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Abstract

The Major Histocompatibility Complex (MHC) plays an important role in the human immune system. The MHC is involved in
the antigen presentation system assisting T cells to identify foreign or pathogenic proteins. However, an MHC molecule
binding a self-peptide may incorrectly trigger an immune response and cause an autoimmune disease, such as multiple
sclerosis. Understanding the molecular mechanism of this process will greatly assist in determining the aetiology of various
diseases and in the design of effective drugs. In the present study, we have used the Fresno semi-empirical scoring function
and modify the approach to the prediction of peptide-MHC binding by using open-source and public domain software. We
apply the method to HLA class II alleles DR15, DR1, and DR4, and the HLA class I allele HLA A2. Our analysis shows that using
a large set of binding data and multiple crystal structures improves the predictive capability of the method. The
performance of the method is also shown to be correlated to the structural similarity of the crystal structures used. We have
exposed some of the obstacles faced by structure-based prediction methods and proposed possible solutions to those
obstacles. It is envisaged that these obstacles need to be addressed before the performance of structure-based methods
can be on par with the sequence-based methods.
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Introduction

Multiple sclerosis (MS) is a neurological disease characterised by

inflammation and demyelination in the central nervous system.

MS is regarded as an autoimmune disease by many researchers

[1–5], however, the pathogenesis of the disease is not well

understood. Genetic linkage analyses of MS patients have

identified the DRB1*1501 and DQB1*0602 alleles of the Major

Histocompatibility Complex (MHC) molecule as definite genetic

risk factors [2,5]. This has been confirmed in more recent genome

wide association studies [6]. The MHC molecule is involved in the

antigen presentation system and assists the T cells to identify

pathogenic proteins. While the overall antigen presentation

mechanism is reasonably well understood, the specificity and

sensitivity of peptide binding to MHC molecules, and the binding

of T-cells to the resultant complex, required to elicit an immune

response, is not well defined. Deeper knowledge of the peptide

binding process may help to isolate the cause of the disease and

detect peptides with therapeutic potential.

Currently, there are three schools of MHC-peptide binding

prediction methods based on the information and approach used

in the prediction: sequence-motif (PSSM-) based, artificial

intelligence- (AI-) based, and structure-based. The first two schools

examine the patterns exhibited by the sequences of binding

peptides, whereas structure-based methods study the relationship

between the binding affinities and the structures of MHC-peptide

complexes.

Early work on peptides that bind to MHC molecules observed

patterns in the peptide sequences. Systemic analyses of the effects

of amino acids on the peptide binding affinities provide the basis

for position-specific scoring matrices to predict binding affinity [7–

10]. More recently, many studies introduced artificial intelligence

algorithms in the attempt to understand the subtle underlying

patterns [11–14]. Due to the type of input, PSSM- and AI-based

methods are sometimes generalised as sequence-based prediction

methods [14].

In addition to sequence information, structure-based methods

also incorporate additional structural information from experi-

mental crystal structures of MHC-peptide complexes [15–21].

Usually the atomic coordinates of the MHC molecule are

extracted from an experimental crystal structure as the frame

template, and the atomic coordinates of the peptide from the same

structure are used as the template for fitting new peptides. Once a

structure fitted with a new peptide is constructed, the structure

may be subjected to energy minimisation. Using the new structure,

the distance between two atoms and the physiochemical properties

of the atoms are used to determine if the interaction is beneficial or

not to the binding.

Much effort has been put into developing sequence-based

methods, which have shown considerable performance [8,11,

14,22]. On the other hand, the availability of experimentally

determined structures allows structure-based methods to study the

precise relationship between the structure and peptide binding

specificity. The inclusion of structural information may reveal

properties affecting the binding not obvious on the sequence level.

Furthermore, the recent increase in the number of experimentally

determined structures for MHC-peptide complexes is expected to

provide further data to improve the performance of structure-
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based methods. A more detailed and comprehensive review of

computational methods for predicting peptide binding to the

MHC, particularly structure-based methods, has been written by

Liao and Arthur [23].

Despite considerable research into the development of compu-

tational techniques for determining peptide binding to the MHC

and successful predictions for some alleles, the performance of

various binding prediction algorithms for MHC class II alleles,

including DRB1*1501, is still relatively poor. Previously, Rognan

et al. [24] had some success in predicting the binding affinity of

peptides for the HLA A*0201 allele using a structure-based

method. In the present study, we adopt the Fresno semi-empirical

scoring function developed by Rognan et al. to study peptide

binding to MHC class I and II alleles in order to improve the

computational prediction of peptide binding to DRB1*1501.

Results

Validation of the prediction method
In this study, we adapted the semi-empirical method for

predicting peptide binding affinity for MHC class I molecules

originally proposed by Rognan et al. [24]. The public domain

software packages MolProbity [25] and SCWRL 4 [26] were used

instead of SYBYL BIOPOLYMER to add hydrogen atoms to the

crystal structures and predict peptide side chain atomic positions.

The modelling algorithm was implemented in PERL and R was

used to perform the partial-least-square regression analysis with

leave-one-out cross-validation.

