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Abstract

Chronic hepatitis C (CHC) continues to be a highly burdensome disease worldwide. The

often-asymptomatic nature of early-stage CHC means that the disease often remains undi-

agnosed, leaving its prevalence highly uncertain. This generates significant uncertainty in

the planning of hepatitis C eradication programs to meet WHO targets. The aim of this work

is to establish a mathematical framework for the estimation of a geographic locale’s CHC

prevalence and the proportion of its CHC population that remains undiagnosed. A Bayesian

MCMC approach is taken to infer these populations from the observed occurrence of CHC-

related events using a recently published natural history model of the disease. Using the

Canadian context as a specific example, this study estimates that in 2013, the CHC preva-

lence rate in Canada was 0.63% (95% CI: 0.53% - 0.72%), with 27.1% (95% CI: 19.3% -

36.1%) of the infected population undiagnosed.

Introduction

Chronic hepatitis C (CHC) is a progressive and infectious disease that can remain asymptom-

atic for decades before ultimately causing liver damage, liver failure and liver cancer. Hepatitis

C-related illness annually claims in excess of 399,000 lives worldwide [1]. The primary modes

of transmission of the hepatitis C virus (HCV) include injection drug use and blood transfu-

sion [1].

New and highly effective therapies for HCV chronic infections, in the form of direct acting

antivirals (DAA), present the opportunity to meet the WHO hepatitis C eradication target of

2030. However, the planning of eradication strategies is highly sensitive to estimates of the

CHC prevalence and diagnosis rates [2]. Because CHC often remains asymptomatic until its

late-stage, there is considerable uncertainty in current prevalence estimates. Furthermore,

CHC treatment with DAAs remains expensive, making estimates of budget impact from the

public funding of DAAs also highly uncertain and sensitive to estimates of disease prevalence.

In this paper, we present a model-based framework for the inference of CHC-infected pop-

ulations, using the Canadian context as a specific example. The case of Canada is of particular

interest for two reasons: the uncertainty in CHC prevalence is compounded by the absence of
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a population-level hepatitis C screening program. In addition, there is limited public data

available from which to infer the size of the HCV-infected population.

In a 2007 Public Health Agency of Canada study, an actuarial method was used to estimate

hepatitis C prevalence in Canada [3]. The population was divided into subgroups according to

their risk of having or contracting hepatitis C. Rates of prevalence and incidence were esti-

mated for each subpopulation, and these were then used in a state transition model to obtain

projections of the total number of individuals with hepatitis C-induced liver diseases.

Thein et al. [4] reported the results of a systematic review of annual probabilities of fibrosis

progression. A study of the 2011 prevalence rate of hepatitis C in Canada [5] incorporated the

rates in [4] into a Markov model of disease progression and used a backcalculation method to

obtain rate estimates. Alongside the backcalculation method, an actuarial method was also

used, stratifying the Canadian population according to the risk of infection and prevalence.

While the backcalculation estimated the 2011 prevalence of chronic hepatitis C to be 0.64% of

the Canadian population, the actuarial approach yielded a higher rate of 0.71%. The backcalcu-

lation methodology and model assumptions used in [5] were not disclosed.

In 2015, a new Markov model of the natural history of hepatitis C in Canada was developed

as part of economic evaluations of hepatitis C-related screening and treatment [6]. This model

has been used by various agencies in Canada for decision making in hepatitis C-related policies

on screening and treatment [2]. This model divided the progression of hepatitis C into two

broad stages: pre-advanced liver disease and advanced liver disease. The population of individ-

uals in the pre-advanced stage of hepatitis C was modeled as progressing through the liver

fibrosis stages of the disease at rates that were obtained from [4]. The model additionally

included the diagnosis of patients at the various fibrosis stages as well as their subsequent treat-

ment and response to treatment. Patients who progressed to the last fibrosis stage were mod-

eled as being at risk of progressing to advanced liver disease: either hepatocellular carcinoma

or decompensated cirrhosis. From these latter stages, the model captured the progression of

patients through advanced liver disease, including receipt of liver transplants, liver-related

deaths and non-liver related deaths.

In this paper, we adopt a Bayesian Markov Chain Monte Carlo approach, based on the

Metropolis-Hastings algorithm [7], to estimate the Canadian CHC prevalence and undiag-

nosed CHC population. We derive a comprehensive mathematical framework for the back-

calculation using the model reported in [6]. The estimates are obtained by calibrating the

model using publicly available hepatocellular carcinoma (HCC) diagnosis data from Statistics

Canada [8] and HCV diagnosis data from the Public Health Agency of Canada [9], together

with estimates of liver fibrosis distributions at diagnosis from [6].

This paper is organized as follows: First, a qualitative description of the hepatitis C natural

history model of [6] is provided followed by a discussion of its key parameters and its mathe-

matical formulation. An overview of the MCMC algorithm used in this study is then provided,

followed by the modeling results and a discussion of key conclusions.

Methods

The aim of this work is to establish a mathematical framework for the estimation of CHC pop-

ulations of interest. For the illustrative case of Canada, we focus on the estimation of the histor-

ical prevalence of CHC and the proportion of the CHC population that is undiagnosed for

each of three birth cohorts:

• individuals born before 1945,

• individuals born between 1945–1964,
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• individuals born after 1964.

