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ABSTRACT

Aberrant microRNA (miRNA) expression is impli-
cated in tumorigenesis. The underlying mecha-
nisms are unclear because the regulations of each
miRNA on potentially hundreds of mRNAs are sam-
ple specific. We describe a novel approach to in-
fer Probabilistic MiRNA–mRNA Interaction Signature
(‘ProMISe’) from a single pair of miRNA–mRNA
expression profile. Our model considers mRNA
and miRNA competition as a probabilistic func-
tion of the expressed seeds (matches). To demon-
strate ProMISe, we extensively exploited The Cancer
Genome Atlas data. As a target predictor, ProMISe
identifies more confidence/validated targets than
other methods. Importantly, ProMISe confers higher
cancer diagnostic power than using expression pro-
files alone. Gene set enrichment analysis on av-
eraged ProMISe uniquely revealed respective tar-
get enrichments of oncomirs miR-21 and 145 in
glioblastoma and ovarian cancers. Moreover, com-
paring matched breast (BRCA) and thyroid (THCA)
tumor/normal samples uncovered thousands of
tumor-related interactions. For example, ProMISe–
BRCA network involves miR-155/183/21, which ex-
hibits higher ProMISe coupled with coherently higher
miRNA expression and lower target expression; on-
comirs miR-221/222 in the ProMISe–THCA network
engage with many downregulated target genes. To-
gether, our probabilistic approach of integrating ex-
pression and sequence scores establishes a func-
tional link between the aberrant miRNA and mRNA
expression, which was previously under-appreciated
due to the methodological differences.

INTRODUCTION

MicroRNAs (miRNAs) are small (∼22 nucleotides) RNA
molecules that base-pair with mRNA primarily at the 3′ un-
translated region (UTR) to cause mRNA degradation or
translational repression (1). Recent studies have linked al-
terations in miRNA expression with various cancers (2–3).
Functional characterization of miRNAs depends on precise
identification of their targets. Earlier developed miRNA
target prediction programs are mostly based on sequence
complementarity, evolutionary conservation, free energy
and/or target site accessibility (4). Although useful, these
sequence-based methods often suffer from high false pos-
itive rate and are unable to capture sample-specific inter-
actions. More recently developed methods have incorpo-
rated mRNA and miRNA expression data generated by
microarrays or RNA-seq to predict functional miRNA–
mRNA interactions (MMIs). Despite diverse modeling ap-
proaches, a majority of the expression-based methods rely
on negative expression correlation between miRNA and
mRNA. In terms of model complexity, these methods range
from the simplest Pearson correlation to more sophisticated
Bayesian method. In particular, GenMiR++ is based on
variational Bayesian to infer the posterior probabilities of
MMIs as represented by the linear coefficients in a regres-
sion framework (5). Regularized least-squares linear regres-
sion such as LASSO has also been used to calculate a sparse
linear solution of the most significant MMI (6).

While a step forward from the sequence-based meth-
ods, there are two important limitations in the current
expression-based methods. First, these methods usually re-
quire a large number of samples to compute MMIs. Thus,
they have difficulty in identifying ‘personalized’ MMIs in
individual samples. Indeed, each tissue or cell line has a
unique miRNA regulatory network with weighted MMI
edges, which can be used as molecular signatures similar to
the uniqueness of mRNA/miRNA expression profile (2,7).
Second, while most methods take into account the potential
competition among miRNAs for the same mRNA in regres-
sion models, the reciprocal competition among mRNAs for
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Figure 1. The proposed competition model schema. (A) Expressed seed
match of mRNA i for miRNA k is defined as the product of the num-
ber of target sites ci, k and the total expression of mRNA i. The prob-
ability of mRNA i ‘attracting’ miRNA k takes into account the expres-
sion of miRNA k and the total expression of other mRNA x(t) that carries
compatible seed match for miRNA k. (B) Conversely, the expressed seed
k for mRNA i is the number of target sites that miRNA k can recognize
on mRNA i multiplied by the expression of miRNA k. The probability of
miRNA k targeting mRNA i considers the ‘total’ expression of mRNA i
and all of the other miRNA expression z that can recognize the target sites
of mRNA i. (C) A toy example. The inputs are 10 simulated mRNAs and
4 miRNA expression and a 10 × 4 seed-match matrix. ProMISe estimates
the total mRNA expression based on the mRNA competition. It also in-
fers the miRNA competition based on the total mRNA and the observed
miRNA expression. The joint competition is the element-wise product of
the above two matrices. Colored rectangles highlight some model proper-
ties explained in the main text.

the same miRNA has not been systematically addressed.
Yet both competitions are experimentally supported. For
the former, not only the endogenous miRNAs may compete
for the same mRNA harboring overlapping seed matches
but also for the limited Argonaute (Ago), the catalytic com-
ponent of the RNA silencing complex (RISC) (8). For the
latter competition, Arvey et al. (9) showed that miRNAs
that have a higher number of available target transcripts will
downregulate each individual target gene to a lesser extent
than those with a lower number of targets. In other words,
the affected mRNA target population ‘dilutes’ the individ-
ual miRNA effect by sharing target sites among them.

