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Abstract: Medical discoveries mainly depend on the capability to process and analyze biologi-
cal datasets, which inundate the scientific community and are still expanding as the cost of next-
generation sequencing technologies is decreasing. Deep learning (DL) is a viable method to exploit
this massive data stream since it has advanced quickly with there being successive innovations.
However, an obstacle to scientific progress emerges: the difficulty of applying DL to biology, and
this because both fields are evolving at a breakneck pace, thus making it hard for an individual to
occupy the front lines of both of them. This paper aims to bridge the gap and help computer scientists
bring their valuable expertise into the life sciences. This work provides an overview of the most
common types of biological data and data representations that are used to train DL models, with
additional information on the models themselves and the various tasks that are being tackled. This is
the essential information a DL expert with no background in biology needs in order to participate in
DL-based research projects in biomedicine, biotechnology, and drug discovery. Alternatively, this
study could be also useful to researchers in biology to understand and utilize the power of DL to
gain better insights into and extract important information from the omics data.

Keywords: artificial intelligence; deep learning; biological data; omics; drug discovery; system
biology; complex systems; review

1. Introduction

Next-generation sequencing technologies have quickly emerged in the 21st century [1,2]
and along with a number of theoretical advancements, they have resulted in a big bang-type
of advance in biological knowledge. The knowledge of life is nowadays greater than it ever
has been before, highlighting that living systems are immeasurably more complex than
they were previously imagined to be. The volume of data that are needed to capture the
biological information is vast. A human genome sequence is comprised of three billion
characters (base pairs) [3], with the sequenced DNA string of a single individual taking up
more than a gigabyte of memory space. The human body is estimated to contain between
80 and 400 thousand proteins [4], and the neXtProt database contains more than nine million
entries of proteins and variants, which are accompanied by metadata [5]. The estimates
for the number of genes in the human genome have reached up to 120 thousand [6], and
gene expression datasets include thousands of features. On top of that, sequencing and
other assorted technologies are continually becoming cheaper and have a higher resolution,
thereby resulting in ever more data.

It has already been a decade since genomic sequencing became cheaper, and this
occurred more quickly than the storage space and computing power could expand; the
volume of the biological data are, therefore, rising faster than the human capacity to store
and process it [7]. The information that could be extracted with the data-driven methods
from such huge repositories could be significant. The relatively limited application of
predictive modeling in the field of life sciences constitutes a bottleneck, thereby hampering
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further scientific progress. To an extent, the data and the labels are already available [8];
it remains for scientists to deploy algorithms to extract insights from these data.

When it comes to data with large volumes, dimensionality and complexity, deep
learning (DL) appears to be more powerful than machine learning (ML) is. Volume and
dimensionality refer to the number of rows and columns in a tabular dataset, respectively,
and a high degree of data complexity means that the function mapping input and output
are non-linear and have a large number of parameters. As the biological data are becoming
increasingly larger in their volume, dimensionality, and complexity, DL seems to be neces-
sary since no other method could handle efficiently the big data and the complex systems
of this domain.

The introduction of DL in life sciences is already making a positive impact. In drug
research, scientists often rely on quasi-random searches, arbitrarily applying chemical
agents to cells and observing the effects. This immensely expensive and time-consuming
approach has an estimated cost of 2.6 billion USD to develop a single drug, with 90% of
the researched drugs never achieving approval or being produced [9]. The employment of
computational drug discovery by using big data and deep neural networks to detect the
complex patterns in drug-related databases, generate hypotheses and reduce the search
space could bring a new era in pharmaceutics [10,11]. Apart from the predictive tasks, DL
is also used for knowledge discovery. The learned internal parameters of a Deep Belief
Network (DBN) were interrogated to infer the protein interaction networks [12], and a
Deep Neural Network (DNN) that was trained on metabolic profiles was used to discover
disease biomarkers [13]. The DL models have also aided scientific discovery indirectly
as a part of larger workflows. U-nets played a role in the data pipelines of a project that
elucidated the mechanisms and genetic pathways that are related to type-2 diabetes [14].
The Convolutional Neural Networks (CNN) detected the modifications in DNA sequences
as part of a research effort to identify the genes and pathways that are correlated with
aging [15].

Although applying predictive modeling in biotech is a high priority and DL seems to
be the most effective method, most biologists are not familiar with DL. Attempts have been
made to familiarize them with it, which has been proven by the numerous introductory
surveys that have appeared in the biology-related literature [16–20]. However, the scope of
these overviews is limited, thus pointing out that the biology-related literature is lacking
in the number of DL experts. Most of the systematic reviews on the subject of DL in life
sciences seem to exclusively address biologists as they assume that the reader is versed
in omics, and thus, they do not provide explicit information on the data that the DL
models were trained on or they assume that the reader is an absolute beginner in neural
networks, thus they never go beyond the basics, avoiding sophisticated expositions of the
applied architectures.

The objective of this work is to alleviate the latter two shortcomings. The motivation
for this is based on realizing that the current obstacles to biomedical breakthroughs could
be overcome by either teaching cutting-edge computer science to biologists or by bringing
computer scientists into the field of biology. The aim of this work is to offer a survey of
the various types of omics data and data representations that are used to train deep neural
networks, the neural network architectures that have been implemented, and the various
biological problems that DL has been solving over the last few years. The input data, the
DL models, and the outputs that the models have produced are examined. The latter three
constitute the necessary information that computer scientists need to know despite their
limited understanding of biology. Five omics levels are examined: genomics, transcrip-
tomics, proteomics, metabolomics, and epigenomics (Table 1). The information that is
included in this work could guide computer scientists to deeply understand omics data
and data representations for deep learning-based predictive modeling and subsequently,
make substantial contributions to life science research.
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Table 1. Information regarding the five omics levels examined in this study.

Omics Level Summary Description

Genomics The genetic information of an organism, its DNA
Transcriptomics Which pieces of genetic information (genes) are being expressed in a cell

Proteomics The study of proteins
Metabolomics The chemical byproducts of cell metabolism
Epigenomics The three-dimensional structure of DNA, and the various modifications applied to it

The rest of the paper is structured as follows. In Section 2, the foundational concepts
are presented, and the adopted research methodology is analyzed. Section 3 offers a
detailed exposition of the most prevalent types of biological data that are used to train
DL models. The main focus is on the data and the representations, while the information
about the DL architectures and the tackled problems are also provided. In Section 4, some
of the major challenges in applying DL to biological data are discussed. Finally, Section 5
concludes the paper and presents the future prospects in the field.

2. Materials and Methods

In this section, the foundational concepts are presented. The types of omics data are
reviewed, and the basic tasks that omics data are used for in conjunction with DL are
summarized. The research methodology that is followed in this work is also presented.

2.1. Foundations
2.1.1. Omics Data Types

Biological systems can be examined from multiple different aspects. An organism’s
DNA sequence may be examined, and this is the part that contains all of the structural
and functional information that is needed to sustain it. The chemical footprints of the
metabolic functions that take place inside a cell can be analyzed, as well as the substrates
and byproducts of cell metabolism. These different aspects are what the term omics refers
to. However, in the upcoming section, the various data types that are associated with each
of the most important omics levels (Table 1) are examined in depth; in this section, their
biological significance is briefly explained.

Genomics. Genomics deals with the information that is encoded in the DNA sequence of
an organism, and studies have been conducted on how different pieces of this information,
which are called genes, influence the organism. Genes may play a role in the structure of
an organism, or a cellular function, or they may merely regulate other genes in complex
relationships, thereby forming gene regulatory networks. It is a single continuous DNA
string that contains these different pieces of genetic information, the genes, which is like
a file of computer code containing numerous functions. Each organism carries its own
genetic material and, given that biological phenomena map the information that is encoded
in the DNA, patterns that are mined from the genomics data can be applied to multiple
predictive modeling tasks.

Transcriptomics. Every single cell of an organism contains a ’carbon copy’ of the same
DNA string, yet not every cell uses it the same way. A type of selective usage takes place,
with some parts of the DNA being transcribed and used by the cell, while other parts
are left out. This selective DNA transcription and deployment explains why the different
types of cells can assume different shapes and functions even though they all share the
same DNA or why a biological system responds dynamically to its outer environment.
Transcriptomics indicates the parts of its DNA that a cell has used. It indicates which genes
were expressed, and to what degree they are done so.

Proteomics. Every biological function is performed by the proteins, and every type of
cell and tissue is built of proteins. These are the building blocks of living systems. When
one is studying proteins, the interest may be either in their amino acid sequence or in their
three-dimensional structure; both of these are modalities containing the information on
how a protein functions or interacts with other proteins.
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Metabolomics. The chemical compounds that are produced or utilized during cell
metabolism are called metabolites. Different types of metabolic processes are involved
in virtually every biological event, and the different processes give off distinct chemical
byproducts. Thus, the metabolomics data have interesting potential for being used for
predictive tasks.

Epigenomics. Other than the sequential order of the nucleotide characters, the DNA
string of an organism has additional layers of organization. These are provided by its
three-dimensional structure, the time-dependent alterations of that structure, and certain
chemical modifications affecting the DNA. These structural elements, which are the subject
of study of epigenomics, have a massive effect on the biological functions, and thus, they
carry information that is not present at the genomic level.

Multi-omics. Each omics type can only account for a certain range of biological phe-
nomena [21], and the single-omics data reveal information only about one aspect of a
system [10]. For example, even though the information that is used to create proteins is
stored in genomic sequences, a protein-coding gene can give rise to different proteins due
to alternative splicing; therefore, the DNA alone does not reveal everything about the pro-
teins [22]. Two or more omics types can be combined for a multi-omics analysis, with each
individual omics type providing the predictive model with unique, useful information.

2.1.2. Tasks Solved with Omics Data and Deep Learning

The tasks where omics data are being used in conjunction with DL could fall into four
distinct categories, as shown in Table 2:

1. Biological: Tasks concerning the prediction of biological attributes, such as predicting
which parts of a DNA sequence will acquire a certain property, or the discovery of new
biological knowledge, such as clustering genes into functional groups that interact
with each other.

2. Biomedical: Tasks related to understanding disease, such as identifying genes that
are affected by a certain pathogen, or making health-related predictions, such as
predicting whether a patient is low- or high-risk.

3. Drug Research: Data-driven pharmaceutics applications include predicting the effect
that a chemical agent will have on cells or inferring which chemical agent was applied
to a biological sample.

4. Bioinformatics: Efforts to automate some of the low-level bioinformatics procedures
that deal with data engineering pipelines. Tasks such as performing peak integration
from mass spectrograms fall into this category.

In the following section, the types of omics data and data representations that are
used in the literature to train the deep neural networks are examined in detail. Yet, in this
introductory section, a summary table of the most common data types and representations,
Table 3, is provided. The data types can be text strings, numerical tabular, and numerical
(1D vector) time-series.

The numerical data can be fed into the neural networks as they are, or this can be
performed after a simple pre-preprocessing procedure, such as normalization. The character
string data can be represented with a variety of methods, such as, both domain-specific
and general Natural Language Processing (NLP) techniques. The sequential string data
might constitute hundreds or thousands of characters for each sample, and the numerical
tabular data can have thousands of features. This complexity, reflecting the complexity
of the biological systems that the data were captured from, explains the trend towards
using deep neural networks for predictive modeling. Other than the generic predictive
and regression tasks, DL is also used for knowledge discovery, e.g., training a model for
classification purposes, and then, investigating the model to identify which features and
combinations of features will determine the outcome.

From the review literature on the topic of DL in computational biology, the most
suitable research articles to introduce the subject to a beginner are those of Zou et al. [20]
and Angermueller et al. [16]. For the general overviews on DL, ranging from beginners’
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articles to thorough expositions of the various models and techniques, valuable insights
can be found in [23–26].

Table 2. Categories of tasks being solved with omics data and deep learning.