We first give an overview of a state transition model, introduced in [6], that describes the

natural history of hepatitis C within a single, generic, birth cohort. Each state of the model cor-

responds to the number of individuals, within the cohort, that populate a particular CHC stage

and that fall under a particular patient status. We next give an overview of the model parame-

ters and introduce a mathematical formulation of the model dynamics that describe the transi-

tion of patients from one state to another between an initial year 0 and a final year T. Using

this formulation, we demonstrate how the model is able to simulate the number of individuals

in each state of the disease between years 0 and T, inclusive, for a given set of input parameters.

This input parameter set includes state transition probabilities, the states of the model in year

0 and the number of new infections in the T subsequent years. We then describe how the simu-

lation results can be used to estimate the cohort’s expected CHC prevalence, undiagnosed

CHC population, as well as the expected number of HCC and HCV diagnoses from within the

cohort in the years 0 to T.

Arriving at estimates in this way, however, relies on knowledge of the input parameter set,

which is not readily available from the literature. Therefore, we then present a Bayesian cali-

bration method, based on the Metropolis-Hastings algorithm, through which these unknown

quantities are estimated from recorded HCC and HCV diagnosis data and from statistics on

the stages of liver fibrosis that are observed upon HCV diagnosis.

The hepatitis C natural history model

We assume that for the entirety of any given calendar year, a CHC patient’s disease state can

be categorized into only one of several stages of the disease. The actual number of individuals

in each disease state is not known. Such latent variables will, over the course of time, change as

patients progress from one disease state to the next. On the other hand, there are observables

arising from HCV-related events, such as the diagnosis of a patient with HCV infection or

HCC. Such observables are consequences of HCV infection and so depend directly on the

latent variables. As a result, these observables provide important information for estimating

the unknown latent variables.

The state transition model illustrated in Fig 1 is assumed to describe the movement of hepa-

titis C patients, within one birth cohort, between the various latent states of hepatitis C infec-

tion that precede advanced liver disease. A state transition model of progression between the

advanced liver disease stages is illustrated in Fig 2. The transition probabilities emanating

from each state in Fig 1 and Fig 2 sum to one, and are derived in S1 Appendix as functions of

annual probabilities of fibrosis progression, CHC diagnosis, background death, treatment and

SVR.

It is assumed that in the year t there are u(t) new HCV infections. Newly infected patients

are assumed to have a chance of clearing the virus in the acute stage of infection [10]. If the

virus is not cleared, the disease becomes chronic and the patient risks developing increasingly

advanced levels of liver fibrosis. The model assumes that HCV infection may be diagnosed in

either the acute or the chronic stages.

The degree of liver fibrosis is divided into five stages, denoted F0, F1, F2, F3 and F4 [6]. In

Fig 1, individuals who have CHC but are undiagnosed are grouped into latent states X0, X1, X2,

X3, X4, where the subscripts represent the five fibrosis levels F0-F4. Individuals who have CHC

and are diagnosed but have not yet received treatment are similarly grouped into latent states

D0, D1, D2, D3, D4. Individuals who have CHC and who are receiving treatment are grouped

into latent states T0, T1, T2, T3, T4. A patient treated for CHC in one year may, the following

year, show SVR. Individuals who show SVR following treatment are grouped into latent states
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S0, S1, S2, S3, S4. Once in these SVR states, it is assumed that patients are no longer at risk of

progressing in liver fibrosis severity. Individuals who do not show SVR following treatment

are grouped into latent states N0, N1, N2, N3, N4 and their liver fibrosis is assumed to progress

at a rate equal to that of the untreated population. CHC patients who reach the cirrhosis stage

F4 (latent states X4, D4, T4, S4, N4) become at risk of developing more advanced liver disease.

Advanced liver disease (ALD) states are categorized into the following states:

• DC: patients with decompensated cirrhosis,

• HCC: patients with hepatocellular carcinoma,

• LT: patients receiving liver transplants,

• PT: patients who have survived more than one year after their liver transplantation.

The model assumes that individuals in these advanced liver disease states may transition to

a liver-related death state (LD), with a probability greater than the background all-cause

mortality.

Fig 1. State transition model of early hepatitis C natural history. ALD: Advanced liver disease. SVR: Sustained virologic response.

https://doi.org/10.1371/journal.pone.0225366.g001

Fig 2. Advanced liver disease state transition model. Transition probabilities are derived in S1 Appendix. HCC:

hepatocellular carcinoma. DC: decompensated cirrhosis. LT: liver transplant. PT: post-liver transplant. LD: liver-

related death. SVR: Sustained virologic response.

https://doi.org/10.1371/journal.pone.0225366.g002
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Parameters of the natural history model

Viral genotype. The hepatitis C virus has six major genotypes [11], which we denote

v = 1,� � �,6. The distribution of the prevalence of the different genotypes in Canada is reported

in [6]. The genotype affects the treatment success rate and, consequently, the treatment adop-

tion rate.

Model transition probabilities. We denote by qchr the annual probability of a newly

infected individual transitioning from an acute to a chronic infection. S1 Table gives the mean

value of qchr as well as its range (from [10]), over which we assume it is uniformly distributed.

For individuals with CHC who do not show a sustained virologic response, we let qi,i+1 be

the annual probability of progression between any two consecutive fibrosis stages Fi and Fi+1.

The annual probability of fibrosis level progression varies depending on viral genotype, and

we assume each parameter qi,i+1 to be uniformly distributed within a range of values that cap-

tures this variation. These ranges, which we derive from the systematic review of progression

statistics for CHC patients in [4], are given in S1 Table. For patients showing a sustained viro-

logic response, the probability of fibrosis stage progression is assumed to be zero. S1 Table

additionally gives means and ranges of the annual probabilities of progression between the

stages of advanced liver disease, denoted a1,� � �,a6, which are assumed to be uniformly

distributed.