The open source adaptation of the protocol was tested using the

original five HLA-A0201 (A2) structures (the Madden structures)

used by Rognan et al. Table 1 compares the experimental free

energy of binding with the theoretical values of Rognan et al. and

our analysis. In each case, our prediction more accurately

estimates the experimental free energy of binding. The cross-

validation correlation score, q2, was excellent at 0.971 and the

standard error of prediction, Spress, was appropriately low at 0.727.

In comparison, Rognan et al. achieved a q2 value of 0.895 and a

Spress value of 3.448. Thus, we established that our approach, using

open source equivalents and our own PERL implementation of

the Fresno scoring function, performs better than the original

implementation.

Validation of our open source adaption of the method is crucial

to ensure the integrity of our PERL implementation of the

technique and the alternate use of open source applications. By

repeating the analysis of Rognan et al., we were able to show that

our open source adaptation of the method reproduces the results

of the original analysis, thus validating our adaptation. In fact, our

approach generates slightly more accurate predictions than the

original method.

Prediction of peptide binding to HLA-DR15
Having validated the prediction method, we applied the

procedure to the prediction of the free energy of peptide binding

in HLA-DRB1*1501 (DR15). The HLA-DR15 allele of the MHC

is a major genetic risk factor for MS. Our aim here was to use the

method developed and validated above to predict peptide binding

in this allele as a step to understanding the role this allele plays in

the pathogenesis of MS.

There are only two experimentally determined structures for

HLA-DR15: 1YMM and 1BX2. 1YMM was chosen as a

reference structure as it was the most recently published crystal

structure. The AntiJen database contains 188 entries of peptides

with peptide binding data for HLA-DR15. Of these, only twenty

peptides were fourteen amino acids in length as required to match

the length of the peptide in the 1YMM reference structure. These

peptides are shown in Table 2.

Each peptide was modelled in the binding groove of the MHC

molecule and the resulting structure used to determine the terms of

Fresno scoring function (equation 2). The resulting equations for

all twenty peptides were then subjected to the statistical analysis to

determine the regression coefficients. These regression coefficients

are then used to predict the theoretical binding free energy for

each peptide for comparison with the experimental data. After the

cross-validation analysis, the q2 value for the analysis was 0.243

and Spress was 6.429 confirming the prediction method was unable

Table 1. Comparison of the free energies for five HLA-A*0201
structures.

Peptide PDB ID DGbind, kJ/mol

Experimentala Rognanb Predictedc

TLTSCNTSV 1HHG 237.32 236.85 (20.47) 237.19 (20.13)

FLPSDFFPSV 1HHH 248.45 248.56 (+0.11) 248.41 (20.04)

GILGFVFTL 1HHI 246.94 247.03 (+0.09) 247.01 (+0.07)

ILKEPVHGV 1HHJ 237.60 238.96 (+1.36) 237.74 (+0.14)

LLFGYPVYV 1HHK 245.48 245.57 (20.09) 245.43 (20.05)

aExperimental values from the original publications.
bPredictions made by Rognan et al. in the original Fresno implementation; the

deviations from the experimental values are included in parentheses.
cOur predictions; the deviations from the experimental values are included in
parentheses.

doi:10.1371/journal.pone.0025055.t001

Table 2. All twenty 14-mer peptides with experimental
binding data in regard to HLA-DR15 extracted from AntiJen.

Peptide IC50 (nmol) Temp (6C)

ADTISSYFVGKMYF [40] 160 37

DENPVVHFFKNIVT [41] 4.6 37

DTISSYFVGKMYFN [41] 780 37

ENPVVHFFKNIVTA [41] 12 37

FNLIDTKCYKLEHP [41] 35000 37

GKMYFNLIDTKCYK [41] 33000 37

HFFKNIVTPRTPPY [41] 405 37

ISSYFVGKMYFNLI [41] 1600 37

KMYFNLIDTKCYKL [41] 68000 37

KNSADTISSYFVGK [41] 210 37

MYFNLIDTKCYKLE [41] 6500 37

NLIDTKCYKLEHPV [41] 40000 37

NPVVHFFKNIVTPR [41] 6.8 37

NSADTISSYFVGKM [41] 330 37

SADTISSYFVGKMY [41] 230 37

SSYFVGKMYFNLID [41] 1600 37

SYFVGKMYFNLIDT [41] 400 37

TISSYFVGKMYFNL [41] 190 37

YFNLIDTKCYKLEH [41] 15000 37

YFVGKMYFNLIDTK [41] 33000 37

doi:10.1371/journal.pone.0025055.t002

Structure-Based Prediction of MHC-Peptide Binding
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to accurately reproduce binding free energies for peptides in HLA-

DR15.

To confirm this result was not due to an anomaly with the

1YMM structure, we also repeated the analysis with the 1BX2

structure. Similar results were obtained (data not shown).

Thus, the success of the scoring function in reproducing, and

slightly improving, the results of Rognan et al. with the class I

A*0201 allele, was not seen when working with the class II

DRB1*1501 allele. This prompted us to a detailed examination of

the Rognan et al. scoring function and its applications to assess the

efficacy of the method in different circumstances.

Effect of data quantity on prediction accuracy
One possible explanation for the failure to adequately predict

binding free energies in HLA-DR15 compared to the success in

predictions with HLA-A2 may relate to class II MHC molecules

requiring a larger set of binding data to better predict peptide

binding. However, as noted above, only twenty peptides of

appropriate size are contained in the AntiJen database for HLA-

DR2.