In this paper, we describe three related models via a
novel approach inspired by a ‘role-switch’ analogy. The
first (and second) model, namely ‘mRNA competition’ (and
‘miRNA competition’), takes into account the competi-
tions among mRNAs (and miRNAs) for the same miRNA
(and mRNA) using paired expression profile coupled with
target site information (Figure 1). The third model ‘joint
competition’ combines the former two predictions as joint
probabilities. Using the expression data from (10) and The
Cancer Genome Atlas (TCGA) (11), we first assess the
proposed models as a target prediction tool by bench-
marking the confidence or validated targets. The proposed
models and the resulting probabilistic scores collectively
termed as the Probabilistic MiRNA–mRNA Interaction
Signature (ProMISe) confer competitive performance com-
paring with existing sequence- and regression-based meth-
ods. Furthermore, ProMISe signature exhibits competitive
diagnostic power in discriminating normal/tumor profiles
compared with using expression profiles alone. One ex-
planation for the above observations is that ProMISe can
capture complex MMIs not easily identified by examin-
ing expression profiles alone. For instance, some specific

MMI changes in tumor are not only due to the expres-
sion changes of the corresponding miRNA/mRNA mem-
bers but also due to the expression changes of the compet-
ing miRNAs and/or mRNAs. Moreover, genes with aber-
rant ProMISe signature are enriched for cancer-specific and
oncomir-regulated gene sets based on gene set enrichment
analysis (GSEA) (12). Some of the oncogenes with aberrant
interactions do not exhibit significant expression changes.
Thus, the inferred ProMISe signature can provide comple-
mentary information to the expression profiles. Integrative
differential analysis of expression and ProMISe signature
using matched tumor/normal samples from breast and thy-
roid cancers revealed many tumor-specific MMIs, involving
canonical oncogenes and oncomirs. Together, our integra-
tive approach bridges the aberrant miRNA and gene expres-
sion profiles with miRNA targeting mechanism, which en-
ables us to explore cancer biology from a unique molecular
perspective.

MATERIALS AND METHODS

ProMISe

We propose a novel probabilistic approach to infer prob-
abilistic miRNA–mRNA interaction signature (ProMISe)
using a ‘single’ pair of miRNA–mRNA expression pro-
file. Assume we have N mRNAs and M miRNA. Let x
and z be the observed mRNA and miRNA expression vec-
tors, respectively, and C be the N × M seed-match matrix,
where ci, k denotes the number of target sites on mRNA i
for miRNA k. Assuming the cell is at a condition-specific
equilibrium state, where mRNA are being dynamically tran-
scribed and degraded (partly due to miRNA binding), then
the total amount of transcribed mRNA targets x(t) are un-
observed and higher than the observed (equilibrium) ex-
pression level x(o). Our goal is to infer p(ti,k|x(t), z(t), C) for
whether miRNA k targets mRNA i, given the (hidden) to-
tal transcription levels of mRNA and miRNA. Notably,
z(t) = z(o) ≡ z, assuming that the observed miRNA expres-
sion is the same as its total transcribed levels. Thus, we drop
the superscript for z in the following formulation. Here we
estimate p(ti,k|x(t), z(t), C) by three related models reflect-
ing mRNA competition, miRNA competition, and joint
competition, respectively. Let c.,k and ci,. denote the num-
ber of target sites of each mRNA for miRNA k and the
number of target sites that mRNA i has for each miRNA,
respectively. In the mRNA competition model, we express
p(t(x)

i,k |x(t), zk, c.,k) as the probability of mRNA i ‘attracting’
miRNA k, given the expression of all of the mRNAs that
miRNA k can target according to c.,k (Figure 1A). Thus,
it reflects the mRNA competition for the same miRNA.
Specifically, the probability that mRNA i attracting a spe-
cific miRNA k is calculated as the reversed probability that
miRNA k is attracted by other mRNA j (j �= i):

p(t(x)
i,k |x(t), zk, c.,k) = 1 −

[∑
j �=i c j,kx(t)

j∑
j ′ c j ′,kx(t)

j ′

]zk

. (1)

Note the use of the exponent zk from Equation (1) to reflect
that the higher the miRNA k expressed the more likely it
will be attracted to mRNA i. Conversely, the miRNA com-
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petition model p(t(z)
i,k |x(t)

i , z, ci,.) reflects the probability that
miRNA k targets mRNA i, taking into account the expres-
sion of all of the miRNAs that can target mRNA i accord-
ing to ci,. (Figure 1B). The probability that miRNA k target-
ing a particular mRNA i is calculated as the reversed prob-
ability that mRNA i is targeted by other miRNA l (l �= k):

p(t(z)
i,k |x(t)

i , z, ci,.) = 1 −
[∑

l �=k ci,l zl∑
l ′ ci,l ′ zl ′

]x(t)
i

. (2)

Thus, the first and second models respectively reflect the
‘dilution-effects’ of multiple mRNAs targeted by the same
miRNA or the mRNA competition (9) and the competition
among miRNAs for the same mRNA (13). Finally, we ex-
press the joint competition as p(t( j )

i,k |x(t), z, C):

p(t( j )
i,k |x(t), z, C) = p(t(x)

i,k |x(t), zk, c.,k)p(t(z)
i,k |x(t)

i , z, ci,.). (3)

Notably, an underlying assumption of Equation (3) is that
mRNA competition and miRNA completion are indepen-
dent events. Algorithmically, we estimate Equations (1–3)
together in two phases. As initialization, we set x(t) = x(o).
We first estimate Equation (1). Given Equation (1), the ex-
pected reduction level due to miRNA k binding is estimated
as

�xi,k = ηp(t(x)
i,k |x(t), zk, c.,k)x(t)

i , (4)

where � is the ‘learning rate’ (default: 0.001). Given �xi, k,
the total transcribed mRNA is updated in two steps as fol-
lows:

x(t)∗
i = x(t)

i +
∑

k

�xi,k (5)

x(t)
i = x(t)∗

i∑
i x(t)∗

i

T, (6)

where Equation (5) reflects the total reduction of mRNA
i by each miRNA and T defines the transcriptional capac-
ity of the cell (default: T = 1.3