Description Examples of Tasks

Biological Modeling for biological insight or for
prediction of biological attributes

• Identify functional units in DNA sequences
• Elucidate interactions among genes or proteins
• Predict attributes of proteins or DNA sequences

Biomedical Modeling related to understanding
disease, diagnostics, and therapeutics

• Cluster biological samples into cancer subtypes
• Predict whether patient is low- or high-risk
• Identify biomarkers for early-stage disease

Drug Research Modeling directly assisting the discovery
and development of pharmaceutics

• Predict the effect a chemical agent will have on cells, gene
expression, or proteins

• From gene expression profiles, predict which chemical agent
was applied on tissue

Bioinformatics Modeling to assist or automate
technical bioinformatics tasks

• From a stack of contigs generate consensus sequences
• From a batch of mass spectra generate a single integrated spectrum
• Separate peaks from noise in spectra data

Table 3. Most prevalent omics data types used to train deep learning models.

Omics Data Type Encoding

Genomics • DNA sequences • String
• One-hot
• k-mers
• Embedding layer

Transcriptomics • Gene expression profiles • Numerical tabular

Proteomics
• Protein sequences • String

• One-hot
• NLP-based encoding (e.g., skipgram)
• Encodings based on
• physicochemical properties
• Position Specific Scoring Matrix (PSSM)

• Mass Spectrometry • 1D vector, time-series -

Metabolomics • Spectra (various types)
• Metabolic profiles

• 1D vector, time-series
• Numerical tabular

-

Epigenomics • Epigenomic signals
• Epigenomic profiles

• 1D vector, time-series
• Numerical tabular

-

2.2. Research Methodology

The adopted methodology consisted of two steps. First, a Scopus search was con-
ducted by using the combinations of terms “deep learning”, “genomics”, “transcriptomics”,
“proteomics”, “metabolomics”, “epigenomics”, and “multi-omics”, i.e., “deep learning
genomics”, “deep learning transcriptomics”, etc. The search was conducted on 19 August
2022, and it covered the last decade, i.e., from 2012 to 19 August 2022. The statistics from
the search results are illustrated in Figures 1 and 2; Figure 1 presents the number of pa-
pers, combining DL and omics data, while Figure 2 proportionally illustrates the involved
omics types in the DL-related bibliography. It should be noted here that the quantity of
genomics data and DL applications has grown greatly during the COVID-19 pandemic,
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from 2019 to 19 August 2022 as they are essential public health tools; the genomic data
have supported the global health response, enabled the development of testing methods,
and helped towards the timely tracking of novel SARS-CoV-2 variants. The latter is clearly
illustrated in both Figures 1 and 2. Second, the results were filtered both for their general
relevancy and, most importantly, for the unique requirements of the proposed study. Since
the focus is on introducing non-biologists and non-bioinformatician DL experts into the
field of computational life sciences and non-DL experts biologists to the DL paradigm, the
papers that were selected shared explicit information on the used data, how the data were
represented and preprocessed, and they emphasized the ways in which the DL was applied.
Therefore, the reviewed papers basically contain the meaningful information about the data
that computer scientists would need to know in order to contribute to this research field.
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3. Omics Data and Deep Learning

In this section, the applications of DL for different types of omics data are reviewed.
The indicative literature was selected as they cover the state-of-the-art methodologies in
the popular applications of the most recent years.
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3.1. Genomics

The raw material of genomics research is the DNA sequences which, from a computa-
tional point of view, are strings that comprise four characters: A, C, G, and T. To serve as
the input data for the predictive modeling, the DNA sequences are usually represented in
either of the two following ways:

1. One-hot encoding: a 2D matrix with four rows (each for one of the four characters)
and a number of columns that is equal to the DNA string length. For each column,
the character that was found in that position in the DNA sequence gets value one,
while the rest of the three rows are given the value 0, as it is shown in Figure 3.

2. k-mers: A vector is generated, representing the possible permutations of the four
nucleotides for a user-defined k (e.g., for k = 3, the permutations are AAA, AAC,
AAG, . . . , TTC, TTG, TTT). Each element of the vector takes the value one if the
permutation is present in the string; otherwise, it takes the value 0, as it is shown
in Figure 3.
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In [27], the DNA sequences of the synthetic plasmids were used to predict the lab of
origin of the synthetic DNA. After the one-hot encoding, the sequences were used to train a
CNN, which correctly identified the source lab 48% of the time, and for 70% of the time, the
true origin appeared in the top-ten predicted labs. DL-based genomics techniques, which
use DNA sequences as training data, have lately been proposed for the primer construction
for PCR tests to detect COVID-19 [28] from human samples. The problem was formulated
as being both of the multiclass (what type of virus) and binary class type (COVID-19 or
not). A CNN achieved 98.73% accuracy for the binary problem. One-hot encoded DNA
strings were also used for a DL-based approach to automate part of the sequencing pipeline
itself [29]. The DNA sequencing methods produce clusters of short variations of the DNA
substrings called contigs, which are then aligned to a reference genome to generate the
consensus sequence. However, this is a computationally expensive process that combines
dynamic programming and demanding algorithms to navigate the intractably vast search
spaces. Researchers have automated this process via DL using contigs as the input data
and the consensus sequences as the labels. After training a Bidirectional Long Short-Term
Memory (BiLSTM) model that scanned the contigs with a window of size three, the research
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team in [29] predicted the consensus sequences with up to 99.81% identity with the ground
truth, thereby surpassing all of the state-of-the-art models, including a tool that was released
by Oxford Nanopore, a leading company in sequencing technology.

Another example of deploying DL to solve a common bioinformatics challenge was
reported in [30], where the genomic sequences were classified as to whether the sequencing
machine was reading in the forward or the reverse direction. The conventional bioinfor-
matics techniques that were used to infer it were quite demanding, and they required
a reference genome, which is problematic when one is sequencing a new organism for
which there is no reference genome available. The input data were long reads of the DNA,
which are represented as k-mers, with k ranging from one to five. A DNN and a CNN
were trained, with the CNN performing slightly better than the other one. For validation,
the researchers clustered the similar sequences together and performed a type of majority
voting, where the majority of the orientation predictions of the clustered sequences were
applied to all of the sequences in the cluster, and thus, the models predicted correctly up to
96.2% of the human reads and up to 98% of the S. cerevisiae (yeast) reads.

In [31], a CNN was trained on one-hot encoded DNA strings to predict the gene
regulatory regions, i.e., the regions within a DNA sequence with activated genes. The
annotations were a time-series that signified which parts of the sequences were inactive
and which were active above a certain threshold, which were represented by vectors of
0 s and 1 s, respectively. The researchers observed that the window and stride size of the
convolutional layers had a major importance in the model’s effectiveness.

Desai et al. [32] used the DNA strings themselves without one-hot encoding them,
and passed them through an embedding layer to extract the representations. The task was
to identify the bacteria from environmental samples. The classification was hierarchical,
with bacteria being classified on three taxonomic levels: family, genus, and species. For
comparison, the researchers trained a Recurrent Neural Network (RNN), an LSTM, a
BiLSTM, a CNN, and a Combinatorial CNN. The LSTM outperformed the others in the
family-level classification, with it having a 91.24% accuracy, and the BiLSTM had the
best performance for the genus and species levels, with it having 85.63% and 70.78%
accuracies, respectively.

Tahir et al. [33] combined the one-hot encoded DNA strings with codon composition
tables to predict whether the sequences exhibited a certain property, namely, whether they
contained N6-methyladenine sites or not. Codons are k-mers with k = 3, and the number of
possible permutations of the four nucleotides for k = 3 is 64. The codon composition vector
of a DNA string is a vector with a length = 64, where each position takes a value of one if
the corresponding codon is present in the DNA string, otherwise, it takes a value of 0. The
architecture that was used consisted of a CNN employing the one-hot DNA sequence. Its
output vector was then concatenated with the codon composition vector, and it was fed
into a dense layer for the classification to be performed. The latter approach achieved an
accuracy of up to 98.05%, and it surpassed other reported methods by at least 2%.

In a similar way, Phuycharoen et al. [34] combined the one-hot representation with
the codon composition tables to train the CNNs to predict which sequences contained the
TF (Transcription Factor) binding sites in a 3-class problem (increased binding, decreased
binding, and non-differential binding). The DNA sequences were also combined with a
dinucleotide composition matrix in a two-tier classification system that firstly predicted
whether the DNA contained promoter regions and then, in the case that it did not, it pre-
dicted whether the regions were strong or weak promoters [35]. Dinucleotides are k-mers
with k = 2, and a dinucleotide composition matrix is a 2D matrix with rows corresponding
to the samples, columns corresponding to all of the possible 2-nucleotide permutations
(i.e., AA, AC, . . . , TG, TT), and data that are the normalized frequency of each dinucleotide
of each sample. First, a CNN employed the one-hot encoded DNA sequences, its output
concatenated with the dinucleotide frequency matrix, and a dense layer classified the
resulting vectors as to whether they contained a promoter or not; for those vectors which
did, the same pipeline took place, with a second CNN taking the one-hot DNA sequences,
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concatenating its output with the dinucleotide frequency matrix, and a dense layer classi-
fying whether the promoter was weak or strong. The proposed approach surpassed the
accuracy of the previous benchmark methods by 2–10%.

K-mers have been used not only in composition matrices, but also in their preliminary
form, as they are vectors of strings of length = k, resulting from the sliding window over
the original sequence (e.g., with k = 3, TACGG becomes {TAC, ACG, CGG}). These lists
of strings are treated as a corpus of texts, and natural language processing techniques
are applied to learn the word embeddings. In [36], the k-mers were transformed with
Glove embedding method [37]. A hybrid CNN–BiLSTM was trained to predict which DNA
sequences contained the chromatin-accessible sites, thus signifying that these sequences
play functional roles in a biological system. The hybrid model performed better than its
component models did individually, and its accuracy surpassed that of the other previously
used methods by 1–7%. Guo et al. [38] compared the Glove and word2vec [39] embeddings
of the k-mers. The task was performed in the same way as it was previously performed,
and the sequences were evaluated as to whether they displayed chromatin accessibility or
not. After training the hybrid CNN-GRU models that had an additional attention layer,
the Glove embedding method was proved to be better than the word2vec one, and the
overall performance of it was comparable to those of the other state-of-the-art methods.
In [40], word embedding and FastText-transformed k-mers were used for the binary task of
classifying the DNA sequences as to whether they contained, or belonged to, essential or
non-essential genes. The used model was an ensemble of both of the shallow ML and DL
models, comprising a k-nearest neighbors (k-NN) one, a random forest (RF) one, a support
vector machine (SVM), a DNN one, and a CNN one. The model achieved 76.3% accuracy,
84.6% specificity, 60.2% sensitivity, and it was comparable with the other state-of-the-art
methods, surpassing most of them.

In [41], an automatic framework, namely AMBER, which is used for designing CNNs
in genomics was presented, and it was based on a novel Neural Architecture Search (NAS).
The pathology type was encoded to be one-hot, which was the label. AMBER was applied
to the modelling genomic regulatory features, and this resulted in the achievement of better
predictions of the disease-relevant variants when they were compared to those of the basic
non-NAS models. Li et al. [42] proposed a DL genomics approach, and they applied it to
a multitasking classification of Alzheimer’s disease progression by identifying the novel
genetic biomarkers that have gone unnoticed by the traditional genome-wide association
studies (GWAS). The classification accuracies achieved up to 99.44% by using the proposed
DL genomics model. Chalupová et al. [43] developed an easy neural network tool for
genomics (ENNGene) to bridge the gap between the need for DL models in genomics and
the limited ability of researchers in the field to develop one. ENNGene could deal with
multiple input branches, and it could be fully customized by the user. The results of using
ENNGene were similar to those of the state-of-the-art ones.

