can be defined as a
set of named sequences with lengths. For example,
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chr1 519
chr2 753
chr3 938
A set of sequences by definition must have a coordinate

system, but a coordinate system does not specify sequences.
We seek a system that will allow us to confirm that two as-

sets use the same coordinate system, even if they use a com-
pletely different set of sequences. This question cannot be
easily answered using the sequence collection digests alone;
it requires retrieving the original sequences to compute their
lengths. Because this compatibility question is a critical and
frequent query, instead of requiring this additional compu-
tation, refgenie adds the lengths into the collection digest
string source (Figure 3D). To do this, we simply prepend
the sequence length to the item string before the final digest.
Now, when a sequence collection digest is used for lookup,
we return 3 attributes of each sequence instead of 2: the
name, length, and sequence digest. This addition allows us
to rapidly make compatibility comparisons at the coordi-
nate system level. Given two strings in this format, without
needing to process the sequences themselves, we can quickly
determine if two assemblies share a coordinate system. Re-
fgenie needs to simply compare the names, lengths, and se-
quence digests; if the names and lengths match, then it is
reasonable to assume the coordinate systems are compati-
ble. To enable this, refgenie stores the chromosome names,
lengths, and sequence digests locally for any genome when
a fasta asset is built or pulled. To make it simple to calcu-
late the compatibility between two sequence collections, we
have implemented a compare function, described next.

A component compatibility function

The compare function returns a flag, given two digests, flag
= f(digestA, digestB). The flag returned is a binary indica-
tor with bits set according to the relationship computed be-
tween the two given digests (Figure 3E). This flag allows a
user to easily test any of the possible compatibilities between
the two digests using a simple logical operator. For exam-
ple, to confirm that two sequence collections have identi-
cal sequence content, we use: f lag&&1. To test if they have
identical lengths, we use f lag&&2. This flexible system al-
lows the user to quickly identify compatibility across the
whole spectrum, from use cases that require strict identity
of identically named sequences in identical order, to flexi-
ble systems that require only a set of sequences that share
sequence lengths.

Users can invoke the compare function directly from the
command line using the compare command:
refgenie compare genomeA genomeB

DISCUSSION

Reference genomes, indexes, annotations, and other
genome assets are integral to sequencing analysis projects.
Refgenie provides a full-service management system that
includes a convenient method for downloading, building,
sharing, and using genome-based resources. As data
availability increases, more tools are needed to provide for
identity and compatibility of analysis. These tools are an
important piece in improving reproducibility of genomic

analysis. With the updates described here, the refgenie
system has been improved to provide a new way to establish
genome asset identity, relationships and compatibility.
These improvements will make it easier to ensure repro-
ducibility and track provenance of downstream analysis
that is based on refgenie assets.

Being able to identify genomes is a critical task in bioin-
formatics. Here, we introduced a novel approach using re-
cursive identifiers, which enable a new type of compatibil-
ity test that can establish multiple levels of compatibility
among genome-related assets. This improvement will make
it possible for downstream tools to more easily check com-
patibility of reference genome resources, improving their
portability and reusability.

Development of refgenie is continuing with several
new features planned. Refgenie already handles any user-
provided genome assemblies, such as a custom spike-in
genome or a combined multi-species assembly. But an area
for improvement will be the ability to specify custom assets.
Currently, refgenie can only build a restricted set of assets,
but we have started work on a more flexible approach with
custom recipes so that users can add new asset types. A sec-
ond area of rapid development is the potential to use refge-
nie to reference cloud resources. Currently, refgenie is built
around retrieving remote assets for local use, but a future
update could make it possible for a local refgenie client to
provide cloud paths to unarchived assets, which could sim-
ply using refgenie in a pure cloud environment. Refgenie
has already been adapted for easy use in Galaxy (20) and
Snakemake (21) workflow systems, and we are interested in
continuing to develop integrations with similar systems to
make it easier for users to develop workflows that make use
of refgenie reference data.

DATA AVAILABILITY

Refgenie consists of a series of Python packages that are all
BSD2-licensed. Source code, documentation, and a list of
active server instances can be found at refgenie.databio.org.
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5. Ruffier,M., Kähäri,A., Komorowska,M., Keenan,S., Laird,M.,
Longden,I., Proctor,G., Searle,S., Staines,D., Taylor,K. et al. (2017)
Ensembl core software resources: Storage and programmatic access
for DNA sequence and genome annotation. Database, 2017,
doi:10.1093/database/bax020.

6. Sadakane,K. and Shibuya,T. (2001) Indexing huge genome sequences
for solving various problems. Genome Inform., 12, 175–183.

7. Hon,W.-K., Sadakane,K. and Sung,W.-K. (2009) Breaking a
time-and-space barrier in constructing full-text indices. SIAM J.
Comput., 38, 2162–2178.

8. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment
with burrows-wheeler transform. Bioinformatics, 25, 1754–1760.

9. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment
with bowtie 2. Nat. Methods, 9, 357–359.

10. Richa,A., Barrett,T., Beck,J., Benson,D.A., Bollin,C., Bolton,E.,
Bourexis,D., Brister,J.R., Bryant,S.H., Canese,K. et al. (2018)
Database resources of the national center for biotechnology
information. Nucleic Acids Res., 46, D8–D13.

11. Zerbino,D.R., Wilder,S.P., Johnson,N., Juettemann,T. and
Flicek,P.R. (2015) The Ensembl Regulatory Build. Genome Biol., 16,
doi:10.1186/s13059-015-0621-5.

12. Sheffield,N.C. and Bock,C. (2016) LOLA: enrichment analysis for
genomic region sets and regulatory elements in R and bioconductor.
Bioinformatics, 32, 587–589.

13. van Heeringen,S.J. (2017) Genomepy: download genomes the easy
way. J. Open Source Software, 2, 320.
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