∑
x(o)

i , where 1.3 is an ar-
bitrary value that reflects the total transcribed mRNA ‘be-
fore’ miRNA repression). We then estimate Equation (2).
The model alternates between estimating (1) and (2) until
p(t(x)

i,k |x(t), zk, c.,k) and p(t(z)
i,k |x(t)

i , z, ci,.) increase by less than
a threshold (tol) (default: 10−5) at tth iteration:

max
[∣∣∣p(t(x)

i,k |x(t), zk, c.,k)t − p(t(x)
i,k |x(t), zk, c.,k)t−1

∣∣∣] ≤ tol

max
[∣∣∣p(t(z)

i,k |x(t)
i , z, ci,.)t − p(t(z)

i,k |x(t)
i , z, ci,.)t−1

∣∣∣] ≤ tol.

Target site information

We downloaded human target site information from Tar-
getScanHuman 6.2 database (14). For each mRNA–
miRNA pair, we calculated the number of corresponding
conserved target sites. For multiple transcripts of the same
gene, we used transcripts with the longest 3′UTR. The end
result is an N × M seed-match matrix of N distinct mRNAs
each corresponding to a distinct gene and M distinct miR-
NAs. We also obtained the context+ scores (CS) (15) and

probability of conserved targeting (PCT) (14) as sequence-
based scores for comparison.

HEK293 test set and power analysis

Gene and miRNA expression from HEK293 as measured
by serial analysis of gene expression (SAGE) and small
RNA-seq were obtained from (10). We constructed the pos-
itive and negative target sets from the PAR-CLIP and mi-
croarray data generated by (10) following similar way de-
scribed in (16). We first downloaded from doRiNAdb (17)
the confidence AGO2 targets identified from PAR-CLIP
data in the same study. We then downloaded from Gene Ex-
pression Omnibus (GEO) (GSE21577) the microarray data
measuring gene expression in HEK293 after treated with
mock control or a cocktail chemistry inhibiting 27 most
highly expressed miRNA in HEK293. The true targets of
the 27 miRNA are expected to exhibit increased expression
level upon miRNA inhibition. Thus, the confidence posi-
tive targets were defined as the genes that are AGO2 tar-
gets, have at least one seed match to the 27 miRNA, and
exhibit fold-change greater than 0.1. To create a confidence
set of non-targets, we selected the same number of genes
that are not AGO2 targets and exhibit non-positive fold-
changes with priority given to genes with decreased expres-
sion. We then assessed the accuracy of the methods using
receiver operating characteristic (ROC) and precision-recall
curves (PRCs) (18) (details described in the simulation tests
in Supplementary Data).

TCGA data collection and processing

Expression data were downloaded from TCGA Data Por-
tal (https://tcga-data.nci.nih.gov). Only the processed data
(level 3) were used. To date, there are 10 cancer types that are
associated with data both unrestricted for publication and
containing paired miRNA and mRNA expression (Table
1). Except for glioblastoma multiforme (GBM) and ovarian
serous cystadenocarcinoma (OV), for which the microar-
ray data were used, RNA-seq(V2) and miRNA-seq were
used for mRNA and miRNA expression data, respectively.
Normal/tumor information for each sample were obtained
from Biospecimen Metadata Browser (https://tcga-data.
nci.nih.gov/uuid/uuidBrowser.htm) and mapped based on
the sample ID. For the sequencing data, we used the RPKM
(read per kilobase of exon per million mapped reads) values
for mRNA and RPM (reads per million miRNA mapped)
for miRNA. To ensure individual samples are comparable,
we further quantile normalized the RPKM and RPM val-
ues within each disease type.

Validated miRNA targets, oncogenes, oncomirs, OMIM
genes and cancer gene hubs

Validated targets were downloaded from MirTarBase 3.5
(19), the oncogenes from COSMIC (20), the oncomirs from
(3) and OMIM (Online Mendelian Inheritance in Man)
genes from http://www.omim.org/. Putative cancer gene
hubs, which are discriminative of luminal and basal sub-
types of 16 breast cancer cell lines, were obtained from (21).

http://tcga-data.nci.nih.gov
https://tcga-data.nci.nih.gov/uuid/uuidBrowser.htm
http://www.omim.org/
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Table 1. Paired expression data from TCGA

Cancer mRNA miRNA Normal Tumor Total

BRCA 13306 710 14 317 331
COAD 13306 710 0 177 177
GBM 10344 338 10 496 506
HNSC 13306 710 0 37 37
KIRC 13306 710 0 274 274
LUSC 13306 710 0 132 132
OV 8371 542 8 565 573
READ 13306 710 0 66 66
THCA 13306 710 58 485 543
UCEC 13306 710 1 124 125

BRCA: breast cancer; COAD: colon adenocarcinoma; GBM: glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KIRC: clear cell
carcinoma; LUSC: lung squamous cell carcinoma; OV: ovarian serous cystadenocarcinoma; READ: rectal adenocarcinoma; THCA: thyroid carcinoma;
UCEC: uterine corpus endometrial carcinoma.

