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Abstract

Monte Carlo simulation with a novel acceptance procedure is used to find optimal temperature 

profiles for liver machine perfusion. Numerical results for MC simulation are compared to a 

greedy approach and to current practice in machine perfusion research. Results show that the 

proposed Monte Carlo simulation approach finds optimal temperature profiles that agree with 

current clinical research practice.
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1. INTRODUCTION

Static Cold Storage (SCS), i.e., flushing the organ with a solution such as University of 

Wisconsin (UW) solution and then placing the organ on ice, is the current gold standard for 

organ preservation. Unfortunately, SCS is time limited because the organ is in a hypoxic 

state. This depletes energy carriers like ATP and can cause a buildup of lactic acid over 

time that can lead to cell death if continued for too long. In addition, the number of 

wait-listed transplantation patients exceeds the number of available organs. Thus, many 

patients die before receiving a donor organ. This is, in part, because many ‘marginal’ 

organs are discarded because they do not meet organ viability criteria. As a result, machine 

perfusion (MP) is gaining acceptance as a tool for increasing the number of viable organs for 

transplantation. Figure 1 shows a schematic of a liver perfusion machine, in which the liver 

is supplied with nutrients (e.g., Williams Medium E solution) containing dissolved oxygen, 

often referred to a perfusate.

Machine perfusion is classified by the temperature protocol used; however, the two most 

common protocols are Subnormothermic Machine Perfusion (SNMP) and Normothermic 

Machine Perfusion (NMP), which use fixed temperatures of 21-34 °C and 35-37 °C 

respectively. Many experimental studies have shown that when marginally ischemic livers 
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are subjected to machine perfusion there is an increase in biomarkers such as ATP content, 

energy charge, and bile production and concomitant clearance of lactic acid.

In a recent paper, Lucia et al. (2022) have successfully used a liver metabolism model 

and a Nash Equilibrium approach to simulate both SCS and warm ischemia. Numerical 

simulation results were compared with experimental data and demonstrate that the NE 

approach provides ‘good’ matches to experimental data.

In this paper, we use the liver metabolism model developed by Lucia et al. (2022) to 

simulate liver machine perfusion and couple this with Monte Carlo simulation to determine 

optimal temperature protocols.

2. A BRIEF LITERATURE SURVEY

Mathematical modeling of metabolism using a systems approach has a long history, dating 

back to Michaelis and Menton (1913). More recent pseudo-steady-state numerical modeling 

and simulation approaches include Flux Balance Analysis (FBA) introduced by Varma and 

Palsson (1994), the Mixed Integer Linear Programming (MILP) method of Lee et al. (2000), 

the dynamic FBA (or dFBA) method of Mahadevan et al. (2002). Unsteady-state modeling 

and simulation methods (e.g., Zielinski and Palsson, 2012), on the other hand, use chemical 

reaction kinetics to model metabolism but require many kinetic parameters, which grow 

exponentially with model size to regressed to data to be useful. There are also Metabolic 

Flux Analysis (MFA) approaches that combine the use of experimental data and systems 

engineering. See, for example, Yang et al. (2002), Lee et al. (2003), Uygun et al. (2007), 

Henry et al. (2007), Sharma et al. (2011), Orman et al. (2011a, b), and others. More recently, 

Lucia and coworkers have proposed a Nash Equilibrium approach to metabolic network 

modeling and have successfully applied the NE approach to acetyl CoA synthesis in E Coli 
(2016), the methionine salvage pathway (2018), and liver metabolism (2022).