In order to test this hypothesis, we considered HLA-

DRB1*0101 (DR1) and HLA-DRB1*0401 (DR4): the two most

studied class II alleles. Multiple PDB entries can be found for both

HLA-DR1 and HLA-DR4 alleles. The most recently published

structures with the best resolution were used as reference

structures (1FTY and 1J8H). Both these alleles have more peptides

with experimental binding data in the AntiJen database than

HLA-DR15 with 74 peptides from 11 studies meeting the selection

criteria for HLA-DR1 and 58 usable peptides from the same study

for HLA-DR4.

The calculated q2 and Spress values for HLA-DR1 were 0.275

and 7.795 respectively. The calculated q2 and Spress values for

HLA-DR4 were 0.283 and 6.390. Thus, using larger peptide

binding data reference sets results in a modest improvement in

both the cross-validation correlation score and the standard error

of prediction to DR-15. However, the former remains low, and the

latter high, indicating that the predictive capacity of the method

remains poor. This suggests that while the quantity of peptide

binding data does have an impact on the predictive ability of the

scoring function, it is not the primary factor.

Effect of MHC class on prediction accuracy
Another possible factor affecting the prediction may be the class

of MHC molecule used as the reference structure. The original

method of Rognan et al. was developed and tested on MHC class I,

and allele A*0201 in particular. It is possible that the more open

topology of the MHC class II structure means the approach is not

suitable, at least in its current form, for class II molecules. To

explore this possibility, we attempted to duplicate our experiments

above, but with class I molecules, and the A*0201 allele in

particular.

As a reference structure, we chose 2GTW for the HLA-A2 allele

[27]. This structure is not one of the five Madden structures, has a

high resolution, and was published recently. A list of 174 peptides

from 22 studies was extracted from the AntiJen database. Thus,

our selection replicates the selection we made previously for a class

II allele.

The calculated q2 and Spress values using the structure 2GTW

were 0.01974 and 6.037. Thus, even using a class I structure, with

a large set of peptide binding data, the technique does not achieve

good predictive capability. To confirm this, we repeated the

experiment using one of the five Madden structures as a reference.

Since the peptide in the structure 1HHH is longer (decamer) than

the other structures (nonamers), the 1HHH data was incorporated

in two ways. The peptide of 1HHH was either truncated at the N-

terminal or the C-terminal of the peptide in order to fit into the

other structures with nonamers, or the peptide was excluded from

the analysis completely. The MHC structure of 1HHH structure

was not used at all, since peptides from the other structures will not

fit. The procedure was repeated for each of the four structures

(1HHG, 1HHI, 1HHJ, and 1HHK).

When the peptide from 1HHH was not used (i.e. only four

peptides were used as input data), 1HHG, 1HHI, and 1HHJ

returned low q2 values suggesting no predictive capability for the

technique. The q2 and Spress values for 1HHK, however, were

significantly better at 0.7897 and 1.75, although still not nearly as

good as the values seen in the validation study. When the peptide

from 1HHH was used, none of the reference structures was able to

return a good result.

The favourable result for 1HHK presented a possible reason for

the performance of validation study. 1HHK was therefore used as

the reference structure in a further analysis under the same

conditions used for 2GTW. However, this analysis gave q2 and

Spress values of 0.002 and 6.083.

Predictive capability is dependent on quantity of
structural data

The previous experiments consistently showed poor predictive

capability for the approach, despite the remarkable success of the

approach in the validation study. A final point of difference

between the experiments is that the validation study uses five

reference structures i.e., in calculating the terms and thence the

regression coefficients, the atomic distances used are those of the

peptide in its native crystal structure. In contrast, the other studies

use peptides modeled in a single reference crystal structure.

Since calculation of the free energy of binding is based on the

reference structure, if the predicted structure is different from how

the peptide binds the MHC molecule natively, it may damage the

predictive performance of the method. Thus, using a large set of

reference structures simultaneously may provide more structural

information and thus lead to better predictions.

To test the hypothesis, we searched PDB for HLA-A2 structures

with one of the 174 peptides previously collected from AntiJen

database, and found 17 structures, including 1HHJ (Table 3).

Fourteen of them share one of three common peptides

(ILKEPVHGV, NLVPMVATV, and SLLMWITQC) with other

structures. Thus, we used various combinations of 6 structures,

consisting of the 3 unique structures and a combination of

three structures chosen from the 14 structures sharing the three

common peptides, such that only one structure with each peptide

was used.

The q2 and Spress values varied between 0.998 to complete

randomness. However, most combinations (57 combinations)

showed improvement over the best of the previous analyses using

a single reference structure (q2 value of 0.283) and nearly half of

the combinations (37 combinations) achieved a q2 value greater

than 0.5 (Fig. 1). This supports our hypothesis that using multiple

reference structures will boost the prediction performance.

Yet, the effect is not definitive. While most sets of reference

structures generate better results than a single reference structure,

the predictive capability still varies depending on the reference set

chosen, with many reference sets still showing less than adequate

predictive capability, despite improvements over single reference

structure methods.

To examine the potential impact of different structural

characteristics on the predictive performance, we explored the

correlation between q2 and Spress values and various characteristics

of the structures (Table 4). The first of these was the average

Structure-Based Prediction of MHC-Peptide Binding

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e25055



root mean square deviation (RMSD) of the reference structures.

