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Abstract: Brain fatigue is often associated with inattention, mental retardation, prolonged reaction
time, decreased work efficiency, increased error rate, and other problems. In addition to the accumu-
lation of fatigue, brain fatigue has become one of the important factors that harm our mental health.
Therefore, it is of great significance to explore the practical and accurate brain fatigue detection
method, especially for quantitative brain fatigue evaluation. In this study, a biomedical signal of
ballistocardiogram (BCG), which does not require direct contact with human body, was collected
by optical fiber sensor cushion during the whole process of cognitive tasks for 20 subjects. The
heart rate variability (HRV) was calculated based on BCG signal. Machine learning classification
model was built based on random forest to quantify and recognize brain fatigue. The results showed
that: Firstly, the heart rate obtained from BCG signal was consistent with the result displayed by
the medical equipment, and the absolute difference was less than 3 beats/min, and the mean error
is 1.30 ± 0.81 beats/min; secondly, the random forest classifier for brain fatigue evaluation based
on HRV can effectively identify the state of brain fatigue, with an accuracy rate of 96.54%; finally,
the correlation between HRV and the accuracy was analyzed, and the correlation coefficient was
as high as 0.98, which indicates that the accuracy can be used as an indicator for quantitative brain
fatigue evaluation during the whole task. The results suggested that the brain fatigue quantification
evaluation method based on the optical fiber sensor cushion and machine learning can carry out
real-time brain fatigue detection on the human brain without disturbance, reduce the risk of human
accidents in human–machine interaction systems, and improve mental health among the office and
driving personnel.

Keywords: brain fatigue; mental health; ballistocardiogram (BCG); machine learning; fiber-optic
sensor; heart rate variability (HRV)

1. Introduction

Brain fatigue usually emerges when people maintain sustained concentration during
long-term cognitive tasks, which can manifest as restlessness, low mood, inattention, slow
thinking, prolonged reaction time, decreased work efficiency, and increased error rate and
so on [1]. In addition to primitive fatigue accumulation caused by factors such as heavy
pressure in life and work, and poor sleep quality [2], brain fatigue has become one of the
biggest negative factors affecting public mental health [3]. Prolonged suffering fatigue can
lead to some mental disorders, especially for chronic fatigue syndrome [4–6]. It is also an
important risk factor in various man-machine systems with high safety requirements, such
as air traffic control, manned aerospace, car/aircraft driving, etc. [7]. According to the China
High-Speed website, the proportion of accidents caused by the brain fatigue of drivers
accounted for more than 40% in big traffic accidents on highways, which poses a great
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threat to people’s lives and property. Brain fatigue can affect the information resources
allocation of working memory and significantly decrease the efficiency of information
transmission [8]. The higher the degree of brain fatigue, the greater its negative impact [9].
Therefore, a more accurate understanding of brain fatigue degree can help people adopt
more rational rest strategies.

Brain fatigue detection methods can be summarized as subjective evaluation, psy-
chological indicators, facial features, and biomedical signals, as shown in Table 1. Since
subjective evaluation and psychological indicators require additional task experiments, the
users must stop their current task to do another specific task to complete the evaluation,
which lacks practicality in the actual task [10]. In some previous studies, facial features
were used in driving fatigue detection [11,12], but the accuracy was unstable on account
of the changes in internal and external environments during data collection, and the use
of cameras cannot guarantee the users’ privacy. In recent years, brain fatigue detection
methods based on electrophysiological signals (such as electroencephalogram (EEG), elec-
trocardiogram (ECG), magnetoencephalogram (MEG), etc.) have been widely used for
exploring the neural mechanisms and detection methods of brain fatigue [13], and have a
high accuracy compared to other kind of methods [14]. However, these methods based
on electrophysiological signals require additional contact electrodes on the brain scalp or
human body surface during the tasks. The operation processes are cumbersome, which
easily causes psychological pressure on the users, and are not practical [15].

Table 1. Brain fatigue evaluation method.

Methods Descriptions Characters

Subjective evaluation [10] Pearson Fatigue Scale, Stanford Sleepiness Scale,
questionnaire survey, interview, etc.

Reliability and validity are low; they are
often used as auxiliary research methods

Psychological indicators [14] Sound and light response time, flash fusion
frequency, etc.