3.2. Transcriptomics

Gene expression profiles quantify the activity of each gene within a biological sample.
The more active the gene is, then the more it is transcribed into the RNA, and the RNA
sequencing yields more reads that map to the active genes than they do to the inactive ones.
The active genes have more reads. The formulas that were used to normalize these read
counts do not focus simply on the numbers of reads, but also take into account the read-
and gene-lengths. More details on the full transcriptomics pipeline can be found in [44–46].
The final results of the process, which were used as the data in the predictive modeling, are
numerical vectors with values that are between 0 and 1, denoting how much each gene is
expressed within a sample (Figure 4).

Transcriptomics data have occasionally been used for the completion of regression
tasks, such as inferring a patient’s age from the gene expression profiles of the protein-
coding genes [47], though most studies are tackling the classification problems of this.
Being exceedingly high-dimensional with them having thousands of features, the gene
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expression data are more useful and tractable after a treatment with the dimensionality
reduction techniques. The most common methodologies apply feature engineering and
feature selection. The feature selection of the transcriptomics data, which is referred to
as the differential gene expression (identifying genes that are expressed differentially
depending on the class), employs a number of domain-specific techniques [48–50].
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The feature extraction and the dimensionality reduction techniques have been applied.
In [51], the researchers set out to determine which method was optimal for the gene ex-
pression data, concluding that the DL-based extraction with the proposed DeepAE was the
best when it was compared to the four benchmark models: singular value decomposition,
k-sparsity singular value decomposition, sparse non-negative matrix factorization, and
the previous state-of-the-art one, a domain-specific method that is called CS-SMAF [52].
The evaluation was performed by comparing the original with the reconstructed transcrip-
tomics data using the Pearson correlation coefficient, the Euclidean distance, and the mean
absolute error as the metrics for the comparison.

A tangible portion of the DL-based transcriptomics research has been conducted in
the field of oncology; in [53], the gene expression profiles were utilized in a three-fold
binary class task. Firstly, this was performed to predict the high-risk patients. Secondly,
this was performed to predict whether the patient would survive or not. Thirdly, this
was performed to predict their event-free survival, i.e., whether the patient would survive
without experiencing repercussions and side-effects from the treatment. The DL architecture
was comprised of two integrated models. A DNN took the original dataset, while an Auto-
Encoder (AE) took the dataset after it had been feature-selected for the High-Risk class.
The AE-extracted features were concatenated at some point and integrated into the DNN,
which generated the multi-output binary-class predictions. In the comparative experiments,
this architecture was shown to consistently outperform the RF and linear-SVM.

In [54], a simple binary prediction task was combined with unsupervised learning
for the purpose of knowledge discovery. First, a DNN took cellular gene expression data
and classified whether each cell was cancerous or not. The cancerous cells were singled
out, and through a k-means clustering, they were grouped with the goal of discovering the
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novel cancer subtypes that were not present in the input data labels. Compared with other
clustering methods, the k-means were shown to yield better more biologically meaningful
results. Lee et al. [55] classified early and late-stage cancer from the gene expression profiles,
and they observed that with this type of data, an increase in the number of input samples
raised the probability of bias due to there being outliers. The solution that they proposed
was to use statistics to determine whether the differences in the gene expression values
among different types of cancer were statistically significant. Since the t-test could be
sensitive to large outliers, they used the Wilcoxon rank-sum test. After that statistics-based
feature selection, they trained a DNN, which yielded a 94.2% accuracy.

In [56], a nested classification task was tackled, and first, it classified the tumor type,
and then, it classified the molecular tumor subtype; both of these problems were multi-
class. The researchers normalized the gene expression data of each patient, applied a log2
transform, and performed a feature selection by comparing the median expression of each
gene for the in-class samples with the out-of-class samples; the median was more robust
for the outliers than it was for the mean. By applying ResNet, 1D-CNN, and 1D-Inception,
they reached a maximum accuracy of 98.54% for the primary tumor type, and maximum
accuracy of 83.5% for the molecular tumor subtype.

In [57], the gene expression profiles were combined with the splice junction data
for the unsupervised discovery of novel cancer subtypes. The splice junctions are DNA
subsequences (exons) that are left out during the transcription from DNA into RNA, thus
changing the function of the gene. In this study, a frequentist estimate of the inclusion
level of each junction in each sample was calculated, thus resulting in a matrix of the
shape [649 patient samples] × [34.425 skipping exons]. Conventional clustering is prob-
lematic in high-dimensional data, hence, in the proposed work, an AE-based pipeline re-
duced the dimensionality, and the learned latent-space representations were then clustered.
First, two stacked AEs (SAE) took the input data, one SAE handled the gene expression
and the other handled the splice junction matrix. Then, their outputs were concatenated
and fed into an AE that extracted the final features, which were then clustered through
the k-means. Compared to PCA-based clustering, the AE-based clustering yielded better
results and identified more clinically meaningful cancer subtypes.

Another field profiting from DL-based transcriptomics is drug research. In [58], the
gene expression profiles of tissues that were treated with drugs were used. Each sample
was labeled by the properties of the chemical agent that were contained in the applied drug,
e.g., antineoplastic, cardiovascular, central nervous system agents, etc. As a biologically
relevant type of feature engineering, the researchers used OncoFinder [59] to transform
the gene expression data into a matrix representation of signaling pathway graphs. The
matrix represented the regulatory interactions among the genes, with rows and columns
signifying the genes, and the values indicating the up-regulation, down-regulation, or there
being no effect. A DNN was trained with this data using the effect that a chemical agent
has on regulatory gene interactions to infer the drug’s properties. The DNN was proven
to be better when it was compared to an SVM. It should be noted that the model might
have concluded in a novel discovery; however, a certain drug was misclassified, and its
biological effects contradicted its human-annotated label, and after reviewing the relevant
literature, the researchers proposed the chemical agent as a candidate for drug repurposing.

In [60], the gene expression profiles of both of the chemical agent perturbations and
gene knockdown perturbations were used for predicting the protein–drug interactions
from protein coding genes. Chemical agent perturbations took place by applying chemicals
to the tissues, and the researchers monitored how the genome responded, and which genes
were up/down-regulated. The gene knockdown perturbations consisted of removing a
gene through the use of some gene editing technique and monitoring how the other genes
responded. The data were in the form of real-valued matrices. For the chemical perturbation
matrix, the shape was [number of genes] × [number of drugs], and for the gene knockdown
matrix the shape was [number of genes] × [number of landmark genes]. The labels were
binary, and they represented whether a drug affected a gene or not. Thus, by using the
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two types of input data, it was possible to detect both of the direct interactions, where a
chemical agent directly affected a certain gene or the indirect interactions, where an agent
affected the other genes which, in turn, affected the gene in which they were interested in.
A DNN was used with an input layer that had two channels for the two datasets. Then,
the channels were concatenated, thus producing the final binary classification with an
accuracy of 90.53% and an F1-score of 86.38%. The model proved to be superior to Logistic
Regression, Random Forest, and Gradient Boosted Tree.

In [61], the transcriptomics data were combined with the gene signaling pathways and
chemical structures of the drugs for the research of drug repurposing, i.e., finding drugs
that can be used for diseases other than that which they were originally developed for. The
idea was to train the models with the effect that the drugs had on the gene expression to
identify the drugs that were misclassified by the human annotators, and then compare the
chemical structure similarity and drug effect on the gene signaling pathways. By finding
similar drugs and evaluating how these approved drugs had been classified, hypotheses
for the experiments and discoveries could generate. In that particular study, the gene
signaling pathways were in a graph form, which were represented as a matrix of genes with
topological weights. Through the in silico Pathway Activation Network Decomposition
Analysis (iPANDA) algorithm [62], they were transformed into an activation score matrix
of the shape [number of samples] × [number of signaling pathways]. The gene expression
profiles were simplified by clustering them into groups of similar genes. The chemical
structure data did not participate in the model training, but they were only considered
when an interesting finding occurred or when a drug looked promising, whereas the
chemical structure comparison identified the similar drugs. A DNN was trained for a
6-class prediction, classifying the drugs based on their therapeutic effect. The experimental
tests showed that combining gene expression and signaling pathway data yielded better
results than either one of the individual data types did alone, and the researchers have
reported a new discovery, which is a strong candidate drug for repurposing, which is
awaiting its experimental validation.

In [63], the unsupervised inference of the regulatory networks was conducted on
transcriptomics and gene ontology data. The gene expression profiles of the cells that
were treated with chemical compounds were concatenated with one-hot encoded gene
ontology annotations, which consisted of the categorical information of the attributes of the
genes [64]. The real-valued gene expression matrix was first thresholded and turned into a
binary one, with a value of one if a gene was differentially expressed due to the chemical
treatment, otherwise, it was given a value of 0. A Deep Belief Network (DBN) performed a
hierarchical-style clustering, with the gene clusters having been seen as the modules of the
gene regulatory network. The resulting findings were confirmed by the Gene Ontology data
and a subsequent literature review, and the regulatory networks that were inferred from
the DBN-based clustering had biological validity. The researchers highlighted that setting
the parameters for the DBN was an empirical, trial-and-error process with no theoretical
foundation suggesting beforehand which parameters would be optimal. The choice of
using a DBN was made for its robustness to the noise. The k-means and hierarchical
clustering, being distance-based, were affected by the randomness in the data, while the
DBNs were better at finding the generalization beyond the noise. The goal was to decode
the gene regulatory networks in an analysis pipeline that used the DBN as the starting
point for the clustering, and then, the researchers continued with the statistical tests and
the other non-DL techniques.

In [65], DL and joint supervised classification have been used to characterize the
molecular changes that are correlated to Alzheimer’s disease (AD). The mapping of the
cohort with a heterogenous diagnosis to the same transcriptomic space took place, and
an unsupervised dimensionality reduction was applied to obtain a progressive trajectory
that is associated with the severity of the AD. Finally, the transcriptomic data were applied
to the model from different areas of the brain and blood monocyte samples to evaluate
the reliability of the findings for different cohorts and tissues. In [66], a machine learning
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technique used the molecular characteristics of tumors to generate personalized therapies.
A cohort from which the cell line gene expression data were gathered was employed, and
they could be classified into two groups with different pan-drug chemotherapeutic sensitiv-
ity. The Boruta feature selection algorithm was used, and a neural network with 10 hidden
layers classified the pan-cancer cell lines into the two groups with 89% accuracy. The
results indicated that the cell lines with similar gene expression profiles had a comparable
pan-drug chemotherapeutic sensitivity. Therefore, the comparable biomarkers could be
used to select the effective drugs to increase the therapeutic reaction, while at the same
time reducing the cytotoxic problem.

Gene expression datasets are sometimes used in conjunction with gene interaction
graphs to train the Graph Convolutional Networks (GCN). In [67], the researchers wanted
to classify the cell types from their gene expression. They procured the gene expression
profiles for various cells, and then used them to construct a cell similarity matrix by
measuring the cosine similarity among the expression levels of the different cells. That
matrix was then turned into a graph for a GCN training procedure, and it included both
labeled and unlabeled cells (semi-supervised). Training the GCN with this graph plus
labeled the gene expression data resulted in a model that took a single-cell gene expression
profile and was able to output a probability matrix, thus representing the probability that
the cell belonged to a number of preset types of cells. The GCNs also contributed to drug
research. In [68], the GCNs were used to predict the drug response. The model was trained
with the gene expression profiles of the cells that received a treatment with drugs plus a
graph with the interactions among the genes. In [69], the researchers trained the GCNs to
predict the interactions among the genes that are associated with cancer in a search for the
non-essential genes that could be targets for drugs. Drawing on the concept of Synthetic
Lethality (SL), the researchers hoped that identifying, within a cancer cell, a non-essential
gene that interacted with the cancer-causing gene, the non-essential gene could be targeted
by a chemical treatment and the cancer cell would die without affecting the healthy cells.
The SL interactions were sparse, and training ML models were prone to overfitting, but
the researchers managed to accurately capture the relationships among the genes using
a Dual-Dropout GCN (DDGCN) that used both fine-grained and coarse-grained node
dropout techniques, thereby achieving state-of-the-art results.