The RMSD was calculated for all the combinations used in

the analysis using the atoms from the MHC molecule alone,

the peptide alone, and the whole structure. The RMSD scores

were calculated for all pairs of structures in the set of reference

structures and the results averaged to give a mean RMSD

score for the set The RMSD scores were compared to the

corresponding q2 and Spress values using Spearman’s rank

correlation. Secondly, the q2 and Spress values were also compared

to the average resolution of the structures using Spearman’s rank

correlation. A correlation coefficient of 1 (or 21) indicates perfect

correlation in the same (or opposite) direction. A value of 0

indicates no correlation.

The Spearman’s coefficient between the q2 values and the

RMSD scores shows an intermediate correlation between average

RMSD score and q2 value with a small average RMSD between

the structures giving rise to a high q2 value, and thus better

predictive performance for the approach (Fig. 2). This is also the

case for the five Madden structures used in the original Fresno

study. The average RMSD score of the five Madden structures

was 0.57, which is better than all of the combinations used in the

analysis, giving rise to the high q2 value and predictive

performance in the original study. The correlation between the

q2 values and the RMSDMHC scores suggests that the correlation is

primarily attributed to the structure of the MHC molecule.

On the other hand, little correlation was seen between the

average resolution of the structures and the q2 values. This suggests

that depth of resolution of the reference structures is not critical to

the predictive performance of the method.

Figure 1. Spread of q2 values for different combinations of reference structures. 37 out of 84 combinations of reference structures (44%)
achieved a q2 value greater than 0.5 and 57 (68%) achieved a q2 value greater than 0.283. which was the best predictive performance for analyses
using only one reference structure.
doi:10.1371/journal.pone.0025055.g001

Table 3. List of PDB entries and corresponding peptide
binding data.

Peptide Temperature (6C) IC50 (nmol) PDB

AAGIGILTV [42] 4 0.00008 2GUO

FLWGPRALV [42] 4 0.0000021 1QEW

ILKEPVHGV [43] 4 0.000008 1AKJ

ILKEPVHGV 4 0.000008 1HHJ

ILKEPVHGV 4 0.000008 1P7Q

ILKEPVHGV 4 0.000008 2X4U

IMDQVPFSV [44] 26 0.00000654 1TVH

NLVPMVATV [45] 4 0.0000125 2X4R

NLVPMVATV 4 0.0000125 3GSN

NLVPMVATV 4 0.0000125 3GSO

SLLMWITQC [46] 37 0.00002107 1S9W

SLLMWITQC 37 0.00002107 2BNR

SLLMWITQC 37 0.00002107 2F53

SLLMWITQC 37 0.00002107 2F54

SLLMWITQC 37 0.00002107 2P5E

SLLMWITQC 37 0.00002107 2P5W

SLLMWITQC 37 0.00002107 2PYE

doi:10.1371/journal.pone.0025055.t003

Structure-Based Prediction of MHC-Peptide Binding
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Discussion

In this series of experiments, we have shown that our imple-

mentation of the Fresno scoring function, using open source/free

software, reproduces the results of Rognan et al. and, in fact,

performs slightly better than the original implementation.

However, when the number of reference structures used is

reduced to one, the performance of the scoring function is greatly

diminished, even if a large set of peptide binding data is used. This

indicates that either MHC molecules assume quite different

positions whilst binding to different peptides or that the theoretical

approach used to predict peptide binding is quite sensitive to small

changes in MHC structure. If a MHC molecule binds to the

peptides more or less in the same way, the differences between

structures should be minimal, and the scoring function should still

be able to predict the binding affinity albeit with a less satisfying

performance. On the other hand, if the MHC molecule assume

different positions when binding to different peptides, multiple

structures will be required to effectively sample all possible

confirmations used as a basis for the semi-empirical model. Our

experiments demonstrate this to be the case. When only one of the

five structures used in the original Fresno study was used to analyse

the binding affinities of all the peptides, only one structure could

be used to achieve a good performance. Nonetheless, this

performance was still worse than using all five reference structures.

We also showed that even when one of the best structures for

HLA-A2 is used as the reference structure, the prediction

performance was still less than ideal, but when more reference

structures were employed the q2 value can reach over 0.9. It is

therefore important to consider various binding confirmations

when constructing a free energy scoring function.

The best solution is to determine the structure for all binding

peptides used in both establishing the regression coefficients for the

scoring function as well as those whose binding free energy is to be

predicted. However, this need for structural information for each

peptide being considered makes it effectively impossible to use the

method in large scale computational studies, such as an exhaustive

scan of all possible peptides to predict potential epitopes for the

MHC molecule.