3. METABOLIC NETWORK MODELING

3.1 Nash equilibrium modeling

The NE approach to modeling metabolic networks treats enzymes as players in a multi-

player game in which each enzyme minimizes the Gibbs free energy of the reaction it 

catalyzes. The resulting formulation gives rise to N distinct nonlinear programming (NLP) 

problems in which the unknown variables are the fluxes of metabolites, cofactors, and 

enzymes, where N is the number of chemical reactions. Temperature effects are accounted 

for by using the Gibbs-Helmholtz equation and the only model parameters needed are 

standard state Gibbs free energy and enthalpies of formation. See Lucia et al. (2018) 

for a tutorial on the Nash Equilibrium approach that includes basic model formulation, 

linear dependence of charge balance constraints, enzymatic reactions, up/down regulation of 

enzymes, and feedback and allosteric inhibition.

3.2 A model of liver metabolism

The model of liver metabolism used in this paper is given in Lucia et al. (2022) and 

consists of three cellular compartment – the cytosol, inner membrane, and mitochondria, 
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27 metabolic pathways, 64 chemical reactions involving mostly charged species, 309 

metabolites and cofactors, 205 mass (charge) balances, and 81 model parameters (i.e., Gibbs 

free energies and enthalpies of formation). Figure 2 in Lucia et al. (2022) is a superstructure 

representation of liver metabolism that includes inter-pathway transport.

4. LIVER MACHINE PERFUSION NUMERICS

The numerical simulation of liver machine perfusion consists of two parts – (1) SCS 

simulation followed by (2) the simulation of MP using a given temperature protocol. Thus, 

the fluxes at the end of a SCS simulation are taken as the starting point (or initial conditions) 

for all MP simulations. Finally, all computations were done on a Dell Vostro laptop with an 

Intel I7 core processor using the Lahey-Fijitsu LF95 compiler.

4.1 Base case simulations: SNMP and NMP

The base cases chosen for comparison in this study were SNMP and NMP, which both 

use a constant temperature protocol of 21 and 37 °C respectively at each NE iteration. 

Liver viability was measured using a weighted multi-objective criterion (or reward, R) that 

included (1) glucose consumption, (2) net ATP synthesis, (3) net mevalonate synthesis as a 

measure of bile production, and (4) energy charge having the form

R = w1 G + w2ATP + w3Mev + w4EC

(1)

where G denotes glucose consumption, ATP is the net ATP synthesis, Mev denotes 

mevalonate production, EC is energy charge, and w1 through w4 are the weights.

Following Southard et al. (1991), SCS simulations consisted of flushing the liver with the 50 

ml of UW solution as shown in Table 1.

During SCS the liver receives no nutrients and is in a hypoxic state, ATP is depleted, and 

there is a buildup of lactate. In SNMP and NMP, cells synthesize ATP and bile (Mev), 

increase energy charge, and clear lactate. Tables 2 and 3 show results for SCS.

followed by 4 hours of MP with w1 = w2 = w3 = w4 = 1 since all metrics are important for 

liver viability.

The key nutrients in the Williams Medium E solution used in the MP simulations are shown 

in Table 3 and consist of glucose, amino acids, and bicarbonate. The amount of oxygen 

dissolved in the Williams Medium E solution was determined from the solubility of O2 at 

the MP temperature.

Note that the overall performance of NMP is slightly worse than SNMP as measured by 

the reward, largely due to much lower ATP generation. Both machine perfusion protocols 

increase the energy charge, consume glucose, produce mevalonate, and satisfy pH and 

lactate concentration constraints.
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4.2 Optimization

Optimal temperature profiles are important in machine perfusion because they maximize 

organ viability and avoid thermal issues, which potentially improve the chances of 

successful transplant. The optimization problem to be solved is as follows:

max
T (t)

R

(2)

such that pH > 7.3

(3)

[lactate] < 2.3 mM

(4)

where T (t) is the discrete temperature protocol (or policy in machine learning terminology), 

{T1, T2, …, TN}, that can be adjusted every 30 minutes; thus, the time horizon is 4 hours as 

in the SNMP and NMP simulations.

4.2.1 Greedy Optimization—One intuitive way to try and improve the reward (or value 

of the multi-objective function) is to apply a greedy approach. Greedy methods chose the 

action that results in the highest reward at each discrete time step but do not consider future 

rewards. Although greedy optimization tends to be faster than many other methods and 

provide improvement, they often fail to find the best solution.