Methods of comparison

We compared ProMISe constructed from the three pro-
posed competition models with six methods, namely Seed
Matrix containing conserved target sites from TargetScan,
TargetScan PCT, TargetScan Context Score, Pearson cor-
relation, LASSO and GenMiR++. For Seed Matrix and
TargetScan PCT/context score, which do not consider ex-
pression data, the mRNA–miRNA interactions were sim-
ply ranked by the corresponding number of target sites and
specific scores. To be fair, we filtered out interactions involv-
ing non-expressed miRNA beforehand. Pearson correlation
was computed using R built-in function cor. Here targets
with negative correlation were ranked at the top. We imple-
mented LASSO using glmnet with default parameters (i.e.
� = 1 for LASSO) except that the best � was chosen using
cross-validation function cv.glmnet (22). The predictors in
the LASSO model are the miRNA expression multiplied by
the seed-match matrix. Thus, the expression of a miRNA
has no effect on mRNA expression if the corresponding
seed-matrix entry is zero. Here again targets with negative
linear coefficients are ranked at the top. To run GenMiR++
(5) in Matlab, we converted the above seed matrix to binary
matrix by setting nonzero target site count to 1. Due to the
lack of validated targets, conventional ROC and PRC ap-
proaches cannot distinguish the method performances on
TCGA data. Instead, we assessed each method by the num-
ber of validated targets in their top ranked 500–2000 targets
with 500-interval (Figure 2).

Unsupervised learning on cancer data

Hierarchical clustering was applied to expression profiles or
ProMISe signature using R function hclust (Figure 3A,
Supplementary Figure S5). One minus Pearson correlation
and average linkage were used.

Supervised learning on cancer data

To classify samples into normal and cancer, we employed
regularized logistic regression with L1/L2-norm using R
package glmnet (22). Specifically, we trained a linear model
with � = 0.5 on training set using gene expression, miRNA
expression, combined expression or ProMISe signature
from the three competition models. In each training pro-
cess, the only free parameter � was determined by 10-

Figure 2. Identification of confidence or validated targets. (A) Based on
positive/negative targets and the prediction scores, ROC and PRC were
generated for the six methods, where Seed Matrix, TargetScan Context
Score and PCT are sequence-based and the other three are proposed com-
petition models. (B) The number of validated targets selected by each
method among their top 1000 rankings as a function of sample. Ten pan-
els correspond to 10 cancer types. The curves are smoothed using loess
from R function geom smooth. (C) Comparison of the competition mod-
els with other expression-based methods including Pearson correlation,
LASSO and GenMiR++.

Figure 3. Cancer diagnosis. (A) Hierarchical clustering of expression or
ProMISe signature for thyroid cancer. Red and blue colors indicate tumor
and normal samples, respectively. (B) Regularized logistic regression was
applied to classify normal and thyroid cancer tumor profiles using expres-
sion or ProMISe signature. Mean cross entropy (MCE) from LOOCV was
used to assess the performance of each method. Superior method confers
lower MCE and thus higher −log10(MCE).
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fold cross-validation using cv.glmnet. The performances
of the trained models on the training and testing set
were rigorously evaluated by leave-one-out cross-validation
(LOOCV) in terms of mean cross entropy (MCE) error:

MCE = 1
N

N∑
n=1

−tn log pn (7)

where t is a binary indicator for tumor (1) or normal (0) and
p is the predictive probability from the logistic regression
model for sample n of being tumor. Thus, MCE is small if
both tn and pn are high or low at the same time and large
when tn is high and pn is small. We applied LOOCV to
THCA, which has at least 10% normal samples (Table 1).
Figure 3B displays the resulting MCE in barplots.

Permutation tests

The normal and tumor samples in THCA are not balanced
(58 normals versus 485 tumors), which may lead to overesti-
mation of model performance in terms of the MCE (Equa-
tion (7)). To assess the classifiers’ performances more rig-
orously, we conducted 100 permutation tests by randomly
swapping values between normal and tumor samples and
repeating the above LOOCV for each type of biomarkers.
The empirical p-value of the permutation test is defined as
the fraction of tests having MCE as least as good as the
MCE derived from the real test.

Gene set enrichment analysis

We applied GSEA (2.0.13) to both gene expression and
genes with averaged ProMISe signature across miRNAs
(12). Default setting was used. Gene sets were downloaded
from the Molecular Signatures Database (MSigDB) (http:
//www.broadinstitute.org/gsea/msigdb/index.jsp). The max-
imum and minimum number of genes allowed in each gene
set was set to 5000 and 15, respectively.

Paired sample comparison

Paired t-test (t.test(..., paired = T) in R) was per-
formed to compare quantile normalized ProMISe or ex-
pression profiles from the 14 and 58 matched tumor/normal
samples in BRCA and THCA, respectively.

Software availability

ProMISe was implemented as an R package available
at Bioconductor: www.bioconductor.org/packages/release/
bioc/html/Roleswitch.html.

RESULTS

ProMISe

The proposed model takes as inputs the paired mRNA and
miRNA expression and the seed-match matrix. It then es-
timates the probabilities of different mRNA ‘attracting’ the
same miRNA (i.e. mRNA competition; Figure 1A, Equa-
tion (1)), the probabilities of different miRNA targeting the

same mRNA (i.e. miRNA competition; Figure 1B, Equa-
tion (2)), and the element-wise products of the above two
(i.e. joint competition; Equation (3)). To highlight several
important features of the proposed model, Figure 1C illus-
trates a toy example using simulated data of 10 mRNAs
and 4 miRNAs. First, mRNA i that does not carry a seed
match for miRNA k has zero probability of being its tar-
get (e.g. mRNA 1 and miRNA 2) (see Discussion section
for other possibilities). Second, p(t(x)

i,k |x(t), zk, c.,k) (mRNA

competition) and p(t(z)
i,k |x(t)

i , z, ci,.) (miRNA competition)
differ for the same pair of miRNA and mRNA. For in-
stance, p(t(x)

2,4|x(t), z4, c.,4) = 0.26 and p(t(z)
2,4|x(t)