Two further approaches offer a potential solution to this

problem. The first is to obtain a large set of structures and use the

structure with the most similar peptide for the peptides that do not

have an experimentally determined structure. The other approach

is to derive a ‘‘consensus structure’’ by averaging all the available

structures. A consensus structure may sacrifice accuracy for some

peptides but will hopefully be able to fit most peptides within a

Figure 2. The comparison of q2 values and RMSD scores shows a general negative correlation. The point for the Madden structures is
the grey triangle located towards the top left of the figure.
doi:10.1371/journal.pone.0025055.g002

Table 4. Comparison between q2 and Spress to the RMSD
score and the resolution of structures.

q2 Spress

RMSD 20.607 0.604

RMSDMHC 20.579 0.577

RMSDpeptide 0.076 20.080

Average resolution 20.103 0.105

Three RMSD scores were calculated based on the use of the structures.
RMSDMHC is the RMSD for the structure of the MHC molecule alone, RMSDpeptide

is the RMSD for the structure of peptide alone, and the RMSD for the whole
structure.
doi:10.1371/journal.pone.0025055.t004

Structure-Based Prediction of MHC-Peptide Binding
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tolerable error level. Due to the nature of these approaches, the

first may provide higher accuracy, however, the second approach

should be easier to implement.

Another obstacle for structure-based methods is the reduced set

of binding data. While sequence-based methods can simply

categorise peptides into binders or non-binders based on the

IC50 values, structure-based methods often rely on precise input,

which excludes implicit values, such as strong, intermediate, and

weak binding. Moreover, there is discrepancy in the binding data

for many peptides due to various experimental settings. Any slight

change in the input can produce a different result, and a large

inconsistency in the input can render the result useless. However,

discrepancies may be introduced in two areas: the detection

method and the choice of competing peptide in the competitive

assay. There are two detection methods based on the labelling tag,

either fluorescence or radioactive isotopes, used to label the target

peptide. While the two methods share the same principle, the

readings can vary greatly and a difference is observed between two

studies using different labelling method. In addition to the

detection methods, the choice of competing peptide is also an

important factor in determining the IC50 value. When two

competing assays are performed using the same detection method

and same experimental conditions but different competing

peptides, the relative binding affinity of the two competing

peptides will affect the resulting binding affinity of the target

peptide. If the first competing peptide is a better binder than the

second competing peptide, there will be a difference in the

resulting IC50 values. This may be the reason why two studies may

arrive at different IC50 values even though all the other

experimental conditions appear to be the same.

It is possible to include the implicit values if the scoring function

is classification-based, where input is classified into weak,

intermediate, or strong binders. Although this will inevitably

reduce the information used to deduce the scoring function and

reduce the accuracy of the scoring function, using a classification-

based approach will allow more input data. This may compensate

for the loss of specific binding information. Unfortunately, it is

impossible to resolve the discrepancy introduced by using different

competing peptides; prior knowledge will be required to be able to

choose one IC50 value over another.

In conclusion, the present study implemented the Fresno

scoring function using open source and free software. We have

also looked at some of the obstacles faced by researchers in the

attempt to develop free energy scoring functions. Currently,

sequence-based methods exploring binding motif or utilising

artificial intelligence are leading the race to accurately predict

peptide binding affinity. However, sequence-based methods do not

face the same obstacles as structure-based methods, as they do not

utilise structural information and tend to be classification based.

While structure-based methods are not so far behind, it is

foreseeable that these obstacles need to be addressed before the

performance of structure-based methods can be on par with the

sequence-based methods.

Materials and Methods

Preparation of MHC structures
A list of experimentally determined structures of the MHC-

peptide complex for alleles HLA-A*0201, HLA-DRB1*0101,

HLA-DRB1*0401, and HLA-DRB1*1501 (Table 5) were col-

lected from the Protein Data Bank [28]. For analyses where only

one structure was used the most recent structure with best

resolution was used. Structures, referred to as the Madden

structures hereafter, used by Rognan et al. in their study

(1HHG, 1HHH, 1HHI, 1HHJ, 1HHK) were also obtained from

the PDB [29].

Each crystal structure gives the positional information of the

atoms of the MHC molecule and a peptide of particular sequence

bound to the MHC molecule. In order to study the binding affinity

of other peptides, the structure of a new peptide, bound to the

same MHC molecule, is determined from the existing structure by

using the same positions for the backbone atoms and rebuilding

the side chains in the context of the MHC molecule. In the present

study, the side chain rebuilding was performed using SCWRL 4

[26]. SCWRL 4 preserves the positions of the backbone atoms for

the new peptide. It then attempts to predict the positions of the

side-chain atoms for the new peptide while considering steric

effects of the surrounding framework: in this case, the MHC

molecule. Once a structure with the new peptide was constructed,

hydrogen atoms were added using MolProbity 3.14 [30].

Preparation of peptide binding data
When the concentration of the binding peptide is sufficiently

low, the dissociation constant can be represented by the inhibitory

concentration (IC50): the concentration of inhibitor required to

halve the level of binding of the substrate to the enzyme in a

competitive assay. The free energy of binding can be calculated

from the experimental temperature in Kelvin (T), the IC50 value,

and the gas constant (R) according to equation 1.

Gexp~RT ln IC50ð Þ ð1Þ

A list of peptides with known binding affinity was extracted from

the AntiJen database for each allele [31–32]. The AntiJen

database contains experimental binding data for peptides known

to bind to MHC molecules. Only peptides with the same length as

the peptide in the reference crystal structure were used; typically,

these were nine amino acids long. Inconsistencies or implicit values

in the data set, such as multiple IC50 values for individual peptides

due to different experimental settings, were resolved by manual

reference to the original citations. If there is inexplicable

discrepancy, the peptides in question were excluded from the

analysis. The experimental data for the five structures used in

Rognan et al. were taken from their original publication [33].