Require additional design of mission
experiments and equipment,; they are

often used as auxiliary research methods

Facial features [11,12]
Percentage of eyelid closure, blink frequency,
nodding frequency, yawn frequency, mouth

state, etc.

No human contact, have strong
practicability, but are easily affected by

internal and external environments

Biomedical signals [13,14] EEG, ECG, EMG, blood oxygen signal, respiratory
signal, etc.

Often have touch with the human and
have high accuracy and reliability

Recently, ballistocardiogram (BCG) signals have drawn extensive interests from the
investigators in the field of health monitoring [16]. BCG can be a non-electrode contact,
non-binding, non-invasive monitoring technology, and has been widely used in biomedical
engineering [17–19]. It is the description of the small displacements of the human body
caused by heart activities [16]. The rhythm of BCG is consistent with ECG, and the
measured heart rate extracted from BCG signal agrees well with the commercial physiologic
device [20]. Wang et al. reported that the measured values of BCG have no statistically
significant differences compared with that of ECG in the time domain, frequency domain,
and non-linear indicators in a calm state [21], which shows that BCG signal is a reliable
method to extract heart rate. Therefore, BCG can be used as an accurate and effective
non-disturbing detection method to evaluate the brain fatigue liking the ECG signal [22–25].

In recent years, sensors have been widely used to detect BCG signals including two
kinds of popular sensors, piezoelectric film sensors and optical fiber sensors. Both of
them can perform interference-free measurement and obtain human heart rate information
without burden [16,20]. ECG signal has been widely used for brain fatigue detection [23–26],
but lacks the application of a BCG signal in brain fatigue evaluation. In this study, a
fiber-optic sensor embedded in a cushion was used to collect human BCG signals on a
chair. On the one hand, an experiment was conducted to validate the dependability of
the fiber-optic sensor cushion compared with a medical standard ECG monitor using
participant’s heart rate. On the other hand, a group of mental arithmetic math problems
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were designed and implemented for brain fatigue induction to study the brain fatigue
quantitative evaluation method based on machine learning and BCG. Our study is a
practical application attempt for brain fatigue evaluation, which has great differences from
the previous works (electrophysiological signal related), in that our method does not need
to directly contact the human body and can quantify the brain fatigue degree.

2. Participants and Methods
2.1. Participants and Data Collections

In this study, two groups of different volunteers participated in two experiments.
Firstly, 20 healthy undergraduate students from Zhejiang Normal University were recruited.
They were aged 19–23 years old and had no history of heart disease. Ten of them were
male and 10 of them female. During the experiment, all subjects were asked to sit quietly
for 5 min, until the subjects’ heart rates were relatively stable. Then a fiber-optic sensor
cushion (shown in Figure 1a, provided by SHENGAO Technology Co., Ltd., Hangzhou,
China) and the medical standard ECG monitor (shown in Figure 1b) were enabled to record
1 min of data at the same time. In addition, the fiber-optic sensor consists of three parts:
optical fiber, controller, and power supply. According to the fiber-optic sensor manual, its
measurement range is from 40–180 beats/min, and the measurement accuracy is ±5 beats
per min. Meanwhile, according to the medical standard ECG monitor, its measurement
range is from 25–250 beats/min, and the measurement accuracy is ±2%.
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Figure 1. (a) Optical fiber sensor cushion embedded in the chair, (b) ECG monitor.

Secondly, another 20 healthy participants (16 males and 4 females) from Zhejiang
Normal University were included in the brain fatigue evaluation study. They were under-
graduate students, graduate students, and young teachers. They were all right-handed,
aged from 19–38 (23.3 ± 5.2). Their mean BMI was 20.7 ± 2.7 kg/m2. In order to control
variables that may affect the results of the experiment, all recruited subjects were required
to meet the following conditions: (a) No psychotropic drugs, no history of brain diseases,
alcohol abuse, and no brain injuries; (b) No severe insomnia, no overnight stay, no drunk-
enness in the previous week before data acquisition; (c) No coffee, strong tea, and other
refreshing internal drinks 2 h before the test. All subjects were required to complete a group
of mental arithmetic math tasks, which was carried out for mental fatigue induction. The
whole task includes 200 mental arithmetic math problems. Each math problem consists
of adding two numbers between 60–99 and then multiplying by a number between 6–9.
The 200 mental arithmetic math problems are all designed to have the same difficulty level.
Each mental arithmetic math problem is required to be completed within 36 s, and the total
experiment lasts 120 min. Mental arithmetic math task has often been used for inducing
mental fatigue in previous works [27–30]. In our previous study, we used the same task and
proved that mental fatigue did occur among healthy participants [31,32]. In another related
mental fatigue study, Delliaux et al. analyzed fatigue, drowsiness, and anxiety at the same
time, and found that fatigue and drowsiness emerged during long-duration switching task,
and there was no statistical difference for anxiety before and after the task [33]. The task of
mental arithmetic is more similar to the long-duration switching task and will not generate
stress and anxiety during the task.
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2.2. Computation of Heart Rate and HRV from BCG Signal