1 , z, c2,.) = 1.
Intuitively, mRNA 2 has only one target site for miRNA
4, which can potentially target many other mRNAs (verti-
cal red boxes) such as mRNA 1 and 3, that each has higher
expression level, two target sites, and thus higher probabil-
ities of being targeted by miRNA 4. On the other hand,
mRNA 2 can only ‘attract’ miRNA 4 because none of the
other three miRNAs recognizes its target site (horizontal
blue boxes), which explains p(t(z)

2,4|x(t)
2 , z, c2,.) = 1. Third, the

joint competition model (Equation (3)) provides a conser-
vative estimate, for which both miRNA and mRNA com-
petition scores must be high to confer a high confidence
prediction (e.g. mRNA 10 and miRNA 2). The model con-
verges quickly in only a few iterations for large number of
mRNAs and miRNAs (Supplementary Figure S1). To rig-
orously test the models, we designed four scenarios (Sup-
plementary Figure S2). Below we compared ProMISe with
other methods using real expression data.

Target predictions

We first compared ProMISe with sequence-based methods
in discriminating the 1255 confidence positive and negative
targets identified from HEK293 using the published data by
(10) (Materials and Methods section). We chose TargetScan
Context Score (15) and Probabilities of Conserved Target-
ing (PCT) (14) as the representative sequence-based meth-
ods based on our recent evaluations (4). We observed excel-
lent Area Under the ROC Curve (AUROC) from all three
proposed competition models (Figure 2A, left). In partic-
ular, the joint and mRNA competition models confer the
highest AUROC (99.7%), which is 1–6% higher than the
sequence-based methods. Additionally, we observed even
better performance from the competition models in terms
of precision recall (Figure 2A, right) with 19.4–45.9% im-
provements over the sequence-based methods. Interestingly,
the mRNA competition model outperforms the joint and
miRNA competition models by 0.4% and 7%, respectively.
We next evaluated each model on the TCGA data. To fur-
ther take advantage of the sequence information, we mul-
tiplied ProMISe with the TargetScan PCT. To be fair with
the sequence-based methods, we filtered out interactions in-
volving miRNAs that are not expressed in each sample be-
forehand. Each panel in Figure 2B depicts the number of
validated targets among the top 1000 ranking as a function
of sample ID. The ProMISe constructed from the mRNA
competition model demonstrated clearly superior perfor-
mances over other methods in identifying validated MMIs
(Figure 2B). The joint competition model achieves similar

http://www.broadinstitute.org/gsea/msigdb/index.jsp)
file:www.bioconductor.org/packages/release/bioc/html/Roleswitch.html
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performances as the mRNA competition model. Moreover,
we observed consistent results using the top rankings from
500 to 2000 with 500-increment (Supplementary Figure S3).
We then compared ProMISe with three other expression-
based methods, namely Pearson correlation, LASSO re-
gression (6) and GenMiR++ (5). Because ProMISe con-
fers good pairwise correlation between individual samples
(Supplementary Figure S4), the averaged ProMISe signa-
ture over all samples was used for each cancer type. All three
competition models demonstrated superior performances
in 9 out of the 10 cancer types while the mRNA or joint
competition models achieve higher performance than the
miRNA competition model (Figure 2C). Thus, ProMISe
compares favorably with the existing methods, and yet has
the unique advantage of constructing ProMISe signature
from each individual sample.

Cancer diagnosis

We examined whether using the ProMISe signature can dis-
criminate tumors from normal samples in comparison with
using expression profiles. We first performed hierarchical
clustering as an unsupervised approach. Indeed, for each
cancer type ProMISe from all three competition models
cluster based on normal (blue) and tumor (red) (Supple-
mentary Figure S5). For instance, clustering of thyroid can-
cer data, which consist of 58 normals and 485 tumors, is
more consistent with the underlying phenotypes than clus-
tering by expression (Figure 3B). We then performed regu-
larized logistic regression on THCA and evaluated the test-
ing accuracy by MCE error from LOOCV. As shown in Fig-
ure 3B, the mRNA and joint competition models achieve
the lowest MCE, which is significantly better than random-
ized data based on permutation test (p < 0.01). Notably,
however, the performances of each model on individual
test cases tend to vary due to the heterogeneity of the tu-
mor samples (Supplementary Figure S6). The effects of re-
sampling on biomarker robustness and rigorous counter-
strategies have been demonstrated by Li et al. (23). As a
simple remedy, we focused our comparison on the matched
tumor/normal samples to mitigate such effects in deriv-
ing tumor-specific MMIs in sections below. Together, the
additional leverage provided by ProMISe over the (com-
bined) expression data suggests that our integrative ap-
proach of modeling MMI provides useful diagnostic infor-
mation complementary to the expression profile signatures.
In the following analyses, we used the mRNA competition
model to represent ProMISe.

GSEA on ProMISe signature uniquely revealed abnormal ac-
tivities of miR-21 and miR-145 in GBM and OV

Aberrant miRNA and mRNA expressions have long been
implicated in some specific cancer phenotypes (3). To ex-
amine whether miRNA-dysregulated genes (MDGs) are en-
riched for meaningful gene sets, we averaged ProMISe sig-
nature of each gene over all of the miRNAs. Surprisingly,
we not only recovered cancer-specific but also oncomir-
specific target gene sets with false discovery rate (FDR)
<0.05 (Supplementary Table S1). In particular, synaptic
transmission (MSigDB ID: M19659), psychiatric disor-