Calculation of the Scoring Function Terms
The Fresno free energy scoring function was previously

described by Rognan et al. [24]. Briefly, there are five terms used

by the Fresno scoring function (equation 2). Each term attempts to

Table 5. Experimental crystal structures used in the present
study.

Allele PDB ID

HLA-A*0201 (Madden
structures)*

1HHG, 1HHH, 1HHI, 1HHJ,1HHK [29]

HLA-A*0201 1AKJ, 1B0R, 1OGA, 1P7Q, 1QEW, 1S9W, 1TVH, 2BNR,
2BNQ, 2F53, 2F54, 2GTW, 2GT9, 2GUO, 2P5E, 2P5W,
2PYE, 2X4U, 2X4R, 3GSN, 3GSO [27,47–57]

HLA-DRB1*0101 1FYT [58]

HLA-DRB1*0401 1J8H [59]

HLA-DRB1*1501 1YMM, 1BX2 [60–61]

The Madden structures were the five structures used in the original Fresno study.
doi:10.1371/journal.pone.0025055.t005
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model the contribution to the binding energy made by a different

atomic interaction.

DGbinding~Kza HBð Þzb LIPOð Þzc BPð Þzd ROTð Þze DESOLVð Þ ð2Þ

The first three terms describe the energies associated with

hydrogen bonds (HB), the interactions between lipophilic atoms

in the MHC molecule and the peptide (LIPO), and the

unfavourable interactions between polar and lipophilic atoms

(BP). The rotational term (ROT) estimates the loss of energy due

to the freezing of the rotatable bonds of the peptide upon binding.

Lastly, the desolvation term (DESOLV) considers the energies

required to solvate the MHC molecule, the peptide, and the

MHC-peptide complex. The equations and related details for

calculating each term are given in Rognan et al [24] and Eldrige

et al. [34].

Calculation of the Regression Coefficients
The HB, LIPO, ROT, and BP terms were calculated using an

adaptation of the Fresno scoring function developed in PERL. If

the reference PDB file contained a bound T-cell receptor, this part

of the file was removed prior to the analysis. The DESOLV term

for all peptides was estimated using the DelPhi program [35–36].

The parameters were similar to those used by Rognan et al. The

only difference being the atomic radii and the charges. Atomic

radii and charges used in this study were taken from PARSE [37].

The values of all terms and the experimental free energy are

used in a partial least square analysis using R and the pls package

[38–39]. Regression coefficients were derived for each term and

optimised for each dataset. The theoretical free energy was

predicted using these regression coefficients. The cross-validation

correlation score (q2) and standard error of prediction (Spress) were

calculated from leave-one-out cross-validation using the built-in

functions (R2 and RMSEP) from the pls package. q2 estimates the

accuracy of the model and Spress estimates the error rate of the

prediction. Thus a good prediction model should have q2 close to 1

and a low Spress value.

Correlation Studies
The difference between protein structures was calculated in

terms of root mean square deviation (RMSD) scores. Structures

were superimposed and the RMSD values were calculated using

the Discovery Studio Visualizer 3.0 by Accelrys. Correlation

between the q2 values and the RMSD scores were analysed using

Spearman’s rank correlation in R. Correlation between the q2

values and the average resolution of structures, obtained from the

PDB structure files, was calculated similarly.

Author Contributions

Conceived and designed the experiments: WWPL JWA. Performed the

experiments: WWPL. Analyzed the data: WWPL JWA. Wrote the paper:

WWPL JWA.

References

1. Hafler DA, Slavik JM, Anderson DE, O’Connor KC, Jager PD, et al. (2005)

Multiple sclerosis. Immunological Reviews 204: 208–231.

2. Westall FC (2006) Molecular mimicry revisited: gut bacteria and multiple
sclerosis. Journal of Clinical Microbiology 44: 2099–2104.

3. Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, et al. (2007)

Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. Journal
of Experimental Medicine 204: 2899–2912.

4. Lang HLE, Jacobsen H, Ikemizu S, Andersson C, Harlos K, et al. (2002) A

functional and structural basis for TCR cross-reactivity in multiple sclerosis.
Nature Immunology 3: 940–943.

5. Levin MC, Lee SM, Kalume F, Morcos Y, Dohan FCJ, et al. (2002)

Autoimmunity due to molecular mimicry as a cause of neurological disease.
Nature Medicine 8: 509–513.

6. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, et al. (2007) Risk

alleles for multiple sclerosis identified by a genomewide study. The New England
Journal Of Medicine 357: 851–862.

7. Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding

affinity using SMM-align, a novel stabilization matrix alignment method. BMC
Bioinformatics 8: 238.

8. Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, et al. (2008) Quantitative

peptide binding motifs for 19 human and mouse MHC class I molecules derived
using positional scanning combinatorial peptide libraries. Immunome Research

4: 2.

9. Bordner AJ, Mittelmann HD (2010) Prediction of the binding affinities of
peptides to class II MHC using a regularized thermodynamic model. BMC

Bioinformatics 11: 41.

10. Wang P, Sidney J, Kim Y, Sette A, Lund O, et al. (2010) Peptide binding
predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11: 568.

11. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, et al. (2009) NetMHCpan, a

method for MHC class I binding prediction beyond humans. Immunogenetics
61: 1–13.