BCG signal is collected through the optical fiber sensor. The sampling rate of BCG
signal is 10Hz. A band-pass filter (0.5–2.5 Hz) based on second-order Butterworth filter
is applied on the BCG. Then heart rate is calculated based on the power spectrum. That
is, the heart rate is equal to the spectrum peak multiplied by 60. The above algorithms
are integrated in the controller of the optical fiber sensor. In other words, the sensor only
outputs the heart rate.

Heart rate variability (HRV) is a useful indicator to assess the changes of heart rate.
As for healthy people, the body can quickly adapt to the changes in external and inter-
nal environments; the HRV value will be very high. When a person is ill or at fatigue
state, the variability and complexity of the heartbeat activity will decrease, resulting in
a decease of HRV. A typical BCG signal of a healthy person is shown in Figure 2. There
are three main types of HRV analysis methods based on BCG signals [34], including time
domain analysis (for example, the standard deviation of the sinus heartbeat J-J interval), fre-
quency domain analysis, and nonlinear analysis (such as Lyapunov exponent, complexity,
approximate entropy).

Healthcare 2021, 9, x  4 of 9 
 

 

ness, and anxiety at the same time, and found that fatigue and drowsiness emerged dur-
ing long-duration switching task, and there was no statistical difference for anxiety before 
and after the task [34]. The task of mental arithmetic is more similar to the long-duration 
switching task and will not generate stress and anxiety during the task. 

2.2. Computation of Heart Rate and HRV from BCG Signal 
BCG signal is collected through the optical fiber sensor. The sampling rate of BCG 

signal is 10Hz. A band-pass filter (0.5–2.5 Hz) based on second-order Butterworth filter is 
applied on the BCG. Then heart rate is calculated based on the power spectrum. That is, 
the heart rate is equal to the spectrum peak multiplied by 60. The above algorithms are 
integrated in the controller of the optical fiber sensor. In other words, the sensor only out-
puts the heart rate. 

Heart rate variability (HRV) is a useful indicator to assess the changes of heart rate. 
As for healthy people, the body can quickly adapt to the changes in external and internal 
environments; the HRV value will be very high. When a person is ill or at fatigue state, 
the variability and complexity of the heartbeat activity will decrease, resulting in a decease 
of HRV. A typical BCG signal of a healthy person is shown in Figure 2. There are three 
main types of HRV analysis methods based on BCG signals [35], including time domain 
analysis (for example, the standard deviation of the sinus heartbeat J-J interval), frequency 
domain analysis, and nonlinear analysis (such as Lyapunov exponent, complexity, ap-
proximate entropy). 

 
Figure 2. Typical BCG signal. Each BCG signal is characterized by several peaks and troughs reflect-
ing specific events of the beating heart. The BCG of a complete cardiac cycle includes G, H, I, J, K, 
L, M, and N waves. J peak is the peak with the maximum amplitude produced when the heart beats 
at its maximum, I is the trough with the minimum amplitude before J peak, H is the peak before J 
peak, K and M are the troughs after J peak, and L and N are the peaks after J peak. The whole cardiac 
cycle can be divided into three parts: prosystolic (GH), systolic (IJK), and diastolic (LMN). 

According to the description of HRV, this study proposes an indicator to characterize 
HRV based on frequency domain analysis. To be more specific, the ratio of reference heart 
rate to actual heart rate is put forward as the measurement of HRV. As shown in Equation 
(1), h is the actual heart rate value, and href is the reference heart rate. The average heart 
rate in first 10 min is used as the reference heart rate href. In order to expand the sensitivity 
of the characteristic value, the ratio is raised to the fourth power. 