In this work, greedy optimizations were initialized using a SCS solution for the metabolite 

and cofactor fluxes and the SNMP temperature protocol. Greedy exploration was conducted 

using temperature changes (i.e., actions) of + 2 °C. For each choice of temperature at 

each 30-minute interval, a complete simulation of the Nash Equilibrium model of the liver 

starting from a SCS simulation followed by a MP simulation and evaluation of glucose 

consumed, ATP and mevalonate generated, and energy charge as well as the viability 

constraints (3) and (4) was required.

4.2.2 Monte Carlo Optimization—A much better way of determining the optimal 

temperature profile is to run complete episodes of SCS plus MP and use a simple but 

effective Monte Carlo sampling procedure to exploit the fact that any optimal discrete 

temperature protocol should satisfy

T1 ≤ T2 ≤ ⋯ ≤ TN

(5)
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Note that (5) allows for SNMP and NMP. Equation (5) also helps to define an acceptance 

rule. That is, a new temperature policy is accepted if and only if the following two 

conditions are satisfied:

R T tk + 1 > Rmax T tk

(6)

T1
k + 1 ≤ T2

k + 1 ≤ ⋯ ≤ TN
k + 1

(7)

where Rmax T tk  is the best value of the reward and T tk  is a candidate for the best 

temperature policy at the end of step k. While (6) leads to a conservative (or lower) 

acceptance ratio because it does not accept a policy if the reward decreases, it provides 

robustness to the Monte Carlo optimization approach.

The Monte Carlo optimization calculations were initialized in the same way that the greedy 

optimizations were initialized (i.e., using SCS fluxes of metabolites and cofactors and an 

SNMP temperature policy). Table 5 shows results for the greedy approach and Monte Carlo 

optimization with 250 steps while Table 6 gives results different numbers of Monte Carlo 

cycles ranging from 100 to 250.

Tables 4 and 5 show that MP with greedy optimization provides improvement over SNMP 

and NMP but does significantly worse when compared to Monte Carlo optimization. That is, 

greedy produces more bile (mevalonate) per liver cell than either SNMP and NMP and does 

this with very little computational overhead (12.20 CPU sec.). However, greedy optimization 

results in slightly less ATP generated/per liver cell than SNMP but considerably more 

ATP/per liver cell than NMP respectively.

Table 5 also shows that Monte Carlo optimization yields the best results but at a 

higher computational cost because the acceptance ratio for Monte Carlo optimization 

is significantly lower than that of greedy optimization. That is, MP with Monte Carlo 

optimization results in Tables 4 and 5 show a %, % and % improvement in ATP 

generation/per liver cell when compared o SNMP, NMP and greedy respectively.

The results in Table 6 show that the greatest improvement in machine perfusion performance 

occurs from 100 to 150 Monte Carlo cycles. After that, there are only improvements in net 

ATP produced and energy charge occur at the expense of glucose consumption. From 250 

cycles on there is no further improvement in performance.

Table 7 gives the temperature policies as a function of Monte Carlo cycles. Note that there 

is a gradual difference in the temperature policy for results corresponding to 100, 150, 200, 

and 250 Monte Carlo cycles and concomitant gradual improvements in machine perfusion 

performance in using additional Monte Carlo cycles. See Table 6. Moreover, the temperature 
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changes at each 30-minute interval following the first hour are irregular with the largest 

temperature change of ~9.3 °C taking place at hour 2.

In contrast, the temperature policy for greedy optimization, T(t) = {T1, T2, …, T8}, was {21, 
27, 29, 29, 29, 33, 37, 37 °C} but showed a larger jump in temperature at hours 2 and 3 

of four °C. Note that the qualitative results for determining optimal temperature protocols 

for greedy and Monte Carlo optimization are quite different. The greedy approach reaches a 

suboptimal solution with a reward of R = 3.1748 with values of ATP produced and energy 

charge of 1.2826 and 0.5882 respectively in 12.20 CPU sec. While much faster than Monte 

Carlo optimization, the greedy approach does not find the best overall MP performance.