We assume that the symptoms of hepatocellular carcinoma and decompensated cirrhosis

are severe enough that an individual’s progression to, and subsequent diagnosis with, either

HCC or DC occur in the same calendar year. We additionally assume that patients who were

previously undiagnosed with CHC and who progress to advanced liver disease are additionally

diagnosed with CHC upon their diagnosis with the ALD. The annual probability of progres-

sion to decompensated cirrhosis is denoted by dDC for non-SVR individuals and by dDC−SVR
for patients who show SVR. The parameters dDC and dDC−SVR are assumed to be uniformly

distributed, with their means and ranges, reported in [12], given in S1 Table. The correspond-

ing probabilities of progression to hepatocellular carcinoma, respectively denoted dHCC and

dHCC−SVR, will be estimated.

We let da be the annual acute hepatitis C probability of diagnosis. We also denote by di the

annual CHC probability of diagnosis for fibrosis stage Fi. These parameters are not available

from the literature and will be estimated.

We denote by ti(v) the annual probability that a patient who was previously diagnosed with

CHC of viral genotype v and who is currently at fibrosis stage Fi, will adopt pegylated inter-

feron and ribavirin therapy. The estimated cumulative probabilities of starting treatment over

the period 1999–2013 in Canada, per fibrosis stage and genotype were reported in [6]. We con-

verted these cumulative probabilities to annual probabilities of treatment ti(v), given in S2

Table.

We let si(v) be the probability that an individual infected with CHC, of genotype v, who

receives treatment when at fibrosis stage Fi will show a sustained virologic response. The prob-

ability of a patient not showing a sustained virologic response at that fibrosis stage is then 1

−si(v). Wong et al., [6], report the probabilities of SVR by fibrosis stage and viral genotype fol-

lowing pegylated interferon and ribavarin therapy.

We denote the annual probability of background death (i.e. all-cause mortality) for HCV-

infected individuals in a year t by dr(t). For the specific example of Canada [13], the back-

ground mortality among CHC patients with respect to the general population varies with age.

In particular, with respect to the general population, younger CHC patients are at an increased

risk of mortality from activities associated with HCV acquisition [14]. One such activity is

injection drug use, for which the standard mortality ratio is 16.4 (95% CI: 9.1–27.1) [3,15,16]

A model-based framework for chronic hepatitis C prevalence estimation
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and which accounts for 70–80% of new HCV injections in Canada [17]. In contrast, older

patients are more likely to die of liver-related causes [14], which are accounted for in the

model through the advanced liver disease states. Therefore, as a simplifying assumption, we

assume that infected individuals born before 1965 have a background mortality equal to that

of the general population.

Mathematical formulation of natural history model

State transition modeling. We denote the expected number of individuals in any one of

the disease states Xi, Di, Ti, Si, Ni, HCC, DC, LT, PT (i = 0,1,2,3,4) within a given birth cohort

in a year t by Xi(t), Di(t), Ti(t), Si(t), Ni(t), HCC(t), DC(t), LT(t), PT(t) respectively. We define a

state vector x(t) that consists of the expected number of individuals in each latent state:

xðtÞ ¼ ½XðtÞ0;DðtÞ0;TðtÞ0; SðtÞ0;NðtÞ0;HCCðtÞ0;DCðtÞ0; LTðtÞ0; PTðtÞ0�0 ð1Þ

where X(t) = [X0(t) � � � X4(t)]0 and likewise for D(t), T(t), S(t), N(t).
To model changes in x(t) over time, we use the state transition model described illustrated

in Fig 1 and Fig 2. The elements of the vector x(t+1) can be written in terms of u(t) (the num-

ber of new infections in year t) and the elements of the vector x(t), as follows:

Xðt þ 1Þ ¼ AXðtÞXðtÞ þ ð1 � daÞBuðtÞuðtÞ ð2AÞ

Dðt þ 1Þ ¼ ADðtÞDðtÞ þ BDðtÞXðtÞ þ daBuðtÞuðtÞ ð2BÞ

Tðt þ 1Þ ¼ ATðtÞTðtÞ þ BTðtÞDðtÞ ð2CÞ

Sðt þ 1Þ ¼ ASðtÞSðtÞ þ BSðtÞTðtÞ ð2DÞ

Nðt þ 1Þ ¼ ANðtÞNðtÞ þ BNðtÞTðtÞ ð2EÞ

HCCðt þ 1Þ ¼ AHCCHCCðtÞ þ BHCCðXðtÞ þ DðtÞ þ NðtÞÞ þ BHCC� SVRSðtÞ ð2FÞ

DCðt þ 1Þ ¼ ADCDCðtÞ þ BDCðXðtÞ þ DðtÞ þ NðtÞÞ þ BDC� SVRSðtÞ ð2GÞ

LTðt þ 1Þ ¼ BLT� HCCHCCðtÞ þ BLT� DCDCðtÞ ð2HÞ

PTðt þ 1Þ ¼ APTPTðtÞ þ BPTLTðtÞ ð2IÞ

Definitions of the terms in (2) are given in S1 Appendix.

In this study, patients who show SVR are assumed to be ‘cured’ of the disease, and therefore

do not contribute to the total CHC prevalence from the time they reach SVR. The expected

total number of individuals with CHC within a cohort in a year t, denoted Px(t), is given by

PxðtÞ ¼
P4

i¼0
ððXiðtÞ þ DiðtÞ þ TiðtÞ þ NiðtÞÞ þ DCðtÞ þHCCðtÞ þ LTðtÞ þ PTðtÞ ð3Þ

The prevalence rate Rx(t) within a given cohort in a year t is then given by

RxðtÞ ¼ 100� PxðtÞ=pnðtÞ ð4Þ

where pn(t) is the cohort’s average population in year t. Estimates of pn(t) are available online

from Statistics Canada [18] and are given in S4 Table.