3.3. Proteomics

A protein or peptide sequence is a string consisting of the 20 amino acids, which are
denoted with the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, W, Y, and V. The
simplest way to transform such a string into data for its predictive modeling is by using
one-hot encoding, as shown in Figure 5. However, this is often coupled with Natural
Language Processing (NLP) or with the representations that integrate domain knowledge
into the data.

Natural language processing-based encodings may also be coupled with additional
preprocessing. Borrowing from NLP, a number of studies have applied the skip-gram-
based [39] encoding of protein sequences. In [70], the protein strings were transformed into
a 20 × 15 matrix, where each amino acid in the sequence was a “word”, and the skip-gram
encoded the 20 possible amino acids into a 15-dimensional space. The skip-gram encoding
was followed by an embedding layer. A CNN took the embeddings and classified whether
a protein could bind to the HLA class I regions of a genome, meaning that the protein would
be recognized by the cell as belonging to the organism and therefore, no immune response
would be triggered. The latter was a biomedical application that was useful for drug
research and for understanding autoimmune disorders. The CNN performed comparably,
depending on the dataset, with the other state-of-the-art models. In [71], another variation
was proposed for the DL- and ML-based classifications of the protein sequences, which
were tested with DNN and SVM, thus achieving high performance. The visualization of the
encoded sequence space suggested that this encoding stored accurate information about
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the protein structure. The method encoded a sequence as a continuous-value vector that
characterized both the sequential structure and physicochemical properties of the protein.
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In [72], a novel natural language processing method that is called SeqVec (Sequence-to-
Vector) was proposed and it was based on ELMo (Embeddings from Language Models) [73].
SeqVec was trained on unlabeled data, and it learned to predict, probabilistically, the
next word/character given that it knew the previous words/characters. Learning these
probability distributions was a similar process to that of understanding the syntax and
grammar of the corpus, and the same word/character could have different embeddings
depending on the words/characters that came before it. The researchers tested this novel
embedding on a wide range of DL-based proteomics tasks, which fell into three different
categories depending on the type of output that the DL model produced: (1) a sequential
output, where the model predicted a protein’s secondary structure (a string of length equal
to the length of the amino acid sequence, denoting the three-dimensional structure of the
physical protein), (2) its classification, both 10-class (subcellular localization, i.e., whether
the protein was located in nucleus, ribosome, membrane, etc.) and binary (whether water-
soluble or membrane-bound), and (3) regression, where the model generated a continuous
value for the estimated protein disorder. A DNN was implemented for the classifications,
and a CNN was implemented for the sequential and regression tasks. Although the
reported results did not surpass those of the previous state of the art approaches, SeqVec
yielded a better performance than that which is obtained by using other encodings, and
moreover, the SeqVec representation was produced faster.

In [74], an encoding method that is called MOS (Matrix Of Sequence) transformed a
protein string into a 2D matrix with values ranging from 0 to 1. It resulted in the faster
training of a model when it was compared to a number of other encoding methods. The
trained model was a DNN that was used for the classification of protein interactions, and it
yielded an accuracy of 94.34%. The amino acid sequences and physicochemical properties
of the amino acids provided the necessary information to predict the protein structure [75],
and a number of encodings were proposed to bring domain knowledge into the repre-
sentation, thus integrating additional information into the sequential context of the data.
Chen et al. [76] encoded the sequences with the Auto Covariance (AC) algorithm [57],
which transformed the protein sequences into numerical matrices of the same dimensions,
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regardless of the sequence length. The 20 amino acids were grouped into seven physico-
chemical properties, and a normalized matrix was constructed to represent the information.
Then, the matrix was transformed to fit into a user-configurable shape/dimensionality,
ensuring that all of the sequences were represented with matrices of uniform dimensions.
The researchers used this transformation to evaluate the host–pathogen protein–protein
interactions (HP PPI), predicting whether two proteins had a positive or a negative interac-
tion. A stacked denoising AE extracted the features, and following this, a dense layer for
the final classification was applied. The proposed architecture surpassed the traditional
machine learning models.

In [77], the proteins were classified as venomous or non-venomous, which is a task
that is useful in antidote research. The protein representation was based on the Atch-
ley factors [78], whereas each amino acid was represented with a numerical vector of
five elements, corresponding to five physicochemical and structural properties (polarity,
secondary structure, molecular volume, codon diversity, and electrostatic charge). Thus,
each sequence was represented as a 2D matrix of shape 5 × [sequence length]. A Gated
Recurrent Unit (GRU) was trained with the Atchley representations and the binary labels,
and it surpassed the previous methods by up to 16% in its accuracy, and up to 22% in its
F1-score. In [79], four different encodings of protein sequences and their combinations
were used to train a CNN. The results compared: (1) a simple one-hot encoding of the
amino acid sequence, (2) the Informative Physico Chemical Properties (IPCP), an encoding
that quantified the physiochemical properties of the amino acids, (3) the Composition of
K-Spaced Amino Acid Pairs (CKSAAP), which encoded the normalized frequency of the
appearance of each possible pair of amino acids, without the two amino acids of each pair
having to be next to each other, but with the k amino acids being interpolated between
them [80], and (4) the Pseudo Amino Acid Composition (PseAAC), which used a set of
discrete serial correlation factors, rather than the sequence’s actual composition. The re-
searchers concluded that one-hot encoding that was concatenated with CKSAAP provided
the best data representation, yielding 88.98% accuracy and an Area Under Curve (AUC)
of 0.90, thus surpassing the previous methods. Ahmad et al. [81] classified the peptides
as to whether they contained antifungal properties or not by concatenating the one-hot
encoded sequences with three types of extracted features: (1) the Composite Physicochem-
ical Properties (CPP), an encoding that described the amino acid composition and eight
physicochemical properties of each protein, (2) the Quasi Sequence Order (QSO), whereas
the sequential information of the protein was encoded using Grantham distance (chemical
distance information) and the Schneider-Wrede distance-based matrix (distance based on
physicochemical properties) among each pair of the twenty amino acids [82], and (3) a re-
duced amino acid alphabet, which was an abstract concept, consisting of different methods
and proposals to represent a peptide sequence in a dimensionality that is smaller than that
of a one-hot encoded sequence. The experiments demonstrated that the combination of the
three extracted features performed better than any single feature did alone.

In addition to the amino acid sequence and the physicochemical properties, some
researchers have aimed to enrich the proteomic data representations by integrating the
evolutionarily similar information. The latter was done with a Position Specific Scoring
Matrix (PSSM), a 2D matrix of dimensions [20 amino acids] × [protein length], as shown
in Table 4.

Table 4. Example of a PSSM matrix.

Amino Acids 1 2 3 4 5 . . .

A 0.34 −0.06 0.34 −0.06 −0.06 . . .
G −0.06 −0.06 −0.06 −0.06 −0.06 . . .
I −0.06 0.18 −0.06 0.34 0.18 . . .
L −0.06 0.34 −0.06 −0.06 0.34 . . .
P −0.06 0.27 0.18 −0.07 −0.06 . . .
. . . . . . . . . . . . . . . . . . . . .
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The values of Table 4 were computed using the online PSI-BLAST tool [83], which
searches the Swiss-Prot database and calculates, through multiple alignments, each se-
quence’s evolutionary similarity with the proteins that are from other lifeforms. On an
abstract level, a PSSM can be seen as the location of a protein in the protein sequence space
of all of the lifeforms that share a similar protein. Since one dimension of the PSSM is the se-
quence length, a transformation called PsePSSM (Pseudo-Position Specific Scoring Matrix)
was developed so that the protein sequences of varying lengths could be represented
by the matrices of uniform shape. Numerous variations of the aforementioned protein
representations have been developed [84–91], and they share two common characteristics.
Firstly, they integrate the domain knowledge into the data, which represent additional
information that is not present in the amino acid sequences themselves; this information
may consist of the physicochemical properties, or of the evolutionary similarities that are
extracted through comparing the proteins across the lifeforms, thereby encoding some of
these comparative insights into the data. Secondly, they often result in non-sequential data
that can be utilized by any neural network or, for that matter, any conventional machine
learning model.

When the protein and peptide sequences are not transformed into a representation that
nullifies their sequential status, the DL models that are able to handle them are proven to be
CNNs and RNNs. Wen et al. [92] used a genetic algorithm to find the optimal architecture
of a hybrid CNN-Bidirectional GRU. The task that they performed was regression using
a sequence to predict the peptide retention times (RT), which can be used as a quality
control for the drug development. The researchers addressed the data shortage with a
transfer learning procedure. First, they trained the model with various peptides and
RTs, second, they trained it with the particular peptides of interest, and finally, they fine-
tuned the pretrained model. Predicting the peptide RTs from a sequence was the focus of
Ma et al. [93] who used a CNN with capsule layers [94], thus achieving a state-of-the-art
performance. The CNNs with capsule layers were further validated by Du et al. [95], which
resulted in it outperforming the conventional ML models in the binary task of predicting
whether a protein was saliva-secretory or not. The study was part of a larger project of
analyzing the cancer biomarkers in saliva, as saliva has certain advantages when it is
compared to blood and urine for evaluating disease biomarkers. Armenteros et al. [96]
asserted that a hybrid CNN with a BiLSTM was perhaps the best model for sequence
classification, and this hybrid improved its performance with an attention layer. The
hybrid CNN–BiLSTM processed the sequence, and the attention mechanism focused on
the important regions within it. Both a binary and a 10-class task were studied, the binary
task was the determination of whether the protein was membrane-bound or soluble, and
the multi-class was a subcellular localization one, i.e., determining the protein’s location in
relation to the cell (e.g., nucleus, cytoplasm, membrane, extracellular, etc.). The attention-
augmented hybrid achieved 78% accuracy for the 10-class task, and 92% accuracy for the
binary, thus outperforming the previous state-of-the-art one.

In [97], the proteomics data were coupled with the GCNs for drug repurposing. The
scientists drew from various datasets to create one large multi-relational graph of drug–
protein, disease–drug, disease–protein, and protein–protein interactions. A CGN was
trained to predict whether a drug and a disease could be associated, i.e., whether the
drug could be used as a treatment for the disease. Another data type that is common in
computational life science is Mass Spectrometry (MS) data. A mass spectrum, which is taken
from any molecular structure, chemical or biological, measures the mass-to-charge ratio
(m/z) of the ions that are contained in the sample, as shown in Figure 6. It is represented by
a sparse 1D vector, denoting the relative abundance of the ions (y-axis, value in the vector)
for each position in a discretized m/z spectrum (x-axis, position in the vector). Through
MS, conclusions can be made regarding which molecules a sample consists of, and this can
be used to determine its chemical composition.
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Guan et al. [99] used one-hot encoded sequences to infer various tandem mass spec-
trometry (MS/MS) properties: (1) the ion retention time (iRT), which was a continuous
value, (2) the survey scan charge state distributions, which were histogram-type vectors,
and (3) the sequence ion intensities of the spectra, which was a one-dimensional time-series
vector. In that multioutput determinations, the highest performance was reached with a
BiLSTM, which comparatively surpassed the CNNs. In [100], a hybrid CNN and BiLSTM
technique inferred the MS/MS spectra from one-hot encoded peptide sequences, thereby
achieving state-of-the-art results. In [101], the same task was tackled with a seq2seq type of
Residual CNN, with the difference that the one-hot encoded sequence was concatenated
with a numerical vector of the monoisotopic mass of each amino acid in the sequence.