Figure 4. Gene set enrichment analysis. GSEA was applied to the aver-
aged ProMISe signature of each gene over all of the miRNAs in tumor ver-
sus normal comparison (12). Enriched gene sets corresponding to miR-21
and miR-145 targets were identified from the GBM and OV data, respec-
tively. The enriched gene sets for GBM (OV) has its gene members accu-
mulated at the top of the list ranked by ProMISe signature changes in tu-
mor versus normal (normal versus tumor). The right panels illustrate the
network view of specific miRNA targets. The filled color in the node corre-
sponds to expression log2 fold-change in tumor, where red (blue) indicates
increased (decreased) gene/miRNA expression. The edge color and width
captures the ProMISe signature changes as Signal/Noise ratio as calcu-
lated by GSEA, where red (blue) indicates increased (decreased) ProMISe
signature in tumor. The network was generated using Cytoscape (26).

ders (M2110), medulloblastoma (M16478), neuron cell-
type specificity (M1712) and human brain aging (M9112)
are among the top 10 ranked gene sets with lower ProMISe
in GBM. On the other hand, gene set corresponding to
the predicted miR-21 targets (M19659) ranks the second
among those exhibiting higher ProMISe in GBM (Figure
4A, left). Previous studies have shown that the increased
expression of miR-21 causes downregulation of tumor sup-
pressor PDCD4, which stimulates cell growth across GBM
cell lines (3,24). Indeed, we observed an increased ProMISe
and a coherent decreased PDCD4 expression in tumor (Fig-
ure 4A, right). Additionally, miR-21 also regulates RECK
and TIMP3 to promote anti-apoptosis and migration of
GBM cells (24). Notably, both ProMISe and expression for
genes RECK and TIMP3 have increased in GBM tumors,
which is in fact consistent with our intuition that the higher
the miRNA/mRNA abundance the more likely they inter-
act with each other. We applied the same analysis to ovar-
ian cancer and discovered an over-representation of miR-
145 target set (M15956), ranking third among the gene sets
with lower ProMISe in OV. Indeed, miR-145 is downregu-
lated in OV and its targets confirmed by luciferase reporter
assays include CBFB, PPP3CA and CLINT1 (25). No-
tably, CLINT1 has an increased expression and decreased
ProMISe (Figure 4B)(26).
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Figure 5. Paired sample test on matched tumor and normal in BRCA and
THCA. (A and B) Volcano plots illustrate the significant interactions with
−log 10(FDR) as a function of the averaged ProMISe log2 fold-change
in BRCA and THCA tumors, respectively. (C and D) Three-way Venn dia-
gram showing the overlaps among genes with differential expression (blue),
genes with differential interactions (red), and putative cancer gene hubs
(green) (21), respectively. Hypergeometric p-values are displayed near each
pairwise overlap, and the common genes are displayed near the overlap.

ProMISe-predicted MDGs in tumors are enriched for canon-
ical cancer genes and cancer genes hubs

Using the 14 matched tumor/normal samples from TCGA-
BRCA data, we performed paired t-test to obtain differen-
tial ProMISe signature and mRNA/miRNA expression in
tumor versus normal. In total, 23 797 out of 56 805 MMIs
exhibit significant changes in ProMISe at FDR < 0.05 (Fig-
ure 5A), which involve 5690 out of 13035 and 103 out of 710
distinct MDGs and miRNAs, respectively. At the same cut-
off, we obtained 3073 and 40 differentially expressed genes
(DEGs) and miRNA. We then assessed the overlap between
the DEGs and MDGs and their overlaps with the puta-
tive cancer gene hubs from (21). As illustrated in the Venn
diagram (Figure 5C), the DEGs are significantly enriched
for MDGs (p < 1e-447, Hypergeometric test). However,
3285 MDGs are not DEGs, and 681 DEGs are not MDGs.
Moreover, MDGs are significantly enriched for cancer gene
hubs: 18 out of the 21 genes have abnormal ProMISe sig-
nature in tumor (p <10−5, Hypergeometric test). In con-
trast, only 5 cancer gene hubs exhibit aberrant expression
(p < 1). We repeated the same analysis on 58 matched
tumor/normal samples for thyroid cancer (THCA) to ob-
tain 35 453 out of 86 923 significant interactions at FDR <
0.005 (Figure 5B), involving 6780 (113) MDGs (miRNA)
and 4778 (58) DEGs (miRNA). Twenty of the cancer gene
hubs exhibit abnormal interaction with miRNAs (p < 10−6)
but only 13 of them have differential expression (Figure
5D). Moreover, we compared DEGs and MDGs in both
cancers with cancer-related genes from OMIM and ob-
tained consistent results (Supplementary Figure S7). Thus,
genes with differential MMIs may not have aberrant ex-
pression in tumor and vice versa. It is possible that some
of the tumor-related genes are more strongly regulated at

Figure 6. Heatmaps using differential MMIs and expression profiles for
BRCA and THCA. In each panel, three sets of heatmaps corresponding to
ProMISe (from the mRNA competition model), miRNA and gene expres-
sion were generated for differential MMIs involving putative cancer gene
hubs from (21). Blue and red column-wise color codes for normal and tu-
mor samples, respectively. Please refer to the main text for more details.

the translational levels. In that case, our approach is still
able to detect at least some of these translationally regu-
lated genes since ProMISe exploits not only the gene expres-
sion but also the miRNA expression as well as the sequence
information. Moreover, the variability of gene expression
profiles between individual tumors can be extremely high,
which leads to low detection power of the true cancer sig-
nals using gene expression alone (23). Together, the results
suggest that we have gained statistical power by identify-
ing more cancer-related genes using ProMISe than using
expression alone.