4.2.3 Other Considerations—Since the number of Monte Carlo cycles used to 

determine the results in Tables 6 and 7 was small, we repeated the optimizations using 

10,000 Monte Carlo cycles to ensure that the computations were not trapped in a local 

minimum. The results shown in Tables 6 and 7 for 250 cycles remained unchanged when 

10,000 cycles were used.

Given that the Monte Carlo optimizations indicate that temperature profiles that adjust the 

perfusion temperature upwards periodically result in improvements in net ATP production 

and reward, we tried using a monotonically increasing, equally spaced temperature protocol 

T(t) = {23, 25, 27, 29, 31, 33, 35, 37 °C}. The performance of this policy fell between 

SNMP and NMP with a reward, R = 3.0647, ATP production of 1.2834 pmol/cell, bile 

production of 0.2878 pmol/cell, glucose consumption of 0.9179 pmol/cell, and an energy 

charge of 0.5755. The corresponding lactate concentration was 1.906 mM and the pH was 

7.5678.

6. CONCLUSIONS

To our knowledge, this work represents the first systematic application of optimization 

for the determination of temperature protocols for liver machine perfusion. A novel multi-

objective function with constraints was proposed as an optimization model for liver viability 

prior to transplantation. Both greedy and Monte Carlo optimization were conducted and 

resulted in improvements in the ATP generation and energy charge of liver cells during 

machine perfusion. The specific example studied in this work was liver machine perfusion 

for 4 hours. Figure 2 shows the key results for this study for SNMP, NMP, as well as MP 

using greedy optimization and Monte Carlo optimization.

Results for the machine perfusion temperature policies determined by greedy and Monte 

Carlo showed a somewhat unexpected unequal temperature adjustments upward every 30 

minutes after the first hour, eventually reaching body temperature after 3 and one-half hours. 

Monte Carlo optimization resulted in significant improvements in ATP production/glucose 

consumed accompanied by smaller improvements in bile production and energy charge. 

The larger increases in ATP production suggest the use of ATP synthesis or ATP content 

as a biomarker for liver graft viability prior to transplantation and reaffirms findings and 

recommendations reported in Berendsen et al. (2012), Bruinsma et al. (2013), and others. 

The Monte Carlo optimization findings also agree quite well with recent clinical ex situ 
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gradual rewarming studies in kidney machine perfusion. See, for example, Gallinat et al. 

(2018) and Mahboub et al. (2020).

However, much work remains to be done. Some interesting extensions of this work include 

studying the impact of

1. Initializing MP using different SCS simulations and initial temperature policies 

such as hypothermic machine perfusion (HMP) or mid-thermic machine 

perfusion (MMP). HMP and MMP operate at lower temperatures – 0 – 12 °C and 

13 – 20 °C respectively. These lower MP temperature conserves ATP depletion 

and, in principle, result in lower recovery demands for machine perfusion. 

Nonetheless, it would be interesting to see how these lower protocols effect the 

performance of the greedy and Monte Carlo optimizations.

2. Optimizing the perfusate (i.e., nutrients) composition using Monte Carlo 

optimization. This is an important problem that has not been systematically 

studied before. Effort in this regard could also include studying the impact of 

the addition of other constituents that are not present in standard preservation 

solutions like Williams Medium E and Histidine-Tryptophan-Ketoglutarate 

(HTK).

3. Different metrics for the multi-objective function to measure MP performance. 

The multi-objective function used in this work is an outgrowth of the criteria 

described in Laing et al. (2017), which are used to assess liver viability and 

transplantability. However, there may be other metrics that potentially prove 

more valuable in this regard.