3.4. Metabolomics

Most of the metabolomics data types fall in the time-series category, which refers to the
MS spectra (Figure 6), the Nuclear magnetic resonance (NMR) spectra (Figure 7) the liquid
chromatograms (Figure 7), etc. These techniques elucidate the chemical composition of the
samples, resulting in histogram-type plots, which are represented as one-dimensional vectors.
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With DL-based metabolomics, the classification of the biological systems does not
rely on the genetic makeup and activity, e.g., the genomic sequence and gene expression,
but on the chemistry of it. Probing into the chemical composition of the metabolites, the
byproducts of cell metabolism, provides information and data for the classification tasks,
thereby identifying the biomarkers for various traits or diseases, as well as for drug research.

Regarding the task of processing the spectrometry data for DL model training,
Akyol et al. [102] recommend two preprocessing practices: (1) replacing the missing values
with some very small values, which are normally half of the minimum positive value of the
data, and this was performed because the missing values probably express the metabolites
whose levels were too low to be detected, and (2) applying a quantile normalization to
reduce the variability among the different samples. Klimczak et al. [103] used NMR spectra
to identify the different taxa of pollen from the metabolites that were contained in air-
sampled pollen extracts. The latter could provide useful information to patients who are
allergic to specific types of pollen, and predict the allergy outbreaks during the spring, a
capability that is particularly valuable for the areas where a tangible part of the population
is afflicted by a pollen allergy, such as in Central Europe. Previous studies tried to classify
the pollen by using carefully prepared samples that contained purified pollen in very
high concentrations. That approach aimed to be realistic and deployed a data-driven
approach to identify the pollen species from natural samples. A CNN learned to classify
the NMR spectra of three species of pollen, and it achieved an accuracy between 86% and
93% depending on plant type. The MS spectra of tumors were used for a six-class cancer
type prediction in [104]. A number of spectra were taken for each tumor, with the range of
ion m/z scanning and the number of peaks varying in each spectrum. In order to make the
spectra uniform, the researchers performed binning on the m/z range, and they summed
up the peaks that fell within each bin. A DNN was trained with the resulting vectors,
thus yielding significant performance gains over the traditional ML models. In that study,
the batches of spectra were integrated manually into a single spectrum; however, in [105]
the integration was achieved through the use of DL. The labels were hand-crafted spectra
which were made by human experts from batches of spectra of the same peptide, where the
peaks in the different spectra rarely coincided in the same regions on the x-axis. A BiLSTM
took the spectra and learned to perform peak integration. The quality of the model’s output,
after adequately training it, was slightly lower than that of the human annotators.

DL has been also deployed for metabolomics data annotation to automatically detect
the peaks from spectra and chromatograms. In [106], the peak detection in LC–MS (liquid
chromatography—mass spectrometry) data was learned from three-class labels, where each
position on the input vectors was labeled as peak, no-peak/noise, or uncertain. The peaks
were scaled to a maximum value of one to limit the selection bias towards more abundant
peaks, and a custom, simplified U-net was trained to segment the LC–MS images according
to the three classes. The model achieved an intersection-over-union (IoU) of 0.88 for the
separation regions and 0.85 for the peak regions. A U-net was also employed in [107] for
chromatogram peak detection. The researchers devised a method to generate synthetic
chromatograms and annotations to train the U-net model, which identifies the peaks with
a higher accuracy than the human experts did.

Raw spectra and chromatograms may also be turned into metabolic profiles, as shown
in Table 5, representing the chemical composition of each sample. The columns represent
various compounds, the rows represent the samples, and the values quantify the relative
abundance or concentration levels of each compound in each sample.

Table 5. Example metabolic profile table.

Samples Compound 1 Compound 2 Compound 3 . . . Class

Sample 1 0.871 0.330 0.100 . . . o
Sample 2 0.000 0.000 0.306 . . . x
Sample 3 0.000 0.453 0.185 . . . x

. . . . . . . . . . . . . . . . . .
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Date et al. [13] used the metabolic profiles of yellowfin goby fish that were collected
from rivers across Japan. As it was more of a proof-of-concept study, the researchers
simplified the task by keeping it as a binary classification problem, and they trained a
DNN to detect whether the fish originated from Kanto or not. The model reached a
97.8% accuracy, performing slightly better than RF and SVM did. Hypothesizing that the
organisms of the same species feeding in different locations would vary in their metabolic
profiles accordingly, the researchers explored the possibility of inferring the habitat location
via the DL-based metabolomics. In a similar Japanese study [108], the researchers used
metabolic profiles to infer the physiology of the subjects. They also applied the study to
fish of multiple species throughout Japan after noticing that fish size was highly correlated
with metabolite composition. Using fish size as the dependent variable, they trained an
ensemble of DNNs to perform regression. Each DNN was trained on bootstrapped data
(samples randomly picked with replacement), and additionally, each DNN was trained
on a random subset of the features/variables. The best models were combined for the
final prediction, and the final result was always better than that which the regular DNNs
could produce, and depending on fish species, it was comparable with the RF and SVM
ones. Guo et al. [109] used the metabolic profiles of chronic kidney disease (CKD) patients
and healthy control patients to identify the biomarkers for CKD, and this made it possible
to predict CKD in its early stages. The labels consisted of five CKD stages plus one class
for healthy individuals. After applying the feature selection with a Lasso regression [110]
on the dataset, a DNN and a CNN were trained. The DL models ended up performing
worse than the RF did, which was attributed to the extensive feature selection; the models
were trained on only five out of tens of thousands of features. A comparable performance
was achieved by using ML and DL when dealing with low-dimensional datasets and a
reasonable (not too high) number of samples.

In [111], a platform combining metabolomics and DL was applied for pathogen and
spoilage microorganisms identification. A CNN model of three potential biomarkers for
Listeria Monocytogenes was developed, reaching predictions of up to 82.2%. Moreover,
29 metabolites were identified, and six common Listeria species were distinguished in hier-
archical cluster analysis. Finally, the binary and multiple CNN classifiers identified Listeria
Monocytogenes and other pathogens, with an accuracy of 96.7% and 96.3%, respectively.
In [112], the metabolic profiles of breast cancer tissue samples were used to classify the
estrogen receptors as positive (ER+) or negative (ER-). After the quantile normalization,
the log transform, and mean centering procedures, an AE was pretrained to reconstruct the
data, which was then converted into a DNN and trained for the binary classification. The
method reached an AUC of 0.93, and it surpassed the traditional ML models. The end goal
of the study was not the binary classification itself, but the elucidation of the biological
functions and metabolic pathways that lead to different types of cancer. Starting from
the binary classification, the researchers ranked the features in terms of how much they
contributed to the outputs, thus identifying the important metabolites. With the database
searches, they mapped these metabolites to the chemical pathways and enzymes. They also
used gene expression data, thereby locating the genes that were expressed differentially in
the two cancer types, and they analyzed these data to infer the gene metabolite networks.
Thus, DL was used as a steppingstone, a component of a wider research methodology, to
provide deeper biological insights.

3.5. Epigenomics

Epigenomic modifications and properties such as histone modification, DNA methyla-
tion, and chromatin accessibility can be seen as an additional level of information on top of
the genomic level, thus adding to and modulating the information that is contained in a ge-
nomic sequence. A blood cell, neuron, or sperm cell of an organism all carry the same DNA
sequence in their nucleus. It is the physical 3D structure and epigenetic modifications that
define whether the DNA strand will result in a blood cell, neuron, or sperm cell. Predictive
modeling, depending on the task that is performed, may require information that is not
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present in the DNA sequence, but this could be extracted from a higher level of biological
organization, whether this is transcriptomic, proteomic, metabolomic, or epigenomic. From
a computational point of view, the epigenomic data are comprised of time-series signals,
with the x-axis spanning the length of an assorted DNA sequence, thus revealing which
parts of the sequence have received a certain modification and bear a certain property.
These signals are represented as vectors, which are either real-valued or binary. Figure 8
illustrated the high-level view of DL with epigenomics.
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In [113], a differential gene expression was inferred from the histone modification
profiles of a gene in two cell types. The same gene was expressed differently in the different
cells; that differential expression was not represented in the DNA strings, but it could be
extracted from the epigenomic data, which is the additional layer of information that is
about which modifications were applied to the DNA sequence. Each sample in the dataset
consisted of two vectors, representing the histone modification profiles of a gene in two
cell types. Each vector showed the amount of histone modification taking place in the gene
throughout its sequence length. A multi-head LSTM with an attention layer was trained
for the gene expression levels regression, whereas a separate LSTM was trained for each
input vector. An attention layer step followed this process, then an embedding layer step
followed this. The embeddings were concatenated and fed into an LSTM and an attention
layer before the final prediction was made. The model significantly outperformed the RF
regression and the SVM regression, and it slightly outperformed the previous DL-based
state-of-the-art methods. Similarly, histone modification profiles were used in [114] to
detect the genomic sequences that were enhancers (DNA sequences that stimulate gene
expression) or those that contained them. The dataset contained vectors that spanned
the length of a DNA string with values signifying how much that a histone modification
was applied at each point in the sequence. Each sample had a number of such vectors,
which were stacked one over another, and each vector documented a specific histone
modification. A hybrid CNN–LSTM was trained on a variety of datasets, and this reached
an accuracy ranging from 84.8% to 98.0%, which was comparable to, and mostly surpassing,
the previously applied DL models. In [14], the genetic predisposition for type-2 diabetes
was detected with the help of a U-net. Part of a larger project, which was aimed at exploring
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the mechanisms and genetic pathways contributing to type-2 diabetes, DL was deployed to
infer, with a signal from a few samples, what the signal from many samples would look like.
The epigenetic information came in the form of ATAC-Seq signals, which were time-series
vectors that were taken from type2 diabetic cells. The ATAC-Seq data were normally taken
from multiple cells, the peaks were then integrated, and the signals were aggregated into
one. The latter part was highly problematic when they were dealing with rare cells. The
researchers trained a U-net to take the aggregate the ATAC-Seq signal of 28 cells, upscale
it, and predict the aggregate signal of 600 cells. The result was subsequently used in the
following stages of the research project.

ln [115], the genomic and epigenomic information was combined to predict whether
two DNA sequences interacted with each other. The genomic information came in the form
of the DNA sequence pairs that were one-hot encoded. One string always belongs to a
promoter, and the other belongs to an enhancer, and a binary label signifies whether the
promoter and the enhancer interact with each other. Regarding the epigenomic information,
each genomic sequence is associated with a stack of vectors, representing the epigenomic
features (e.g., CpG methylation, histone modification, etc.). The vector length represents the
length of the DNA sequences that are divided in bins, and the values represent the degree
to which an epigenomic property applies to each part of a sequence. Three models were
deployed in [115]: a CNN, a CNN with an attention layer, and ResNet. All of the models
followed a general architecture of starting as two separate models, with one taking the
DNA sequences and the other one taking the epigenetic information, and later, the outputs
of the two models were concatenated and fed into further dense layers to produce the final
predictions. The experimental tests showed that integrating sequences with the epigenomic
data yielded better results than using just using one input, and the epigenomic features
were generally more informative than the DNA sequences were. The train–test split of the
data was performed not randomly, but by chromosome; one chromosome provided the data
for the training, and another provided the data for the testing. When dealing with enhancer–
promoter interactions (EPI), random train-test splits may lead to one overestimating the
model’s accuracy as there is great redundancy of the enhancer and promoter sequences
and they may be present in both the training and the test sets. In [116], an attention-based
DL model was developed, namely eDICE, to impute the epigenomics tracks. The model
reported a state-of-the-art overall performance, and it was able to correctly predict the
individual and cell-type specific epigenetic patterns.