Integrative differential analysis on breast and thyroid cancer
uncovered large cancer-specific MMI network modules

To visualize tumor-related changes, we generated two sets of
heatmaps for BRCA and THCA using the above differen-
tial ProMISe signature and expression profiles involving the
putative cancer gene hubs (21) (Figure 6) and OMIM genes
(Supplementary Figure S7). Specifically, we performed hier-
archical clustering on the selected ProMISe signature pro-
files. As expected, normals (blue) and tumors (red) form two
distinct clusters except for only a few misclassified samples
in THCA. Notably, the cancer gene hubs were derived from
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Figure 7. Network view of the 1257 filtered MMIs for breast cancer.
The filled color in the node corresponds to t-statistics from paired t-test
comparing tumor with normal, where red (blue) indicates higher (lower)
gene/miRNA expression in tumor. The edge color and width captures the
ProMISe signature changes in t-statistics, where red (blue) indicates in-
creased (decreased) ProMISe signature in tumor. The blown-up network
modules illustrate interaction changes of the BRCA-related oncomirs hsa-
miR-155/21/183/145.

breast cancer cell lines (21), which may explain the better
clustering of BRCA samples. Interestingly, we observed a
slightly more consistent clustering of THCA samples when
using THCA-related genes from OMIM (Supplementary
Figure S8B). The overall pattern suggests a positive correla-
tion between the miRNA expression and ProMISe, whereas
the correlation between gene expression and the ProMISe
signature is less straightforward. On the one hand, genes
with higher (lower) expression have higher (lower) like-
lihood of being targeted. On the other hand, decreased
(increased) MMIs may ultimately imply an increased (de-
creased) gene expression. Accordingly, we devised the fol-
lowing rule to retain only a subset of the tumor-specific
interaction changes coherent with expression changes: (i)
the tumor-specific differences in terms of ProMISe signa-
ture, gene and miRNA expression must be significant; (ii)
the change sign between ProMISe signature and miRNA
must be the same; (iii) the change sign between ProMISe
signature/miRNA and gene expression must be the oppo-
site. Some of the qualified pairs are highlighted in purple
boxes in Supplementary Figure S8. In total, we obtained
1257 and 3255 qualified interactions for BRCA and THCA,
corresponding to 748 (32) and 1679 (44) distinct genes
(miRNAs), among which 42 (9) and 77 (15) are oncogenes
(oncomirs), respectively (Supplementary Table S2). The re-
stricted MMI forms two large network modules, harbor-
ing genes with significant up- (red) and downregulation
(blue) status associated with decreased (blue edge) and in-
creased (red edge) ProMISe signature, respectively (Figures
7 and 8). For instance, the increased expression of hsa-miR-
155/21/183 is coupled with increased interactions with its
target genes, which exhibit decreased expression in breast
tumor samples (Figure 7). Previous studies have shown the
expression increase of the three miRNAs in breast cancer
tissues or cell lines; however, their targetomes specific to

Figure 8. Network view of the 3255 filtered MMIs for thyroid cancer. The
blown-up images display subnetworks for hsa-miR-221/222/145. Other-
wise please refer to Figure 7.

breast cancer are not well characterized (3). On the other
hand, BRCA-related oncomirs including let-7c and miR-
145 are underexpressed in BRCA (Figure 7). Both let-7c
and hsa-miR-145 are tumor suppressor genes and modu-
late motility, inhibit cell growth, and induce apoptosis of
breast cancer cell lines (3,27). For thyroid cancer, our re-
sults remarkably show that hsa-miR-221/222 are overex-
pressed, consistent with the previous finding (3), and sig-
nificantly downregulate a large cohort of genes including
oncogenes ARID1A, ARNT, BCL11B, DICER1, ELK4,
TCF12, TCF7L2, ARID1A, ARNT, BCL11B, DICER1,
ELK4, TCF12 and TCF7L2 (Figure 8). Notably, miR-145
is also downregulated in THCA coupled with upregulation
of oncogenes BCR, EML4, MAP2K4 and TPM4. Thus, the
reduced activities of miR-145 are prevalent in breast, ovar-
ian and thyroid cancers based on our results, perhaps under-
lining its important role in maintaining normal cell state.
Together, our novel integrative approach enables discov-
ering cancer-specific miRNAs and associating them with
oncogenes at system level.

DISCUSSION

The existence of cell-type-specific expression ‘signatures’
of miRNA and gene has been previously appreciated (28).
However, to our knowledge, there is no systematic method
that identifies the MMI signature from each individual sam-
ple. In particular, most existing methods are based on neg-
ative correlation (5,29,30,31,32). These methods can only
identify MMIs by aggregating multiple samples. In a real-
world application such as cancers, however, the correlation-
based methods are limited to identifying only the robust
interactions due to the heterogeneity of individual expres-
sion profiles. Additionally, most existing methods are in
a regression framework, by treating mRNAs as response
and miRNAs as input variables, which assumes that mR-
NAs are independent of one another. However, mRNAs
targeted by a common miRNA ‘do’ interact by competing
for that miRNA (9). In this study, we describe a novel ap-
proach and a new class of molecular signature collectively
termed as ProMISe. In essence, ProMISe signature is an N
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× M probability matrix for interactions between mRNA i
and miRNA k. Notably, we do not normalize the proba-
bilities so that each row or column sums to 1 because a
miRNA can target multiple mRNAs with high probabil-
ities and vice versa. Also, miRNA members in the same
family (i.e. miRNAs with the same seed region) may be
expressed differently. Thus, we keep them separate rather
than combining them to reflect the competition within as
well as between miRNA families. We explored three model
formalisms, namely ‘mRNA competition’, ‘miRNA com-
petition’ and ‘joint competition’. Although all three mod-
els compare favorably with the existing methods, our results
more strongly support the mRNA competition model. Pre-
sumably, the mRNA competition has more prevalent effects
on MMI because there are more potential mRNA targets
per miRNA than there are miRNA regulators per mRNA.