A model-based framework for chronic hepatitis C prevalence estimation
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The expected proportion of the cohort’s CHC population that is undiagnosed, Dx, in year t
is given by the ratio

Dx tð Þ ¼ 100�

Pi¼4

i¼0
XiðtÞ

PxðtÞ
ð5Þ

Model observables. The model’s expected total number of HCC cases diagnosed in a

given cohort in a year t (including HCC cases not induced by CHC), is given by

yHCC tð Þ ¼
1

cHCC
dHCC X4ðtÞ þ D4ðtÞ þ N4 tð Þð Þ þ dHCCSVRS4 tð Þ
� �

ð6Þ

where cHCC is the proportion of all diagnosed HCC cases that are CHC-induced.

The total number of HCC cases diagnosed each year in Canada and in each province is

available from Statistics Canada [8]. By comparing the number of CHC-induced HCC cases

diagnosed in British Columbia [19] with the total number of HCC cases diagnosed in that

province between 1990 and 2012 (from [8]), we estimated the percentage of all HCC diagnoses

that were attributable to chronic hepatitis C, for the three birth cohorts we consider. These

estimates are summarized in S3 Table.

Let yacute(t) = dau(t) be the model’s expected number of acute hepatitis C diagnoses in year t
and let yFiðtÞ be the expected number of CHC diagnoses at fibrosis state Fi in year t. The total

number of chronic cases diagnosed in year t, denoted yCHC(t), is then

yCHCðtÞ ¼
P4

i¼0
yFiðtÞ ð7Þ

where

yFiðtÞ ¼ diðtÞXiðtÞ for i ¼ 0; 1; 2; 3; ð8AÞ

yF4ðtÞ ¼ d4ðtÞX4ðtÞ þ dHCCX4ðtÞ þ dDCX4ðtÞ: ð8BÞ

The model’s expected total number of hepatitis C cases diagnosed in year t for a given

cohort, denoted yhepC(t), is the sum of diagnosed acute cases and chronic cases

yhepCðtÞ ¼ yacuteðtÞ þ yCHCðtÞ ð9Þ

For notational purposes, we define the vector of time-series observables:

yðtÞ :¼ ½yHCCðtÞ yhepCðtÞ�
0
:

Solutions to the model equations. Eqs (2), (6) and (9) are linear in u(t) and in the ele-

ments of x(t). The natural history model can therefore be expressed in the concise state-space

form:

xðt þ 1Þ ¼ AðtÞxðtÞ þ BðtÞuðtÞ ð10Þ

yðtÞ ¼ CðtÞxðtÞ þ DðtÞuðtÞ ð11Þ

Where matrices A(t), B(t), C(t), D(t) are given in S1 Appendix. If the expected disease state

vector x(t) is known at a starting year t = 0, and if the expected number of yearly new infections

A model-based framework for chronic hepatitis C prevalence estimation
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u(t) is known for years t = 0� � �,T, we can use (10) to obtain x(t) for 0<t�T as

xðtÞ ¼ ð
Qt� 1

i¼0
AðiÞÞx0 þ

Pt� 2

i¼0
ð
Qt� 2

j¼iþ1
AðjÞÞBðiÞuðiÞ þ Bðt � 1Þuðt � 1Þ ð12Þ

Together with (11), this yields the expected number of diagnoses for year t�0 as:

yðtÞ ¼ CðtÞxðtÞ þ DðtÞuðtÞ

¼ CðtÞðð
Qt� 1

i¼0
AðiÞÞx0 þ

Pt� 2

i¼0
ð
Qt� 2

j¼iþ1
AðjÞÞBðiÞuðiÞÞ þ CðtÞBðt � 1Þuðt � 1Þ þ DðtÞuðtÞ

ð13Þ

For this analysis, observational data on the diagnoses of HCC and HCV were only available

for the calendar years 1999–2013. We therefore set the start year of the analysis, t = 0, at 1999

and denote by t = T, with T = 14, the last year of the analysis, 2013.

Model calibration. Using Eqs (4) and (5), estimates of the prevalence rate Rx(t) and the

undiagnosed proportion DxðtÞ can be obtained from estimates of the vector x(t). The estimate

of x(t) in (12) is a function of many input parameters, only some of which are available from

the literature. We organize these literature-derived input parameters of the model into a vector

V ¼ ½v; qchr; q
0; dDC; dDC� SVR; a

0; tðvÞ0; sðvÞ0; dr; cHCC�
0

ð14Þ

with q = [q01,q12,q23,q34]0, a = [a1,a2,a3,a4,a5,a6]0, t(v) = [t0(v),t1(v),t2(v),t3(v),t4(v)]0, and s(v) =

[s0(v),s1(v),s2(v),s3(v),s4(v)]0, where ti(v) and si(v) are the annual probabilities of treatment

adoption and of SVR for fibrosis stage Fi and viral genotype v. As V can be treated as a vector

of random variables, we denote by P(V) the joint probability distribution of these parameters.