We have examined the tasks, such as predicting differential gene expression and
enhancer–promoter interactions (EPI), whereby more useful and discriminative information
is found in the epigenomic than that which is found at the genomic level. However, the
epigenetic data are generally hard to acquire, and the capability to predict the sites with
epigenetic activity from the DNA sequences is being pursued [117]. Such predictions
give direction to experimental research or, ideally, they can even be a substitute for the
experimentally produced epigenetic data. In [15], a CNN takes the DNA sequences from
different cell types and detects the histone modifications in an effort to identify the genes
and pathways that correlate with aging. The volume of the DL-based epigenomic studies is
still relatively low, but as the experimental techniques become cheaper and more mature,
the production and availability of the epigenomic data increases, as shown in Figure 1. With
mentions of a late “epigenomics data deluge” [118], the research in this area is expected to
take off.

3.6. Multi-Omics

Any two or more of the five different types of omics data that have been previously
examined, e.g., genomics, transcriptomics, proteomics, metabolomics, and epigenomics,
can be combined for predictive modeling tasks, thus taking advantage of the unique
information and patterns that are encoded in the different levels of biological organization.
By learning from the multi-omics data, DL extracts the informative patterns from one
biological level that are absent from another, thus exploiting the multifaceted information



Int. J. Mol. Sci. 2022, 23, 12272 22 of 40

in a synergistic, holistic manner. The basic multi-omics data integration architectures that
are used for DL model training are the following three:

• Different data modalities are preprocessed into a uniform type, then they are concate-
nated and fed into a model (Figure 9a).

• A separate model is trained for each data modality, their predictions are aggregated,
and this process is followed by majority voting (Figure 9b).

• A multi-view model is used, starting as a separate model for each data modality, and
then the outputs of these models are concatenated and fed into further dense layers,
thus leading to the final prediction (Figure 9c).
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Due to their capacity to learn the representations at different levels of abstraction
through their hidden layers, DL models are particularly useful for modeling complex multi-
omics data [119]. They are employed in multi-omics tasks, even as a small part of a pipeline
that uses a plethora of computational tools. For example, in [120], DL was used only for
feature extraction and a multi-omics integration stage of a research project aiming to achieve
the unsupervised identification of cancer subtypes and the classification of new patients
into these subtypes with the end goal of providing better patient care. The data came
from hepatocellular carcinoma (HCC) patients, and this included genomic, transcriptomic,
epigenomic, and clinical data. K-means clustering assigned labels to the data, and an AE
extracted the features. The feature selection took place via the Cox PH (Cox proportional
hazards) [121], and the ML models learned to classify the new samples according to the
k-means-identified classes. In [122], a similar pipeline used RNA expression, miRNA
expression, DNA methylation, and clinical data from cancer patients who were labeled
by k-means clustering. The features were extracted through the AEs and selected through
the Cox PH. Then, the ML models classified the new samples, and the statistical analysis
was utilized for a biological insight, thus elucidating a differential gene expression in the
cancer patients.

In [123], a wider variety of data was involved: mRNA expression, miRNA expression,
protein expression, DNA methylation, somatic mutations, Copy Number Variations (CNVs),
and clinical data. The DNA methylation data come in tabular form (Table 6), with rows
being the samples, and columns being the sites in the genome of the organism that the
samples were taken from, while the values show the amount of methylation that was
applied to the genome on these sites. The somatic mutation data (Table 7) consists of the
binary vectors that are of length equal to the number of the genes that are being evaluated,
whereby the authors applied a value of 1 when the gene was mutated, and 0 otherwise.
The CNV data come in the form of a table of shape [number of patients] × [number of
genes], with the data taking one of three possible values (−1, 0, 1), showing whether for
each gene the patient has no gene alteration, or whether they have some additional DNA
regions that were copied, or whether they have regions that were deleted (Table 8). The
same architecture as that which was used for the AE, the Cox PH, the k-means, and the
ML-based classifications was implemented, with the researchers demonstrating that the
multi-omics data yielded better results than single omics data did.

In [124], the same process was applied for ovarian cancer using a denoising AE instead
of a regular or a stacked AE for the feature extraction procedure, which was followed by a
feature selection procedure through logistic regression. In [125], the feature selection was
implemented with a traditional statistical analysis, a regular AE that extracted the features,
and an RF that classified new samples after it was trained on the labels assigned in an
unsupervised manner. In [126], the feature extraction phase was implemented with two
AE-based strategies using mRNA expression and DNA methylation data from Esophageal
Squamous Cell Carcinoma (ESCC) patients. The first one was an early-fusion strategy,
where the two omics datasets were concatenated and fed into a regular AE. The second one
was a joint multi-modal strategy, where a distinct layer took each dataset, and their outputs
were concatenated and fed into a common encoder layer. The outputs of the encoder layer
are forked out into two distinct layers. The two distinct output layers learned to reconstruct
the two datasets. The k-means clustering, which was based on the surviving rates, yielded
two classes of high and low survival probability, the analysis of variance (ANOVA) selected
the most important features, and an SVM learned to classify the data, thus showing that
the joint multi-modal strategy led to better performance than early-fusion one did.

DL may also play a more central role in the multi-omics modeling tasks, as well as
in cancer research. In [127], the classification of breast cancer subtypes was conducted
using a CNN that took gene expression data and another CNN that took CNV data, and
their outputs were then concatenated into additional dense layers that generated the final
prediction. The model yielded a 79.2% accuracy, thereby surpassing the shallow ML models,
and the combination of two omics data produced better results when they were compared
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to those of the individual omics. In [128], four types of omics data were treated with two
AE architectures. The data, which came from breast cancer samples, consisted of gene
expression, DNA methylation, miRNA expression, and copy number variations (CNVs).
The AE implementations were applied with all of the possible pairs of the four omics data,
i.e., the datasets were not combined, but different pairs were tested to find the best pairing.
The first AE architecture, which is called the ConcatAE, consisted of a separate AE for each
omics type. The extracted features were concatenated and fed into a dense layer for the
classification to be performed. The latter was performed for all of the possible pairs of the
four datasets. The second architecture, which is called the CrossAE, took a single omics
dataset as the input, but it took two datasets as the output, thereby, it tried to reconstruct
both datasets from one. The extracted features were averaged element-wise, and they were
fed into dense layers for the classification to be performed. The classifications were both
binary-class and multi-class, and these were used to identify the breast cancer subtypes.
The best arrangement was proven to be ConcatAE with DNA methylation and miRNA
expression data.

Table 6. Example of DNA methylation data.

Samples Site 1 Site 2 Site 3 . . . Class

Patient 1 0.847533 0.110056 0.837559 . . . o
Patient 2 0.742208 0.600523 0.953700 . . . o
Patient 3 0.064494 0.914458 0.825000 . . . x

. . . . . . . . . . . . . . . . . .

Table 7. Example of somatic mutations data.

Samples Gene 1 Gene 2 Gene 3 . . . Class

Patient 1 0 1 0 . . . o
Patient 2 0 0 0 . . . o
Patient 3 0 1 1 . . . x

. . . . . . . . . . . . . . . . . .

Table 8. Example of Copy Number Variants (CNV) data.

Samples Gene 1 Gene 2 Gene 3 . . . Class

Patient 1 −1 1 −1 . . . o
Patient 2 0 0 0 . . . o
Patient 3 0 −1 −1 . . . x

. . . . . . . . . . . . . . . . . .

In [129], cancer classification was tackled with a GCN by integrating the multi-omics
data along with the PPI networks, and this surpassed the other baseline methods to which
it was compared. In [130], the researchers used the multi-omics data of cancer patients
to generate, via a Similarity Network Fusion (SNF) method [131], a graph of the patient
similarities. Then, by using that graph and AE-extracted features of the original multi-
omics data, they trained a GCN to classify the types of cancer. Thus, the model could
identify the cancer not only by the multi-omics data of a patient, but also by taking into
account the diagnosis of similar patients. Similarly, in [132], the researchers did not want to
rely exclusively on the multi-omics data for the classification of the cancer, thus, by using
Pearson correlation, they constructed a similarity graph between the samples, and by using
that combined data, they trained a GCN-based system to differentiate among three cancer
subtypes, taking into account the known classifications of the cells that are similar to those
of the inputs.

In [133], two types of sequential data were combined: one-hot encoded DNA sequences
and DNase-Seq signals. The latter one was a real-valued vector that was of length equal
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to the DNA sequence, showing which regions of the DNA sequence and to what degree
that they displayed chromatin accessibility, an epigenomic property implying that these
regions played functional and important roles in the specific cell the sample from which
it was procured. The task was binary multi-output, with each output representing an
epigenetic marker, that took a binary value depending on whether the sample acquired
that property. One CNN took the one-hot encoded sequences, while another CNN took
the peak signal, and their outputs concatenated and led to dense layers that produced the
multi-output classifications. The proposed architecture surpassed the previous state-of-
the-art DL models, and the coupling of the genomic sequence with the epigenomic signal
resulted in a higher performance than any of the single omics techniques did alone.

In [134], knowledge discovery in cardiovascular disease data was pursued by the
unsupervised modeling of multi-omics data. Mice received induced cardiac hypertrophy,
while their protein and metabolite levels were monitored over time and recorded to form a
dataset. The data of the healthy control subjects were also collected. The goal of the project
was to identify the differences between the healthy and cardiac hypertrophy subjects, and to
elucidate the pathways and interaction networks of the proteins and metabolites that play
a role in cardiovascular disease. Two unsupervised approaches were utilized to extract the
patterns out of the data. First, an LSTM-based variational AE extracted the low-dimensional
embeddings of the sequential data, and this was followed by k-means clustering. Second,
a DL-based clustering model, Deep Convolutional Embedded Clustering (DCEC) [135],
took the time-series vectors that were represented in the form of line-plot graphs, wherein
a variety of line widths and image sizes were tested, and then, the authors performed
clustering. Additionally, conventional clustering algorithms were applied to the original
data for a comparison to be made. The results were validated through the Reactome
knowledgebase [136], which was used to compare the proteins and metabolites that were
clustered together with the known pathways and hierarchical relationships contributing
to cardiac disease. The research revealed that DL-based clustering yielded biologically
meaningful results, and it surpassed all of the other approaches.

Another domain in the computational life sciences that exploits the use of deep neural
networks and multi-omics data is drug development. In [137], the cells were treated
with various chemical compounds. Gene expression data were taken from the cells, and
they were concatenated with one-hot encoded gene ontology annotations and categorical
information that was based on the attributes of the genes. A DNN was trained to predict
whether a chemical compound affected a gene to a statistically significant level or not,
reaching an AUC of up to 0.84. In [138], a model was designed that took omics data from
a biological sample plus information on two drugs and predicted whether the two drugs
would have a synergistic effect of treating the cancer type that was expressed in the omics
data. The gene expressions, the CNVs, and the somatic mutations of various cancer cell
lines were coupled with the data on the physicochemical properties of drugs that are
known to target the corresponding cancer cell lines. The drug profiles contained both the
real-valued and categorical data, and the labels consisted of synergy scores for the pairs of
drugs of the corresponding cell lines. Each of the three types of omics data were fed into
a separate AE for their feature extraction. The extracted features were concatenated with
the features of any two drugs into a DNN that varied depending on the cancer type, and it
always better than the previous state-of-the-art methods did.

In [139], the researchers concatenated four types of data, and they trained a DNN to
predict the drug–target interactions (DTI), i.e., whether a drug interacted with the target or
not. The four used data types were: (1) the Drug-perturbed gene Expression Profiles (DEPs),
where the gene expression was measured for the samples that received chemical treatments,
as well as for the control, untreated samples, (2) the Gene-knockdown Expression Profiles
(GEPs), where the samples had their genes removed, which represent the gene expression
profiles that show how the elimination affected the other genes, and the profiles of the
control samples were also taken for comparison, (3) the Protein–Protein-Interaction (PPI)
networks, which were graph data that were embedded into vectors via Node2Vec [140],
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and (4) the pathway membership data, which were embedded through GloVe into vectors
that associated together the genes that were functionally related, thereby grouping them
into biologically relevant clusters. The first type of data referred to the drugs, while the
other three to biological systems and the concatenation of these were used by a DNN to
model the drug–target interactions.