4( )refhV
h

=  (1)

2.3. Random Forest Model Construction 
In this study, random forest is employed for brain fatigue detection [15], because it 

has high prediction accuracy, good tolerance for outliers and noise, and is not prone to 
overfitting. Random forest uses the integrated learning thinking to construct multiple in-
dependent decision trees based on randomly selecting sample information proposed by 
Breiman in 2001 [36], and establishes a classification model for the prediction target. When 

Figure 2. Typical BCG signal. Each BCG signal is characterized by several peaks and troughs
reflecting specific events of the beating heart. The BCG of a complete cardiac cycle includes G, H,
I, J, K, L, M, and N waves. J peak is the peak with the maximum amplitude produced when the
heart beats at its maximum, I is the trough with the minimum amplitude before J peak, H is the peak
before J peak, K and M are the troughs after J peak, and L and N are the peaks after J peak. The whole
cardiac cycle can be divided into three parts: prosystolic (GH), systolic (IJK), and diastolic (LMN).

According to the description of HRV, this study proposes an indicator to characterize
HRV based on frequency domain analysis. To be more specific, the ratio of reference
heart rate to actual heart rate is put forward as the measurement of HRV. As shown in
Equation (1), h is the actual heart rate value, and href is the reference heart rate. The average
heart rate in first 10 min is used as the reference heart rate href. In order to expand the
sensitivity of the characteristic value, the ratio is raised to the fourth power.

V = (
hre f

h
)

4

(1)

2.3. Random Forest Model Construction

In this study, random forest is employed for brain fatigue detection [15], because it
has high prediction accuracy, good tolerance for outliers and noise, and is not prone to
overfitting. Random forest uses the integrated learning thinking to construct multiple
independent decision trees based on randomly selecting sample information proposed by
Breiman in 2001 [35], and establishes a classification model for the prediction target. When
a new sample is input into random forest model, each decision tree will independently
predict the classification result of the sample and vote for the result. Finally, the category
with the most votes is determined based on the voted results of all decision trees. The steps
of random forest model are as follows:

(a) Form the training set and testing set from the original data set;
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(b) Randomly extract d features from the whole D features from the training samples
(d < D);

(c) Construct random forest classification model with multiple decision trees and input
the training set with the extracted d features into each decision tree;

(d) Enter testing set in the trained random forest model, each decision tree gets its own
prediction result, then vote on the prediction result. It is judged that the category with
the most votes is the final predicted result.

According to HRV values calculated by Equation (1), a random forest classifier is
constructed to identify brain fatigue. The samples in the previous 10 min are used as the
reference state (1 s can obtain one sample, that is, there are 12,000 samples for the reference
state). Then every 10 min of samples is defined as a new state, which will be compared with
the reference state by the random forest classifier. In addition, cross-validation strategy
is applied for classification to make the accuracy more reliable. Eighty percent of the
samples are randomly selected as the training set and the remaining 20% are selected as
the validation set. The above calculations are repeated 20 times to obtain the final accuracy
result, which is determined by averaging the accuracy of the 20 repetitions.

3. Results and Discussion

The test results of heart rate between fiber optic sensor and medical ECG monitor
are shown in Table 2. The results showed that the absolute difference value of the heart
rate measured by the optical fiber sensor and medical ECG monitor is not more than
3 beats/min, and the mean error is 1.30 ± 0.81 beats/min. In recent years, many stud-
ies have been carried out on the undisturbed measurement of heart rate, but they lack
the application in brain fatigue detection. For example, Chen et al. designed a BCG
monitoring system based on a seven-core fiber interferometer, and the mean difference
between the standard monitored heart rate and their proposed sensor’s heart rate was
1.19 beats/min [20]. It can be seen that the fiber-optic sensor cushion used in this study
can accurately and reliably detect and measure heart rate, which lays a foundation for
HRV analysis and provides an accurate, reliable, and practical hardware foundation for
quantitative brain fatigue evaluation.

Table 2. Results of heart rate compared between fiber optic sensor and medical ECG monitor.