On the other hand, input parameters in model (12), (13) that are not available from the lit-

erature can be grouped into three categories:

a) Unknown initial year data

From (12), the estimate of x(t) (0<t�14) is a function of the vector x(0), the number of indi-

viduals in each state of the model in year t = 0. However, since estimates of x(0) are not avail-

able in the literature, it is a vector that needs to be calibrated. In the calibration, elements of x
(0) are constrained by the following assumptions:

• Individuals, who in year t = 0,

� had previously been diagnosed but had not received treatment, (Di(0)), or,

� were receiving treatment (Ti(0)), or

� were non-SVR (Ni(0)),

were assumed to be either in ‘early CHC’ fibrosis stages (respectively denoted DE,TE,NE) or in

‘late CHC’ fibrosis stages (respectively denoted DL,TL,NL).

• Patients in the ‘early CHC’ stage were equally distributed among fibrosis levels F0, F1 and

F2, while patients in ‘late CHC’ were equally distributed between fibrosis levels F3 and F4.

Formally, we imposed the constraints D0(0) = D1(0) = D2(0) = DE, and D3(0) = D4(0) = DL.

Analogous constraints were placed on Ti(0) and Ni(0).

• The number of individuals in an early CHC state was constrained to vary by a factor between

0.5 and 2 with respect to the late CHC state. Formally, we have DL = νDDE, TL = νTTE, and

NL = νNNE, where 0.5�νD,νT,νN�2.

• Initial states S0(0). . .S3(0) were not calibrated since the model assumes that no eventual pro-

gression in fibrosis or to advanced liver disease is possible from these states, and their values

therefore do not impact the number of HCC and hepatitis C diagnoses.

A model-based framework for chronic hepatitis C prevalence estimation
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• The ALD initial states HCC(0), DC(0), LT(0) and PT(0) were not calibrated since progres-

sion to these states only occurs upon or after diagnosis with HCC and hepatitis C (the model

observables that are used for calibration).

b) Unknown yearly new infections

The yearly incidence of new infections u(t), for t = 0,� � �,14 is unknown. We assume that, at the

population level, the number of new infections occurring yearly will vary over time in line

with trends in activities that carry a high HCV-acquisition risk, such as injection drug use. As

a simplifying approximation, we assume that this trend is linear between t = 0,� � �,14. We let u
(0) = u0 and u(14) = u14 respectively be the number of new infections in years t = 0 and t = 14.

The number of new infections in the intervening years is evaluated through linear interpola-

tion between u0 and u14.

c) Unknown probabilities of diagnosis

We treat as unknown parameters the annual acute hepatitis C probability of diagnosis da, the

annual probability of CHC diagnosis at the Fi fibrosis stage, di, the annual probability of pro-

gression from F4 to HCC for non-SVR individuals, dHCC, and for SVR individuals, dHCC−SVR.

We assume that aggregate diagnosis rates are driven by trends in the general awareness of

HCV infection and access to testing facilities. Furthermore, for simplicity, we assume that

these trends are linear between in years t = 0 and t = 14. The parameters da, di, dHCC, and

dHCC−SVR therefore satisfy the following constraints:

• In any given year t, the annual probabilities of diagnosis of acute hepatitis C and chronic

hepatitis C at fibrosis stage F0 and F1 are equal. That is, da(t) = d0(t) = d1(t)≕dearly(t). We let

dearlyð0Þ ¼ dearly0
and dearlyð14Þ ¼ dearly14

. The value of dearly(t) in intervening years is evalu-

ated through linear interpolation between dearly0
and dearly14

.

• The annual probabilities of diagnosis of chronic hepatitis C at fibrosis stages F2, F3, F4 are

equal. That is d2(t) = d3(t) = d4(t)≕dlate(t). We let dlateð0Þ ¼ dlate0 and dlateð14Þ ¼ dlate14
. The

value of dlate(t) in intervening years is evaluated through linear interpolation between dlate0
and dlate14

.

• The annual probabilities of progression from stage F4 to HCC, dHCC(t) is assumed to vary

linearly between years t = 0 and t = 14, with dHCCð0Þ ¼ dHCC0
and dHCCð14Þ ¼ dHCC14

.

• Following [12], we assume that the annual probability of progression to HCC among F4

patients with SVR is a fifth of that among non-SVR F4 patients.

The ranges of the twenty parameters to be estimated are listed in Table 1. We organize

these parameters into a vector M and assume that each parameter has a flat uniform prior

Table 1. Parameters M to be calibrated.

Calibration parameter Range

X0(0), X1(0), X2(0), X3(0), X4(0) [0,105]

DE, TE, NE, S4 [0,105]

log2 νD, log2 νT, log2 νN [–1,1]

u0,u14 [0,2×104]

dearly0
; dearly14

[0,0.3]

dlate0; dlate14 [0,0.3]

dHCC0; dHCC14 [0,0.3]

https://doi.org/10.1371/journal.pone.0225366.t001
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distribution over the ranges given. Priors for initial states and for the numbers of new infec-

tions were based on the previous estimates of hepatitis C incidence and prevalence in [3]. Pri-

ors for annual probabilities of diagnoses with HCV infection were based on the model

validation study in [6]. Priors for annual probabilities of progression to HCC were based on

estimates in [12]. The joint prior distribution for M is denoted P(M).