12. Lata S, Bhasin M, Raghava GPS (2007) Application of machine learning

techniques in predicting MHC binders. Methods in Molecular Biology 409:
201–215.

13. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, et al. (2008)

NetMHC-3.0: accurate web accessible predictions of human, mouse and
monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids

Research 36: W509–W512.

14. Lundegaard C, Hoof I, Lund O, Nielsen M (2010) State of the art and
challenges in sequence based T-cell epitope prediction. Immunome Research 6

Suppl 2: S3.

15. Hattotuwagama CK, Doytchinova IA, Flower DR (2007) Toward the prediction
of class I and II mouse major histocompatibility complex-peptide-binding

affinity: in silico bioinformatic step-by-step guide using quantitative structure-

activity relationships. Methods in Molecular Biology 409: 227–245.

16. Li Z, Wu S, Chen Z, Ye N, Yang S, et al. (2007) Structural parameterization and

functional prediction of antigenic polypeptome sequences with biological activity

through quantitative sequence-activity models (QSAM) by molecular electro-
negativity edge-distance vector (VMED). Science in China Series C: Life

Sciences 50: 706–716.

17. Dimitrov I, Garnev P, Flower DR, Doytchinova I (2010) Peptide binding to the
HLA-DRB1 supertype: a proteochemometrics analysis. European Journal of

Medicinal Chemistry 45: 236–243.

18. Kumar N, Mohanty D (2007) MODPROPEP: A program for knowledge-based
modeling of protein–peptide complexes. Nucleic Acids Research 35:

W549–W555.

19. Schiewe AJ, Haworth IS (2007) Structure-based prediction of MHC-peptide
association: algorithm comparison and application to cancer vaccine design.

Journal of Molecular Graphics and Modelling 26: 667–675.

20. Aldulaijan S, Platts JA (2010) Theoretical prediction of a peptide binding to
major histocompatibility complex II. Journal of Molecular Graphics and

Modelling 29: 240–245.

21. Bordner AJ (2010) Towards universal structure-based prediction of class II
MHC epitopes for diverse allotypes. PLoS ONE 5: e14383.

22. Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, et al.

(2003) Reliable prediction of T-cell epitopes using neural networks with novel
sequence representations. Protein Science 12: 1007–1017.

23. Liao WW, Arthur JW (2011) Predicting peptide binding to Major Histocom-

patibility Complex molecules. Autoimmunity Reviews, in publication.
24. Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V (1999) Predicting

binding affinities of protein ligands from three-dimensional models: application

to peptide binding to class I major histocompatibility proteins. Journal of
Medicinal Chemistry 42: 4650–4658.

25. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, et al. (2007)

MolProbity: All-atom contacts and structure validation for proteins and nucleic
acids. Nucleic Acids Research 35: W375–W383.

26. Krivov GG, Shapovalov MV, Jr. RLD (2009) Improved prediction of protein

side-chain conformations with SCWRL4. Proteins 77: 778–795.
27. Borbulevych OY, Insaidoo FK, Baxter TK, Powell DJ, Johnson LA, et al. (2007)

Structures of MART-1(26/27–35) peptide/HLA-A2 complexes reveal a

remarkable disconnect between antigen structural homology and T cell
recognition. Journal of Molecular Biology 372: 1123–1136.

28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The

Protein Data Bank Nucleic Acids Research 28: 235–242.
29. Madden DR, Garboczi DN, Wiley DC (1993) The antigenic identity of peptide-

MHC complexes: a comparison of the conformations of five viral peptides

presented by HLA-A2. Cell 75: 693–708.
30. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and

glutamine: using hydrogen atom contacts in the choice of side-chain. Journal of

Molecular Biology 285: 1735–1747.

Structure-Based Prediction of MHC-Peptide Binding

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e25055



31. Blythe MJ, Doytchinova IA, Flower DR (2002) JenPep: A database of

quantitative functional peptide data for immunology. Bioinformatics 18:
434–439.

32. McSparron H, Blythe MJ, Zygouri C, Doytchinova IA, Flower DR (2003)

JenPep: a novel computational information resource for immunobiology and
vaccinology. Journal of Chemical Information and Computer Science 43:

1276–1287.
33. Altuvia Y, Schueler O, Margalit H (1995) Ranking potential binding peptides to

MHC molecules by a computational threading approach. Journal of Molecular

Biology 249: 244–250.
34. Eldridge M, Murray CW, Auton TA, Paolini GV, Lee RP (1997) Empirical

scoring functions: I. the development of a fast empirical scoring function to
estimate the binding affinity of ligands in receptor complexes. Journal of

Computer-Aided Molecular Design 11: 425–445.
35. Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry.

Science 268: 1144–1149.

36. Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the
nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and

multivalent Ions. Journal of Physical Chemistry B 105: 6507–6514.
37. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free

energies using macroscopic solvent models. Journal of Physical Chemistry 98:

1978–1988.
38. R Development Core Team (2009) R: A language and environment for

statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
39. Mevik B-H, Wehrens R (2007) The pls package: Principal component and

partial least squares regression in R. Journal of Statistical Software 18: 1–24.
40. Texier C, Pouvelle S, Busson M, Herve M, Charron D, et al. (2000) HLA-DR

restricted peptide candidates for bee venom immunotherapy. Journal of

Immunology 164: 3177–3184.
41. Wucherpfennig KW, Sette A, Southwood S, Oseroff C, Matsui M, et al. (1994)

Structural requirements for binding of an immunodominant myelin basic
protein peptide to DR2 isotypes and for its recognition by human T cell clones.