The success of our approach is based on the very fact of
the miRNA targeting mechanism: each miRNA molecule
can only bind to and induces degradation of one mRNA
molecule at a time. This concept fits nicely with the digital
read count offered by the next-generation sequencing tech-
nologies. In contrast, the same technique is not readily ap-
plicable to model transcript factor (TF)–gene interactions
since the enzymatic activities of each TF can differ widely
regardless of its physical abundance at mRNA or protein
level. On the other hand, we also made several simplify-
ing assumptions. First, we assume that mRNA without any
seed match to a particular miRNA will have zero probabil-
ities of being targeted by that miRNA. Recent literatures
suggest a ‘seedless’ model, where miRNA can bind to re-
gions other than 3′UTR with imperfect matches (33). In-
clusion of seedless matches, however, will introduce a large
number of false positives and thus requires a more specific
model. Second, we assume the binding of miRNA will al-
ways induce the mRNA degradation, which is supported by
a recent study via ribosome profiling after miRNA pertur-
bations (34). However, some miRNAs may modulate gene
expression primarily at the translational level (35,36). In
that case, only the seed-match matrix and miRNA expres-
sion are informative to inferring MMIs. By comparing ob-
served mRNA levels with the proteomic data (if available),
we should be able to more realistically capture the mode of
translational repression. Third, we assume the binding effi-
cacy is the same between any miRNA and any mRNA. It is
more realistic to use different mRNA–miRNA binding effi-
cacy, which can be estimated from miRNA over- or under-
expression data (4). Fourth, we do not know the grand total
amount of transcripts within the cellular capacity under a
specific condition. In our model, we arbitrarily assume that
the total T is 30% (by default) more than the observed total.
Fixing the total amount prevents ever-increasing individual
total RNA levels estimated in each iteration but introduces
a free parameter into the model. Since the miRNA target-
ing primarily occurs in the cytoplasm, it may be possible
to estimate the total amount T by simultaneously measur-
ing the RNA in both nucleus and cytoplasm using recently
developed RiboMinus RNA-seq technology (37). Fifth, we
only consider mRNAs as competitors for miRNAs in our
model. Several recent studies have focused on the interplays
between miRNA and long noncoding RNA (lncRNA) in-
cluding pseudogene (38) as well as circular RNA (circRNA)

(39), which are collectively termed as the competing endoge-
nous RNA (ceRNA). Thus, it would be more realistic to
consider the seed match and abundance of ceRNA when in-
ferring MMI. Finally, there are many other factors that we
have not considered, which nonetheless influence the out-
come and our interpretation of MMI. For instance, our
model only considers the total expressed seed matches at
3′UTR of mRNA for the same miRNA in the mRNA com-
petition model and total expressed seeds of miRNA for the
same mRNA in the miRNA competition model. It would
be more informative to examine single nucleotide polymor-
phism in tumor samples, which may disrupt (introduce) ex-
isting (new) seed regions on miRNAs and/or seed matches
on mRNAs. Moreover, aberrant expressions may merely be
the consequence of copy number variation (CNV) at the
genomic DNA level (21), which are not directly related to
miRNA dysregulation. In tumors, some mRNAs may be
regulated transiently by TF and/or miRNA, which may
only be captured by single-cell RNA-seq (40). With more
data becoming available from TCGA and elsewhere, we will
examine these possibilities in future work.

Comparing with other methods, the most distinct fea-
ture of ProMISe is its ability to operate on a single pair of
miRNA and mRNA expression profiles measured from the
same individual. This unique ability allows us to construct
ProMISe signature from each individual tumor or normal
sample, perform cancer diagnosis using this novel molecular
signature (Figure 3), and ultimately predict tumor-specific
MMIs (Figures 7 and 8). For the latter, we focused our
analysis on only the respective 14 and 58 matched tumor
and normal samples in BRCA and THCA to mitigate het-
erogeneity among cancer samples. However, a significantly
higher (lower) likelihood of MMI in tumor (w.r.t. normal)
may merely reflect the significantly higher (lower) expres-
sion of miRNA and/or gene, which may in turn be the con-
sequence of CNV (21). Although we show that genes in-
volved in aberrant MMIs are enriched for meaningful onco-
genic signature genes (Figure 5), it is important to distin-
guish two scenarios: (i) aberrant gene expression is caused
by miRNA dysregulation; (ii) abnormal MMI reflects aber-
rant miRNA/gene expression. We designed a simple way
to minimize the confounding effects caused by the second
scenario. In particular, we focused only on the significant
interactions with the same change sign as miRNA expres-
sion change but opposite change sign to the gene expres-
sion changes. Surprisingly, we were still able to obtain as
many as 1257 and 3255 qualified interactions for BRCA
and THCA, respectively (Supplementary Table S2). Visu-
alizing these interactions in the network context revealed
several meaningful network modules involving previously
discovered and potential oncomirs and oncogenes (Figures
7 and8). From clinical perspective, the decreasing cost of
genome-wide large and small RNA profiling will facili-
tate designing personalized medicine in small RNA ther-
apy. Ideally, the unique ProMISe signature inferred from
the paired expression profiles from an unknown sample will
be compared with the categorized ProMISe signature estab-
lished from existing data to identify disease-specific miRNA
regulatory network modules. The knowledge link between
miRNA and mRNA will enable designing drugs that con-
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trol both the aberrant miRNA and gene expression syner-
gistically.
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