Data for model calibration. The posterior distributions of the model’s unknown parame-

ters are proportional to the product of the likelihood function of parameters M and the prior

distribution P(M). We used three sets of data in the evaluation of the likelihood of M. The first

is a set of time-series data, composed of the number of new primary HCC cases recorded

annually in Canada, available from Statistics Canada [8]. We denote by zHCC(t) the total num-

ber of new HCC cases diagnosed in Canada within a given birth cohort in year t. The second is

also a set of time-series data, composed of the number of hepatitis C diagnoses recorded annu-

ally in Canada, available from the Public Health Agency of Canada [9]. In this set, no distinc-

tion is made between acute and chronic cases of hepatitis C. We denote by zhepC(t) the

recorded number of individuals diagnosed with hepatitis C in Canada in the year t from within

a given birth cohort. These recorded time-series observations are summarized in S4 Table for

the years 1999–2013 (years t = 0,� � �14) for the three birth cohorts of interest. For notational

purposes, we organize the time series observations in year t for a given cohort into the vector

zts(t) = [zHCC(t) zhepC(t)]0.
The third set of data used in evaluation of the likelihood of M is composed of estimates of

the proportions zFi (i = 0,� � �,4) of each birth cohort’s total CHC diagnoses falling in fibrosis

stages F0 –F4. These estimates, given in S5 Table, are obtained using clinical data from [6]. We

organize this data into the vector zF ¼ ½zF0
; � � � ; zF4

�
0
.

Model posterior distributions. Letting z = [zts(0)0,� � �,zts(14)0,zF0]0, we denote by L(M|z,V)

the likelihood function of parameters M, which is the joint probability of the data z given M
and a fixed value of V obtained from the joint distribution P(V). Derivations of L(M|z,V) are

given in S2 Appendix. Using L(M|z,V), and the joint prior distribution P(M), we obtain the

joint posterior distribution conditional on V as

PðMjz;VÞ / LðMjz;VÞPðMÞ ð15Þ

For each birth cohort, we estimated the joint posterior distribution P(M,V|z) by fitting the

model (12) to the cohort’s data vector z from S4 Table and S5 Table. Samples from this joint

distribution were then used to simulate the model (12) and hence evaluate Rx(t) and DxðtÞ
using (4) and (5). The joint distribution was generated using Algorithm 1 in S3 Appendix,

which is composed of two stages.

Stage 1 of Algorithm 1: The first stage consists of two for loops, one embedded inside the

other. In the kth run of the total K1 = 104 runs of the outer loop, the algorithm first obtains a

sample Vk from the distribution P(V) of the literature-derived parameters V (14). Then, the

Metropolis-Hastings MCMC algorithm (S3 Appendix) is implemented in the inner loop for

K2 = 106 iterations to ensure that the Markov chain converges to the stationary distribution of

the posterior of M,P(M|z,Vk). At the end of Stage 1, the algorithm outputs P(M|z,Vk), k = 1,� � �,

K1, the posterior distributions of M given z and Vk for K1 samples Vk from P(V).

Stage 2 of Algorithm 1: The second stage is composed of a single for loop in which we

obtain samples from the joint posterior distribution P(M,V|z). In each of the K3 runs of this

loop, we first uniformly sample a vector V�k from among the vectors Vk generated in the outer

loop of Stage 1, thus yielding a sample from P(V). Next, we obtain a sample M� from among

the samples of the distribution PðMjz;V�k Þ obtained in Stage 1. The combined vector

½V�0k ;M
�0�
0
constitutes a sample from the distribution P(M,V|z).
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Algorithm 1 was used to obtain samples from the joint posterior distribution P(M,V|z) for

each of the three cohorts listed in S4 Table. Distributions for the CHC prevalence rate Rx(t)
and the percentage of CHC population undiagnosed DxðtÞ were then obtained for each cohort

by repeatedly sampling the cohort’s joint posterior distributions, using the samples to simulate

the model, and then evaluating (4) and (5).

Results

We next summarize the results obtained for each cohort.

1) CHC in Canada for pre-1945 births cohort

For the cohort of individuals across Canada who were born before 1945, Fig 3A and Fig 3B

show the estimates by model (12), (13) of the HCC and hepatitis C diagnosis data listed in S4

Table. The mean estimates fit the HCC diagnosis data with R2 = 0.76, and the hepatitis C diag-

nosis data with R2 = 0.93. Fig 3C gives the estimate of hepatitis C prevalence rate Rx in 2013 as

0.68% (95% CI: 0.52% - 0.89%). From Fig 3D, the percentage of CHC cases undiagnosed Dx in

2013 was 27.0% (95% CI: 19.3% - 36.1%). The estimated mean number of total CHC cases and

undiagnosed CHC cases is given in S4 Appendix.

CHC in 1945–1964 births cohort. For the cohort of individuals across Canada who were

born between 1945 and 1964, Fig 4A and Fig 4B show the estimates by model (12), (13) of the

HCC and hepatitis C diagnosis data listed in S4 Table. The mean estimates fit the HCC diagnosis

data with R2 = 0.98, and the hepatitis C diagnosis data with R2 = 0.99. Fig 4C gives the estimate

of hepatitis C prevalence rate Rx in 2013 as 1.13% (95% CI: 0.92% - 1.33%). From Fig 4D, the per-

centage of CHC cases undiagnosed Dx in 2013 was 18.8% (95% CI: 13.3% - 23.9%). The esti-

mated mean number of total CHC cases and undiagnosed CHC cases is given in S4 Appendix.

CHC in Canada for post-1964 birth years cohort

For the cohort of individuals across Canada who were born after 1964, Fig 5A and Fig 5B show

the estimates by model (12), (13) of the HCC and hepatitis C diagnosis data listed in S4 Table.