Journal of Experimental Medicine 179: 279–290.

42. van Elsas A, van der Burg SH, van der Minne CE, Borghi M, Mourer JS, et al.
(1996) Peptide-pulsed dendritic cells induce tumoricidal cytotoxic T lymphocytes

from healthy donors against stably HLA-A*0201-binding peptides from the
Melan-A/MART-1 self antigen. European Journal of Immunology 26:

1683–1689.
43. Wilson CC, McKinney D, Anders M, MaWhinney S, Forster J, et al. (2003)

Development of a DNA vaccine designed to induce cytotoxic T lymphocyte

responses to multiple conserved epitopes in HIV-1. Journal of Immunology 171:
5611–5623.

44. Dionne SO, Smith MH, Marincola FM, Lake DF (2003) Functional
characterization of CTL against gp100 altered peptide ligands. Cancer

Immunology and Immunotherapy 52: 199–206.

45. Solache A, Morgan CL, Dodi AI, Morte C, Scott I, et al. (1999) Identification of
three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus

protein pp65 that are conserved between eight strains of the virus. Journal of
Immunology 163: 5512–5518.

46. Zeng G, Li Y, El-Gamil M, Sidney J, Sette A, et al. (2002) Generation of NY-
ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC

class I and class II specificities: a new strategy for vaccine design. Cancer

Research 62: 3630–3635.

47. Gras S, Saulquin X, Reiser JB, Debeaupuis E, Echasserieau K, et al. (2009)

Structural bases for the affinity-driven selection of a public TCR against a
dominant human Cytomegalovirus epitope. Journal of Immunology 183:

430–437.

48. Celie PHN, Toebes M, Rodenko B, Ovaa H, Perrakis A, et al. (2009) UV-
Induced ligand exchange in MHC class I protein crystals. Journal of the

American Chemical Society 131: 12298–12304.
49. Borbulevych OY, Baxter TK, Yu ZY, Restifo NP, Baker BM (2005) Increased

immunogenicity of an anchor-modified tumor-associated antigen is due to the

enhanced stability of the peptide/MHC complex: Implications for vaccine
design. Journal of Immunology 174: 4812–4820.

50. Webb AI, Dunstone MA, Chen WS, Aguilar MI, Chen QY, et al. (2004)
Functional and structural characteristics of NY-ESO-1-related HLA A2-

restricted epitopes and the design of a novel immunogenic analogue. Journal
of Biological Chemistry 279: 23438–23446.

51. Willcox BE, Thomas LM, Bjorkman PJ (2003) Crystal structure of HLA-A2

bound to LIR-1, a host and viral major histocompatibility complex receptor.
Nature Immunology 4: 913–919.

52. Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY (2003) A
structural basis for immunodominant human T cell receptor recognition. Nature

Immunology 4: 657–663.

53. Gao GF, Tormo J, Gerth UC, Wyer JR, McMichael AJ, et al. (1997) Crystal
structure of the complex between human CD8alpha(alpha) and HLA-A2.

Nature 387: 630–634.
54. Bouvier M, Guo HC, Smith KJ, Wiley DC (1998) Crystal structures of HLA-

A*0201 complexed with antigenic peptides with either the amino- or carboxyl-
terminal group substituted by a methyl group. Proteins 33: 97–106.

55. Chen JL, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L, et al. (2005)

Structural and kinetic basis for heightened immunogenicity of T cell vaccines.
Journal of Experimental Medicine 201: 1243–1255.

56. Sami M, Rizkallah PJ, Dunn S, Molloy P, Moysey R, et al. (2007) Crystal
structures of high affinity human T-cell receptors bound to peptide major

histocompatibility complex reveal native diagonal binding geometry. Protein

Engineering, Design & Selection 20: 397–403.
57. Dunn SM, Rizkallah PJ, Baston E, Mahon T, Cameron B, et al. (2006) Directed

evolution of human T cell receptor CDR2 residues by phage display
dramatically enhances affinity for cognate peptide-MHC without increasing

apparent cross-reactivity. Protein Science 15: 710–721.
58. Hennecke J, Carfi A, Wiley DC (2000) Structure of a covalently stabilized

complex of a human alpha beta T-cell receptor, influenza HA peptide and

MHC class II molecule, HLA-DR1. EMBO Journal 19: 5611–5624.
59. Hennecke J, Wiley DC (2002) Structure of a complex of the human alpha/beta

T cell receptor (TCR) HA1.7, Influenza Hemagglutinin peptide, and major
histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and

DRB1*0401): insight into TCR cross-restriction and alloreactivity. Journal of

Experimental Medicine 195: 571–581.
60. Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW (1998) Crystal

structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide
from human myelin basic protein. Journal of Experimental Medicine 188:

1511–1520.
61. Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW (2005) Unconventional

topology of self peptide-major histocompatibility complex binding by a human

autoimmune T cell receptor. Nature Immunology 6: 490–496.

Structure-Based Prediction of MHC-Peptide Binding

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e25055