In [141], a DNN, along with the conventional ML models, utilized multi-omics data to
predict the novel targets for a therapeutic treatment in the field of oncology. Starting from
the lists of the genes that were either targeted by the FDA-approved drugs or those which,
when they are mutated, may cause cancer, the researchers collected the data for the gene
expression, the gene mutations (averaged over numerous patient samples for each cancer
type), the gene essentiality (real-valued, mean sensitivity from knock-out experiments), and
the gene interaction networks that were embedded via AE-based diffusion graphs [142].
The same data were also collected for the genes that were not present in the therapeutic
target or suspicious genes list, thus they made up the negative samples of the dataset.
The random forest feature selection reduced the dimensionality of the dataset, and the
predictive models were trained, which included a neural network with an output neuron
that was activated by a softmax activation function. After learning the positive and negative
gene distributions and the interaction networks of the associated genes, the model was
given data for any gene and, with it having an AUC of 0.88, it revealed the probability
of the gene as a potential target for anticancer drugs. In [143], a method was developed
for the early prediction of COVID-19 patient survival by combining plasma multi-omics
and DL. The precise concentration of 100 proteins and metabolites in the plasma from
hospitalized patients was determined, and it appeared distinctively different from that of
the control, healthy patients, thus, indicating the difference between the non-surviving
patients and the surviving patients. A DL model was developed, which was able to learn
from multi-omics regarding the concentration of ten proteins and five metabolites, so as
to predict the early survival of COVID-19 patients, thus reporting a 92% accuracy and
0.97 AUC on the hospitalization day.

In [144], the researchers drew on a wide variety of omics data from cancer cell lines and
drug data such as proton pump inhibitors (PPIs), differential gene expression, disease-gene
association scores, kinase inhibitor profiling, and growth rate inhibition (GR) to construct a
graph. They then applied biological knowledge to simplify the graph, i.e., to remove the
edges and nodes with an insignificant influence. A GCN took the drug data and predicted
the response across a variety of tumors. In [145], a GCN learned a graph of genes that were
related to cancer and PPIs, and it was trained with drug chemical structures and multi-
omics data of cancer cells, and it learned to predict the drug response, thus it surpassed
most of the existing methods.

The authors in [146] used Generative Adversarial Networks (GANs) and Functional
Interaction (FI) networks [147] for the purpose of biologically informed feature extraction.
The datasets were comprised of genomics, transcriptomics, and epigenomics data of seven
cancer types. Instead of using a regular, fully connected neural network as the generator,
the GAN learned a sparser, biologically inspired network that represented the interactions
among the features. The latter scheme was shown to obtain more accurate predictions than
the existing methods could.

4. Challenges

In this section, the biggest challenges in the field are discussed, including the following
aspects: the high dimensionality of the data, imbalanced data, the explainability of the
models, data shortage and transfer learning, the need for imputation, suboptimal organiza-
tion and the standardization of the data in the public databases, and the misclassification
of it due to mislabeling. The conclusions are also included in the section.
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4.1. High Dimensionality of Data

A dataset is considered to be high-dimensional when the number of features in it
vastly exceeds the number of samples in it. Biological datasets are infamous for their high
dimensionality and for being the “small n—large p” type [148]. Gene expression data may
have tens of thousands of features, and DNA methylation data may have hundreds of
thousands of them. As though individual omics datasets were not highly dimensional
enough, multi-omics integration brings an explosive rise in the data complexity. One of the
most highly praised advantages of DL, which has contributed to its widespread adoption,
is that it does not need feature engineering. Before DL, image classification required hand-
crafted features, and tabular data were often simplified via statistical tests and traditional
ML techniques before they were applied in predictive modeling. Due to its capacity to
extract patterns at various levels of abstraction, DL does not need handcrafted features
and, in fact, it has often performed better without them, as the complex, non-linear interac-
tions among the features were often filtered out by the previously used techniques. With
high-dimensional data, DL loses this advantage. Its high sensitivity to identifying complex
patterns, which normally gives DL its edge, leads to overfitting. Hence, feature engineering
is back on the table.

Selecting the most significant features is the traditional route, and standard feature
selection algorithms have been widely applied to the biological data [149–151], as well
as domain-specific techniques for transcriptomics [48–50,58]. In terms of the statistical
tests, the Wilcoxon rank-sum test was preferred over the t-test for its robustness to the
outliers [55]. In [56], the median value of each feature for the in-class samples was compared
with that of the out-of-class samples, and again, the median was less sensitive to the outliers
than the mean was. A Pearson correlation coefficient was used for a regression task by
selecting features with the highest correlation with the output variables [152].

Feature extraction with AEs is widespread in predictive modeling in the life sciences,
and with multi-omics data, it is almost a standard procedure. In [51], the AEs were
compared with other feature extraction and dimensionality reduction methods on biological
datasets, and they were shown to perform the best, whereas the other methods lead to
information loss. A broad range of AEs have been used in the field: regular AEs [53,125],
stacked AEs [152], denoising [124] and stacked denoising AEs [76], factorization AEs [93],
and even self-organizing AEs that determine their own structure according to the input
data [153]. Sometimes the AE-extracted features serve as training data for another model,
and other times the AE itself, after being pretrained to reconstruct the data, has its encoder
module converted into a DNN and trained over for the predictive task [112]. The AE-
extracted features may also be selected through statistical techniques, such as ANOVA [126]
or Cox PH [120,122,123].

Variational Autoencoders (VAE) have been widely applied for omics dimensionality
reduction, such as in [154], where the VAE were used to integrate the genomics, transcrip-
tomics, and epigenomics data for the ovarian cancer subtype identification. The VAE was
used to extract the features from the combined mulit-omics datasets, and the extracted
features, when they were used for the classification, achieved better results than the other
dimensionality reduction techniques did. In [155], our different AEs that were used to
extract the features from multi-omics data for cancer classification were compared. Among
a conventional AE, there was a sparse AE, a denoising AE, and a VAE; the VAE generally
performed better than the other AEs did, and it also surpassed the traditional dimen-
sionality reduction techniques such as a PCA and a kernel PCA. In [156], the researchers
experimented with different VAE architectures to integrate the gene expression and clinical
data for cancer classification. The best results were produced by a hierarchical architecture
that combined both of the individual and shared processing of the datasets as they passed
through the layers of the VAE. In [134], an LSTM-based VAE extracted the features from
time-series data. The researchers wanted to identify, through unsupervised clustering, the
proteins and metabolites that are correlated with each other in cardiovascular diseases.
Using the data that tracked the protein and metabolite levels over time, which were taken
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from mice during cardiac remodeling, they found that reducing dimensionality via an
LSTM-based VAE helped the k-means clustering method to achieve better results. In [157],
the task was to identify the cancer subtypes by the k-means clustering of the gene ex-
pression and miRNA expression data. The authors used a Vector Quantized Variational
AutoEncoder (VQ-VAE), which quantized the latent space, thus transforming the real-
valued input into categorical values. In that way, the non-linear information was captured.
As expected, the latter procedure produced data that were more easily distinguishable by
the k-means algorithm which identified the cancer subtypes. VAE-based feature extraction
has also been used as a noise reduction strategy in the effort to predict the drug response of
cancer patients [158]. The responses to the treatment may vary greatly due to the tumor
heterogeneity and microenvironment, thus making drug response data extremely noisy.
The researchers in [158] found that extracting the features from the gene expression profiles
with VAEs resulted in a better generalization of the drug response and a higher performance
in predicting the drug response.

At the high level, feature selection and feature extraction are the two methods that are
used for omics fingerprinting, i.e., making the data representations be compressed enough
to be computationally viable, but also rich and complex enough for each sample to be
distinguishable from the others like a fingerprint. Feature selection may reduce the noise
in the data and promote its explainability, but it could miss features whose contribution
and significance come in non-linear and indirect ways. Feature extraction, on the other
hand, may capture all of the complex, non-linear relations in the data, but it may encode
some of the noise as well, and any potential for explainability is largely sacrificed as the
extracted features are not understandable by humans. Thus, both of these methods have
their pros and cons, and scientists should decide based on their particular research project
by experimenting with both of the approaches.

When high dimensionality is accompanied by a high volume of data, the computa-
tional cost rises substantially. High-performance computing environments are used in both
the industry and academia, and Graphical Processing Units (GPUs) are essential in the field
of computational life sciences for computer vision. Another option is to use cloud services,
especially if the need for heavy-duty resources arises only on occasion. The dimensionality
reduction techniques that are discussed above can simplify the data to a nontrivial extent,
and render the task more tractable, although the AE-based feature extraction often comes
at the price of a reduced level of explainability.

4.2. Data Imbalance

A considerable amount of the public data in the biomedical field is inherently im-
balanced. Sometimes this may be associated with biology, e.g., a genomic dataset for an
enhancer prediction will have an overwhelmingly over-represented negative class as only a
few parts of a DNA sequence constitute enhancers [159]. At other times, the class imbalance
stems from the data storing process: a cancer database does not contain many non-cancer
data, and a drug research database does not have entries for chemical agents that fail to
induce a specific effect. Excluding “uninteresting” data from the databases results in a
type of publication bias that made a lot of sense before the advent of predictive modeling.
Unfortunately, the ML and DL models must now deal with severe class imbalances.

Computational life science researchers have evaluated a number of responses to this
challenge, such as using SMOTE [160] to oversample the minority classes [89,161], or
training a separate model for each class at the expense of time efficiency [34]. The data
augmentation can help in both the small and the imbalanced datasets [162]. Metrics and
loss functions for the imbalanced data, in the context of computational biology, have been
discussed in [163]. Instead of relying on accuracy as a metric, the area under the precision-
recall curve (AUPRC), the Matthews correlation coefficient (MCC), and the F1-score can be
used. A weighted, instead of a regular, cross-entropy loss function can be more useful as it
penalizes the errors in the minority class.
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Researchers have also sought to enrich the minority classes through intuitive methods
and “common sense”. In building a model to identify the venomous proteins from amino
acid sequences [77], the researchers collected non-venomous samples by querying for the
proteins that did not have the word “venom” on their metadata descriptions. In [141], the
positive samples were data of genes that were targeted by drugs. For the negative samples,
the researchers used a random subset, of the same size as the positive subset, of genes
that were not listed as known therapeutic targets for FDA-approved drugs. The resulting
dataset almost certainly contained false negatives, but the researchers assumed that the
ratio of false negatives-to-true negatives was minuscule.

For certain domains, such as drug-target interaction databases, removing the publica-
tion bias could be worth considering. We might start including all of the “boring” data that
were previously left out, although this would inflate the storage space requirements and
the time complexity of performing a search in the databases. Perhaps separate reposito-
ries for the negative samples could bring the best of both worlds by keeping the regular
databases manageable, while also supplying the predictive models with the indispensable
negative samples.

4.3. Explainability

Deep neural networks are known as black boxes. One cannot know how a neural
network reaches its decisions; the parameters of its hidden layers are meaningless to the
user. In high-stake biomedical decisions, such as a cancer diagnosis, explainability is of
utmost importance. A human medical expert can explain their rationale for making a cer-
tain diagnosis, but a neural network cannot be probed to reveal its inner workings. It will
generate the predictions, but it will provide no basis for them. While explainability is im-
portant in biomedical decision-making, in knowledge discovery it is essential. The generic
classification and outcome prediction is one task, while the elucidation of the patterns
and relationships among the variables that lead to the classification or outcome is another.
Knowledge discovery, when it is pursued through DL, becomes almost synonymous with
model explainability.

With the biological sequence data, such as DNA and protein strings, visualizing the
activations of the first convolutional layer of a CNN [28] or interrogating the attention layer
of an RNN [38,96,113] reveals the subsequences that the model uses to differentiate among
the classes. The degree to which the attention mechanisms provide real explainability
is contested [164], but in any case, identifying the regions of a sequence to which the
model assigned the greatest amount of importance, can be helpful, perhaps with an expert
evaluating the findings, or with a literature search validating them.