The mean estimates fit the HCC diagnosis data with R2 = 0.85, and the hepatitis C diagnosis

data with R2 = 0.28. Fig 5C gives the estimate of hepatitis C prevalence rate Rx in 2013 as 0.41%

(95% CI: 0.32% - 0.51%). From Fig 5D, the percentage of CHC cases undiagnosed Dx in 2013

was 31.9% (95% CI: 19.1% - 44.2%). The estimated mean number of total CHC cases and undi-

agnosed CHC cases is given in S4 Appendix.

CHC in Canada averaged over all birth cohorts. Fig 6A shows the prevalence rate esti-

mate for Canada averaged over all birth cohorts. The CHC prevalence rate estimate in 2013

was 0.63% (95% CI: 0.53% - 0.72%). Fig 6B shows the percentage of CHC cases in Canada that

were undiagnosed, averaged over all birth cohorts. The percentage of CHC cases undiagnosed

in 2013 was estimated to be 27.1% (95% CI: 19.3% - 36.1%).

Sensitivity analysis

A one-way sensitivity analysis of the calibrated models was conducted to determine the param-

eter categories causing the most variation in estimates of prevalence rate and undiagnosed

CHC proportion. The parameters tested were grouped into nine categories, listed in S6 Table.

The parameters in each group were varied together by +/-50%, and the effects of these pertur-

bations on the areas under the curves (AUC) of Rx and Dx between years 1999 and 2013 were

evaluated. The groups were then ranked according to how sensitive the cohort-averaged esti-

mates of Rx and Dx AUCs were to each. The CHC prevalence rate (Rx) AUC, averaged over all
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three birth cohorts, was most sensitive to perturbations in the number of new infections (Fig

7). A perturbation of +50% in the yearly number of new infections yielded a change of +9.4%

in the cohort-averaged Rx AUC. The AUC for the proportion of the CHC population undiag-

nosed (Dx), averaged over the three birth cohorts, was also most sensitive to perturbations to

the number of new infections, followed by perturbations to the annual probability of CHC

diagnosis (Fig 8). Here, a perturbation of -50% in the number of new infections yielded a

change of -6.50% in the cohort-averaged Dx AUC, whereas a perturbation of -50% in the

annual probability of CHC diagnosis yielded a corresponding increase of +3.53%.

Discussion

CHC often progresses silently and asymptomatically until late in its course. Recently, hepatolo-

gists have issued hepatitis C screening recommendations for Canadian baby-boomers [20].

Fig 3. Estimates for cohort of individuals born before 1945, for years 1999–2013, from model (12), (13) calibrated using data listed in S4 Table and S5

Table. Blue circles denote observed annual numbers of HCC and hepatitis C diagnoses for this cohort. A: Model estimates of total number of HCC diagnoses.

B: Model estimates of total number of hepatitis C diagnoses. C: Model estimates of CHC prevalence rate Rx(t). D: Model estimates of proportion of CHC

population undiagnosed DxðtÞ.

https://doi.org/10.1371/journal.pone.0225366.g003
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However, hepatitis C screening in Canada has only been recommended for high-risk individu-

als by the Public Health Agency of Canada [21], partly due to the uncertain prospective finan-

cial burden of a publicly funded screening and treatment policy. An accurate estimate of the

national prevalence rate of CHC and the proportion undiagnosed is therefore needed to reli-

ably predict the disease burden and to perform economic evaluations of population screening

and disease eradication strategies.

The aim of this work was to establish a mathematical framework to estimate CHC popula-

tions of interest. Starting with a well-established hepatitis C natural history model, our study

proposed a method with which to calibrate the model using available diagnosis data. As a case

study, we demonstrated the use of the framework in estimating Canada’s CHC prevalence and

the proportion of the Canadian CHC population that is undiagnosed.

Fig 4. Estimates for cohort of individuals born between 1945 and 1964, for years 1999–2013, from model (12), (13) calibrated using data listed in S4 Table

and S5 Table. Blue circles denote observed annual numbers of HCC and hepatitis C diagnoses for this cohort. A: Model estimates of total number of HCC

diagnoses. B: Model estimates of total number of hepatitis C diagnoses. C: Model estimates of CHC prevalence rate Rx(t). D: Model estimates of proportion of

CHC population undiagnosed DxðtÞ.

https://doi.org/10.1371/journal.pone.0225366.g004
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The averaged prevalence rate of CHC in Canada was estimated to be 0.63% (95% CI: 0.53%

- 0.72%) in 2013. The averaged percentage of CHC cases undiagnosed in Canada in 2013 was

estimated to be 27.1% (95% CI: 19.3% - 36.1%). Among the Canadian baby boomer generation

(birth cohort 1945–1964), the CHC prevalence rate was estimated to be falling between 1999

and 2013, and at 1.13% (95% CI: 0.92% - 1.33%) with 18.8% (95% CI: 13.3% - 23.9%) of indi-

viduals with CHC undiagnosed in 2013. On the other hand, among the younger birth cohort

(births years> 1964), the CHC prevalence rate was estimated to be rising between 1999 and

2013, and at 0.41% (95% CI: 0.32% - 0.51%) in 2013 with 31.9% (95% CI: 19.1% - 44.2%) of

individuals with CHC undiagnosed in 2013. The falling trend over 1999–2013 in the baby

boomer cohort is to be expected since a greater number of CHC infected individuals in this

cohort have already progressed to advanced liver disease stage, in which the mortality rate is

high. The prevalence rate in the younger cohort is low but shows a rising trend over the 1999–

Fig 5. Estimates for cohort of individuals born after 1964, for years 1999–2013, from model (12), (13) calibrated using data listed in S4 Table and S5

Table. Blue circles denote observed annual numbers of HCC and hepatitis C diagnoses for this cohort. A: Model estimates of total number of HCC diagnoses.