These first three extensions represent, in our mind, ‘low hanging fruit’ and have the potential 

to significantly improve the performance and practice of machine perfusion. Other extension 

that are more numerical in nature include developing

4) Better Monte Carlo acceptance rules to improve computational efficiency. As 

noted, the Monte Carlo acceptance rules proposed in this work, (6) and (7), are very 

conservative and generally yield acceptance ratios of 0.43 – 0.51, which is certainly 

reasonable. While these acceptance rules are within the range of ‘good’ acceptance 

ratios for Monte Carlo methods, it may be possible to find better acceptance rules 

– especially when nutrient optimizations are considered in conjunction with finding 

optimal temperature policies.

5) Development of a reinforcement learning framework for paring donor livers with 

recipients. Every donor liver is different as is each recipient. Both greedy and 

Monte Carlo optimization can be used within a reinforcement learning framework 

to determine the most suitable paring of donor livers and recipients.
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Figure 1. 
Schematic of liver perfusion machine
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Figure 2: 
Liver machine perfusion temperature policies for SNMP, NMP, GREEDY, and MONTE 

CARLO. Numbers in parenthesis represent amounts of ATP generated in pmol/cell.
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Table 1:

UW Solution

Compound Amount (pmol)

Glutathione 0.6

Adenosine 0.3

Water 5.54
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Table 2:

Simulation Results from Static Cold Storage

T (°C) net ATP (pmol/cell) pH Lactate (mM) Energy Charge

4 −2.586 8.93 4.11 0.4395
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Table 3.

Williams Medium E Components

Key Nutrients Composition (g/L)

Glucose 2

Glutamine 0.292

Glutathione 0.00005

L-serine 0.01

Glycine 0.05

L-alanine 0.09

L-arginine 0.05

L-aspartate 0.03

L-cysteine 0.04

bicarbonate as needed
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Table 4:

Simulation Results for SNMP and NMP

SNMP NMP

T (°C) 21 37

|G| (pmol/cell) 0.6185 1.122

ATP (pmol/cell) 1.4909 0.7990

Mev (pmol/cell) 0.2269 0.2898

pH 7.59 7.54

[lactate] (mM) 1.9354 1.9031

EC 0.5941 0.5597

R 2.9304 2.7713
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Table 5:

Greedy and Monte Carlo Optimization Results

Greedy Monte Carlo

|G| (pmol/cell) 1.0046 0.9308

ATP (pmol/cell) 1.2826 1.7246

Mev (pmol/cell) 0.2993 0.2936

pH 7.5526 7.5654

[lactate] (mM) 1.9043 1.9080

EC 0.5882 0.6024

R 3.1748 3.5514

acceptance ratio 0.6734 0.4320

Time (sec.) 12.20 87.12
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Table 6:

Effect of Monte Carlo Cycles on Results

Monte Carlo Steps

Metric 100 150 200 250

|G| (pmol/cell) 0.7568 0.8673 0.8841 0.9308

ATP (pmol/cell) 1.4328 1.3807 1.5749 1.7246

Mev (pmol/cell) 0.2774 0.2910 0.2912 0.2936

pH 7.5796 7.5756 7.5708 7.5654

[lactate] (mM) 1.9090 1.9065 1.9061 1.9080

EC 0.5928 0.5915 0.5986 0.6024

R 3.0598 3.1306 3.3489 3.5514

acceptance ratio 0.5100 0.5000 0.4500 0.4320

Time (sec) 25.71 54.10 58.09 87.12
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Table 7:

Temperature Protocol vs. Monte Carlo Cycles

Monte Carlo Cycles

100 150 200 250

T1 21 21 21 21

T2 21 21 21 21

T3 21 21 24.38 23.87

T4 21 26.62 26.62 26.62

T5 21.53 28.38 28.38 35.91

T6 26.11 35.59 35.59 36.07

T7 31.89 36.66 36.99 37

T8 37 37 37 37
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