In [12], semi-restricted bimodal DBNs were trained with proteomics data, with bi-
nary values signifying whether a protein was phosphorylated under different stimuli.
The interactions among the proteins were inferred by the strength of the DBN’s edges.
For each protein, the three strongest edges were picked, thus leading to an inferred protein
interaction network which, after a literature review, was proved to be accurate.

In [13], the metabolic profiles were classified with a DNN. The primary purpose was to
identify the biomarkers. The researchers identified the important variables by running the
DNN multiple times, and each time, they chose one variable and permuted the values, thus
each sample assumed the value of another sample on that one column. They calculated the
loss of accuracy for each variable and identified the variables whose disordering degraded
the performance the most.

In [165], a VAE for classifying cancer from the gene expression profiles was modified
to identify which genes contributed to the classification. As the VAE learned to recon-
struct the data, a classifying neural network that was connected to the bottleneck layer
learned the mapping between the input data and the labels. Then, by using the Deep
SHAP methodology [166], they determined the contribution of each input feature to the
classification, thus, they identified the most important genes for DL-based cancer detection.
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4.4. Data Shortage and Transfer Learning

Although the scientific community has generated and curated enormous amounts
of biological data over the past decade, given the immense complexity and variety of
the biological systems and the numerous subfields and tasks in the field of life science,
there will be applications for which there are not enough data. Certain data-capturing
technologies may be too expensive to produce the number of samples that a DL model
requires, and rare cells or tissues may be hard to collect in adequate amounts for them
to be analyzed. Bootstrapping, the traditional statistical solution to a data shortage, was
used in [108] to train an ensemble DNN with metabolic profiles, with each DNN having
taken different sets of the input data, and the predictions were combined for a regression
task. In [14], a U-net took the aggregate ATAC-Seq epigenomic signal of 28 rare cells and
predicted what the aggregate signal of 600 cells would look like. In [112], an AE learned to
reconstruct metabolic profiles, and then the decoder module was substituted with a dense
layer, thus, the AE was converted into a DNN and it was trained for classification. The
encoder module had already the data distributions encoded into its synaptic weights, and
during the DNN training, the researchers only needed to fine-tune these weights, thus
enabling it to learn more efficiently.

In [167], the data shortage problem was addressed with GANs. The researchers
wanted to apply DL to detect a brain-related disease using the gene expression data, but the
number of training instances was too small for adequate training to occur. Their proposed
solution was to first train two GANs to learn the distributions of the input data; one GAN
was used for the disease data, while the other one was used for the non-disease data. After
the GANs had been trained, the proposed application focused to receive a gene expression
profile and to output a prediction score, thus representing the similarity between the input
vector and the distributions that were learned by the two GANs. The class, whether it was
the disease type or the non-disease type, of the GAN with the highest score, was assigned
to the input vector.

A common DL-specific approach in dealing with a data shortage is transfer learning.
By iteratively modifying their parameters to fit the data, the neural networks capture the in-
formation about the input distributions. Then, given that they have similar data and labels,
they do not start from scratch, but rather, the fine-tuned parameters are already calibrated
to the model patterns with similar distributions and interactions among the variables, thus
they learn the new patterns quickly and without requiring as many samples. As it is a
promising and highly practical technology, transfer learning is being vigorously researched
in the DL community [168,169]. Computational biology and pharmacology seem to be
catching on, with researchers exploiting the technique whenever it is applicable [170–172].
In [162], the researchers wanted to map the relationship between the drug chemical struc-
ture and the drug activity. Although, quantitative structure property/activity relationship
(QSPR/QSAR) tasks suffer from a data shortage, and the neural networks do not get the
chance to learn good representations. Therefore, the researchers [84] trained an LSTM with
one million unlabeled molecules to learn the representations, and then, they retrained it in
a supervised manner with the data for the specific QSPR/QSAR task of interest.

Although transfer learning has not yet been widely applied in DL-based biology, it
would be viable and useful for the same reasons that drugs may be repurposed, and the
experimentation of them on model organisms yields insights that are applicable to humans.
Life has a lower degree of variance than it has been commonly acknowledged to have.
Despite its vastness, the fitness landscape of the biological systems is tightly constrained,
and it is a search space that is characterized by local optima and dead ends [173–176].
There are many configurations that matter can take to produce sustainable life. For all of
their diversity, organisms develop under tight parameters, common denominators, and the
data that are captured from different biological systems will often exhibit similar patterns.
Transfer learning can exploit that, and its adoption in the field of life sciences bears the
promise of overcoming the challenges of there being a data shortage.
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4.5. The Need for Imputation

The need for imputation may arise when one is integrating data from different
databases with missing values of different entries on the combined dataset. For such
a case, a team of researchers in [177] imputed the missing data with Shape Boltzmann
machines, which learned the overall distributions, then regenerating the data with the
blanks having been filled in. In [178], the authors used GANs to impute the missing values
from faulty gene expression data. Imputation is also called for when the data of interest
are expensive or technically difficult to gather, but it can be inferred from other data that
are cheaper or easier to obtain. The data of interest can be seen as missing values and
imputing them through the available data is defined as a multi-variate regression problem.
In [179], the epigenomics and genomics data, namely DNA methylation and copy number
variants, were transformed into latent-space representations via a denoising AE, and then
a DNN generated the gene expression profiles. The measurement of protein abundances
is an expensive, relatively novel, and immature process, with only a few proteins being
measured at a time, which has a high-costs. On the other hand, the proteins serve as
therapeutic targets for drugs and they often constitute the data of interest, and the gene
expression data are used to predict the protein expression levels [152,180].

4.6. Suboptimal Organization and Standardization of Data in the Public Databases

Training a DL model either for a multi-omics classification or for converting one omics
type into another will often require the researchers to combine the data from different
repositories. These data may come in different formats, contain duplicate entries and
missing values, and adhere to non-uniform metadata annotation schemes. They are hard
to curate since the volume of the data is immense and new data come in faster than the
curators can handle it. This becomes especially problematic with multi-omics integration.
Harmonizing the data could require the application of different normalization, scaling, and
transformation procedures for each omics type. Matching the database identifiers may
also pose problems when the databases use different or outdated IDs or when there are no
one-to-one mappings, which is when one maps a gene to the proteins that it codes for. Over
the last few years, the awareness of these issues has risen, and the community is currently
examining the logistics of integrating data from heterogeneous sources [181]. Allocating
more resources for the curation of them, raising the acceptable quality threshold for new
data to be published, and standardizing the formats and metadata annotation schemes are
some possible steps in that direction.

4.7. Misclassification Due to Mislabeling

In highly complex protein–protein interaction networks, gene regulatory networks,
metabolic pathways, etc., errors could be found either in the annotations or the entity at
hand (protein, chemical agent, etc.) may possess a functionality that has not been annotated
or even discovered yet. Deep neural networks, with their uncanny ability to extract patterns
from complex data, may infer some of these functionalities, but their predictions will be
rejected due to the faulty annotations; this is currently being exploited by DL-based research
in drug repurposing, whereas a drug that is being repeatedly misclassified may share
characteristics with drugs from the ’wrong’ class, and its application for other purposes
may be warranted [58,61]. The researchers from other fields should be mindful of this
effect as well. Seemingly, wrong but persistent classifications should not be immediately
rejected. They should first be evaluated, perhaps validated with the existing literature
and domain knowledge, and if they appear to be interesting, they could be treated as
hypotheses for experimental testing. The databases should be revised whenever such
findings are publicized, which often entails researchers who made the discovery taking the
initiative and contacting the data repository moderators.
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5. Discussion and Conclusions
5.1. Discussion

The deduction that DL will be increasingly applied in biotechnology cannot be avoided.
On one hand, research in biology, biomedicine, and biotechnology is of tremendous value
to humanity and, given the modern scientific breakthroughs that open up new avenues,
this research is expected to take off. On the other hand, the volume and complexity of the
data that are generated render DL the only viable method for extracting these insights as we
are dealing with levels of complexity whereby traditional machine learning and statistical
techniques often break down. This should be taken into account by the community, and the
data gathering procedures of the public databases should be more “DL-friendly” when it is
possible, e.g., storing “uninteresting” data to alleviate the class imbalance, standardizing
the formats, and performing preprocessing or normalization practices, etc. We are entering
an era in which the data that cannot be utilized by DL will be less valuable than those
that can.

The future prospects of this area of research become clear when we put things in
context in the relevant time frame. The human genome was first fully sequenced in the
2000’s [182], sequencing technologies became practical during the 2010’s [183,184], and
the Human Proteome Project made its first release in 2020 [185]. For all of the practical
purposes, the field is just starting, and major breakthroughs are yet to come. DL only
became a subject of serious study and wide application after 2012, when the Imagenet
challenge was solved, and DL proved its real-world efficacy [186]. The coupling of DL with
the biological data that are generated through modern high-throughput technologies is a
novel scientific discipline that is taking its first baby steps.

As evidenced in Figure 1, the number of papers combining DL and biological data
has risen substantially over the last three to five years. Numerous major and ambitious
research projects that have taken place during the last couple of years have used DL in at
least some part of the process. In their late endeavor to explore and elucidate the proteome
landscape across all of the kingdoms of life, a cohort of researchers employed Bidirectional
LSTMs to infer the attributes of previously unknown proteins [187]. The DL models take
up the front lines in the battle to understand, prognosticate, and cure COVID-19 [188–191].
Precision medicine and stratified healthcare, and the prospect of exploiting big data to
provide customized treatments, rely heavily on deep neural networks [192–194], and early
cancer prognosis via the use of omics data and DL changes the game in oncology [195].

Even with a limited understanding of the biological concepts, computer scientists can
contribute to biotechnology and biomedical research. A grasp of the relevant data types
that are used is that which they need to bring their unique expertise on the table. The
modern technological breakthroughs have caught experimental biologists by surprise—a
pleasant surprise, perhaps, but now, the data and discoveries arrive at a fast pace, and the
expanding biological knowledge leaves little time for life scientists to keep up with the
computational methods that are capable of exploiting the data. DL and predictive modeling
are evolving equally quickly, whereby the scientific progress is reaching the point at which
specialization becomes inescapable. The introductory reviews and short primers on DL
that are aimed at biologists are valuable and much needed, and if the fields of DL and
biology were not so immense and fast-evolving, these primers would be enough. However,
the goal of sustainable progress requires computer scientists to get involved in it.

As the involvement of DL in big data analysis in the near future is unquestionable,
it is essential to make it accessible to a wider range of researchers. Hopefully, this study,
which is aimed at familiarizing DL experts with some of the current biological data and
concepts, nudges the scientific community to set off a series of publications addressing
computer scientists, inviting them to participate in life science research. Alternatively,
this study could be also useful to allow the researchers of biology with no background in
computational sciences to understand and utilize the power of DL to gain better insights
into and extract important information from the omics data that are available in the field.
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5.2. Conclusions

In this review, the various types of omics data that are used to utilize DL models
and solve the problems in life sciences are examined. The way in which data is prepared
for model training, which model architectures are used, and which tasks are addressed
are also reviewed. DL holds many promises for scientific breakthroughs, but its potential
comes with some shortcomings. The challenges in applying DL to the biological data are
discussed, along with ways that these challenges are addressed, and this is an area of
vigorous, cutting-edge research. Finally, the future prospects of this domain are considered,
and the evidence is shared, suggesting that the activity of it will increase. The conclusion of
this review is that the field of life science needs non-biologist DL experts to engage with
it, and to get started with this, they need to acquaint themselves with the basics of the
biological data. Hopefully, this survey contributes towards this end and aims to inspire
researchers to undertake similar efforts.
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