B: Model estimates of total number of hepatitis C diagnoses. C: Model estimates of CHC prevalence rate Rx(t). D: Model estimates of proportion of CHC

population undiagnosed DxðtÞ.

https://doi.org/10.1371/journal.pone.0225366.g005
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2013 period. With the baby-boomer infected population falling and the lower-prevalence rate

younger cohort forming an increasingly large proportion of the Canadian population over

1999–2013, the overall trend in the CHC prevalence rate was a downward one, as seen in Fig

Fig 6. Cohort-averaged estimates of prevalence rate and proportion of CHC population undiagnosed. A: Estimates for years 1999–2013 of CHC

prevalence rate in Canada rate averaged over all birth cohorts. B: Estimates for years 1999–2013 of proportion of CHC population undiagnosed averaged over

all birth cohorts.

https://doi.org/10.1371/journal.pone.0225366.g006

Fig 7. One-way sensitivity analysis for estimated prevalence rate, averaged over all birth cohorts.

https://doi.org/10.1371/journal.pone.0225366.g007
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6A. As more data becomes available with time, it can easily be incorporated into the modeling

framework of this paper to yield more up-to-date estimates of CHC prevalence.

This study’s estimates were based on 1) a comprehensive mathematical framework that is

built on a validated hepatitis C natural history model; and 2) an approach that incorporates the

sources of uncertainty inherent to hepatitis C natural history. Compared with previous results,

our national CHC prevalence rate estimate for 2007 is 0.68% (95% CI 0.61% - 0.76%) and is

therefore lower than the 2007 estimate by Remis of 0.78% [3]. On the other hand, our 2011

prevalence rate estimate is 0.65% (95% CI 0.56–0.73) and is therefore in agreement with the

0.64–0.71% estimate for 2011 reported in the Canada Communicable Disease Report [5].

When compared with the seroprevalence rate of 0.5% (range 0.3–0.9%) estimated from the

Canadian Health Measures Survey from 2007 to 2011 [22], our model estimated a higher prev-

alence rate. Estimates from the Canadian Health Measures Survey may be biased towards the

low side as only regular households were surveyed while marginalized and high-needs popula-

tions may have been undersampled [22].

The one-way sensitivity analyses identified those parameters which had the greatest impact

on the model estimates. Both the prevalence rate estimates and the undiagnosed CHC propor-

tion were found to be most sensitive to the annual number of new infections. The undiagnosed

CHC proportion was additionally found to be sensitive to the annual probability of CHC diag-

nosis. These particular parameters are the least well known of all the parameters of the model.

As shown in S5 Appendix, there are significant differences between the posterior and prior dis-

tributions of these parameters, indicating their sensitivity to the observed numbers of diag-

nosed HCC and hepatitis C cases. This highlights the importance of high quality calibration

data for the accurate calibration of these parameters and the subsequent generation of reliable

model estimates. The sensitivity analyses therefore point to where additional research effort

Fig 8. One-way sensitivity analysis for estimated proportion of CHC-infected population undiagnosed, averaged all birth cohorts.

https://doi.org/10.1371/journal.pone.0225366.g008
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should be directed to improve estimate accuracy. This is particularly useful information for

health economists who may wish to use this model for a ‘value of information’ analysis [23,24].

With respect to the backcalculation estimate in [5], our model quantifies the hepatitis C epi-

demic in more detail, in several respects: 1) it models the adoption of treatment among CHC

patients as well as the probability of achievement of a sustained virologic response (SVR), a

state in which HCV patients are considered effectively cured of the viral infection, 2) it

accounts for the dependence, on viral genotype, of the rates of treatment, SVR and CHC pro-

gression, 3) it models the progression of CHC to advanced liver disease, and, 4) it models the

heightened rate of mortality among younger CHC population cohorts [3,15,16]. Furthermore,

a wider and more up-to-date set of data is used in this study with respect to [5]: first, our

framework quantifies the proportion of HCC diagnosis numbers (used in the calibration) that

are attributable to CHC. Second, Trubnikov et al. [5] made no use of statistics on liver fibrosis

distributions at diagnosis as was done in this work. Finally, the Bayesian approach we adopt in

calibrating the model returns prevalence estimates in the form of posterior probability distri-

butions that reflect the parametric uncertainty in the model.

Although the model used in this study is more comprehensive than those used in [3] and

[5], the framework we have presented is also subject to some limitations. The model relied on

the total number of HCC cases diagnosed each year as one of the observables. Because progres-

sion from a new HCV infection to HCC may occur over a period of 20–40 years [25], the

model may underestimate the prevalence of CHC in the youngest cohort. A further limitation

arises from uncertainty in the calibration data. These data were derived from public databases

which are subject to the usual limitations of under-reporting, incompleteness, duplication and

sampling bias. In future work, uncertainty in our estimates can be reduced with calibration

data that i) report the annual numbers of HCC cases that are confirmed as being CHC-induced

and ii) decompose the annual numbers of hepatitis C diagnoses into acute, resolved and

chronic cases.

Using a Bayesian Markov Chain Monte Carlo approach, this paper has presented a method

for the estimation of CHC populations of interest from a hepatitis C natural history model cali-

brated using publicly available data on the occurrence of HCV-related events. One of the

advantages of this framework is its ability to incorporate multiple sources of uncertainty into

the model in arriving at its estimates. This factor makes the estimates more robust and is essen-

tial for decision-making [26]. In future work, this approach can be generalized and used to

produce region-specific estimates.
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