Subject Number Heart Rate from
Fiber Optic Sensor

Heart Rate from
Medical Monitor Absolute Error Value

1 76 78 2
2 82 81 1
3 80 83 3
4 76 75 1
5 85 86 1
6 83 85 2
7 80 80 0
8 81 82 1
9 77 79 2
10 94 93 1
11 81 83 2
12 78 78 0
13 83 85 2
14 77 78 1
15 75 75 0
16 78 79 1
17 96 96 0
18 87 89 2
19 78 81 3
20 78 79 1
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HRV values during the whole test are shown in Figure 3. It is shown that HRV
value presents an increasing trend with the accumulation of mental arithmetic time. Heart
rate-related indicators have been widely used for mental fatigue evaluation. Laurent et al.
reported that heart rate is decreased with the deepening of mental fatigue [36]. Delliaux et al.
reported that heart rate significantly decreased and RR intervals, which is a commonly
used indicator for HRV measurement, significantly increased with the increase of the
task time [33]. As shown in Equation (1), the decrease of heart rate naturally resulted in
the increase of HRV defined in this study. Our results are very consistent with previous
studies [22,26,33], which suggested that the HRV index is an ideal method for evaluating
brain fatigue. In addition, previous studies computed HRV from the sensors in direct
contact with human body, which limited application scopes of these studies. Our study
applied the fiber-optic sensor cushion in mental fatigue detection with high practicability.
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The final classification accuracy results are shown in Table 3. The accuracy reached
the highest amount of 96.5% when the mental arithmetic time lasted between 100 and
110 min. In some similar studies, the accuracy of fatigue classification is close to our study.
Liu et al. obtained an accuracy of 92.7% with three non-hair-bearing EEG channels [15].
Laurent et al. reported an accuracy of 94 ± 2% for brain fatigue detection [36]. Ding et al.
indicated that ECG signals have good discriminating power for mental workload detection
with an accuracy of 96.4% [37]. It follows then that the brain fatigue evaluation method
based on the optical fiber sensor cushion and the proposed HRV value in this study has
high accuracy and reliability.

Table 3. Accuracy results of HRV index with random forest classifier.

Time (min) 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120

Accuracy (%) 72.30 79.08 81.15 82.09 87.72 91.41 94.43 95.13 96.18 96.54 94.98

In addition, to our knowledge, this is the first time that the whole test was used for
classification analysis. Previous studies always detected brain fatigue based on the data
before and after the experiment [3], which ignored the dynamic evolution of brain fatigue.
In this study, the whole test data were analyzed for brain fatigue evaluation. It can be seen
from Table 3 that the accuracy presents an increasing trend and only has a small drop at
the last 10 min, which is consistent with the HRV changing trend shown in Figure 3. On
the basis of this interesting phenomenon, we further analyzed the correlation between
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HRV and the accuracy. The result is given in Figure 4. The correlation coefficient between
HRV and accuracy was as high as 0.98, which indicates that the accuracy can be used as an
indicator for quantitative brain fatigue evaluation during the whole task.
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Our current study still has some limitations. On the one hand, only one task is used for
mental fatigue induction. Our method should be verified in other kinds of tasks, especially
in some practical applications. On the other hand, the goal of this study is to attempt
to provide a practical application scheme for mental fatigue detection. The real-time
algorithm has not been developed yet, and the time latency of the provided method cannot
be measured. We will consider this issue in our future study.

4. Conclusions

In this study, we attempt to provide a strategy with application values for detecting
and quantifying brain fatigue. Firstly, an undisturbed fiber-optic sensor embedded in a
cushion was used to collect human BCG signals. An experiment was conducted to prove
its reliability for heart rate extraction. The absolute error was less than 3 beats/min and the
mean error was 1.30 ± 0.81 beats/min compared with a medical standard ECG monitor.
The use of a fiber-optic sensor embedded in a cushion can ensure the practicality and
reliability of our proposed strategy. Secondly, the HRV index extracted from human BCG
signals was proposed for brain fatigue evaluation. Random forest classifier was applied on
HRV index to quantify and recognize brain fatigue. The accuracy presented an increasing
trend accumulation of mental arithmetic time and reached the highest accuracy of 96.5%
when the task time lasted between 100 and 110 min. It can be seen that the proposed
HRV index combined random forest classifier was an accurate and stable strategy for brain
fatigue evaluation. In addition, the correlation between the proposed HRV index and the
accuracy was analyzed, and the correlation coefficient was as high as 0.98, which indicated
that the accuracy can be used as an indicator for quantitative brain fatigue evaluation
during the whole task. To sum up, the method based on random forest and HRV index
derived from the fiber-optic sensor can provide a practical, accurate, reliable, and stable
strategy for quantitative brain fatigue evaluation.
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