
RESEARCH ARTICLE

The Use of a Bayesian Hierarchy to Develop

and Validate a Co-Morbidity Score to Predict

Mortality for Linked Primary and Secondary

Care Data from the NHS in England

Colin J. Crooks1,2*, Tim R. Card1,2, Joe West1,2

1 Division of Epidemiology and Public Health, Clinical Sciences Building, University of Nottingham,

Nottingham City Hospital, Nottingham, Nottinghamshire, United Kingdom, 2 National Institute for Health

Research (NIHR) Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University

Hospitals NHS Trust and the University of Nottingham, Queens Medical Centre Campus, E Floor West

Block, Derby Road, Nottingham, Nottinghamshire, United Kingdom

* colin.crooks@nottingham.ac.uk

Abstract

Background

We have assessed whether the linkage between routine primary and secondary care rec-

ords provided an opportunity to develop an improved population based co-morbidity score

with the combined information on co-morbidities from both health care settings.

Methods

We extracted all people older than 20 years at the start of 2005 within the linkage between

the Hospital Episodes Statistics, Clinical Practice Research Datalink, and Office for

National Statistics death register in England. A random 50% sample was used to identify

relevant diagnostic codes using a Bayesian hierarchy to share information between similar

Read and ICD 10 code groupings. Internal validation of the score was performed in the

remaining 50% and discrimination was assessed using Harrell’s C statistic. Comparisons

were made over time, age, and consultation rate with the Charlson and Elixhauser indexes.

Results

657,264 people were followed up from the 1st January 2005. 98 groupings of codes were

derived from the Bayesian hierarchy, and 37 had an adjusted weighting of greater than zero in

the Cox proportional hazards model. 11 of these groupings had a different weighting depen-

dent on whether they were coded from hospital or primary care. The C statistic reduced from

0.88 (95% confidence interval 0.88–0.88) in the first year of follow up, to 0.85 (0.85–0.85)

including all 5 years. When we stratified the linked score by consultation rate the association

with mortality remained consistent, but there was a significant interaction with age, with

improved discrimination and fit in those under 50 years old (C = 0.85, 0.83–0.87) compared to

the Charlson (C = 0.79, 0.77–0.82) or Elixhauser index (C = 0.81, 0.79–0.83).
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Conclusions

The use of linked population based primary and secondary care data developed a co-mor-

bidity score that had improved discrimination, particularly in younger age groups, and had a

greater effect when adjusting for co-morbidity than existing scores.

Introduction

There is a critical lack of a co-morbidity index derived for the general population outside of
secondary care cohorts, as no co-morbidity index has been derived directly for linked primary
and secondary care data. A measure of co-morbidity is essential to adjust disease outcomes for
confounding by coexisting chronic illness. The best validated method to date is the secondary
care derived Charlson index, developed using hospital chart data of medical inpatients to pre-
dict mortality in the 1-year post discharge, and validated in a cohort of breast cancer inpatients
in 1987[1]. An adaptation of the Charlson index has been translated to the Read/OXMIS code
system for primary care, but it did not reassess which diseases to include or their weightings
[2]. Management of various diseases has changed greatly over the last two decades and a diag-
nosis might have a different contemporary association with mortality than it did in 1987. This
was partly confirmed in another study which found that the Charlson index weightings did
need updating, but the researchers only used hospital data and did not assess whether addi-
tional diagnoses outside of the Charlson index might now be relevant [3].

Other frequently usedmeasures such as the Elixhauser [4] and Chronic Disease Score [5]
use a wider range of co-morbidity. However, they were designed to predict hospital costs,
length of stay and short term 30-day mortality as outcomes. These outcomes might conflict
with each other, for example Elixhauser et al. reported that depression, obesity, and hypothy-
roidism increased length of stay and hospital costs, yet found these diagnoses were actually
protective for in hospital mortality. Combining these outcomes can therefore confuse the utility
of these scores when used outside a health economics setting to predict survival.

Another consequence of existing scores like the Charlson index being derived frommedical
inpatient data is that the medical co-morbidities commonly found in this more elderly popula-
tion predominate, whilst other co-morbidities that might be relevant in a younger population
can be overlooked, such as mental health [6]. An unselected population based cohort could
avoid this problem whilst also assessing whether co-morbidity recorded during hospital admis-
sions has different mortality associations compared to co-morbidity recorded in the commu-
nity by a general practitioner.

We have therefore aimed to develop a contemporary co-morbidity score in a population
based cohort from Clinical Practice Research Datalink using linked primary and secondary
care diagnoses. To adjust for multiple testing and potential group effects we used Bayesian data
mining techniques we have previously published [7].

Objective and Aims

To develop a co-morbidity score within linked primary care and secondary care data that uti-
lises ICD 10 and Read codes to predict one-year mortality.

1. To identify potential codes for categories of diagnostic ICD 10 and Read codes that are asso-
ciated with one-year survival.
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2. To test which of these categories predict survival when adjusted in a model using Cox pro-
portional hazards modelling.

3. To validate the prognostic model in a validation sample and test its discriminative ability at
different ages, follow up times, and calendar years.

4. To assess the ability of the score to adjust for confounding in a chronic and an acute disease
with knownmortality risks and compare this with other similar scores.

Materials and Methods

Data

A cohort study was designed using linked longitudinal data from the English Hospital Episodes
Statistics (HES) data, Clinical Practice Research Datalink (CPRD) and Office of National Statis-
tics (ONS) death register. This data linkage records all primary care events, hospital admissions,
and causes of death from 1st April 1997 for 3% of the English population [8]. Because of the com-
prehensive English primary care system, the population registered to the CPRD is representative
of the general English population [9]. The data sources are subject to quality checks and a prac-
tice’s data is only used when it is of high enough quality to be used in research. This is referred to
as the up to research standard time period and is defined separately for each primary care prac-
tice. Regulatory approval for this study was obtained from the Independent ScientificAdvisory
Committee for theMedicines and Healthcare Products RegulatoryAgency database research.

Study population

The study cohort was defined as all patients registered 1st January 2005 to a primary care prac-
tice that contributed to the CPRD until 1st January 2010 and had consented to linkage to HES
and ONS. The cohort was followed from the 1st January 2005 to their death or transfer out of a
CPRD practice or to 1st January 2006 if earlier. This cohort was randomly divided into two
halves. The first half was used to develop the prognostic score, and the second half to internally
validate its performance. Follow up was extended to 1st January 2010 as part of the assessment
of the score’s performance in the validation.

Exposure

Diagnostic codes rather than medication codes were used to derive the score, as medications
would be a proxy for the direct effect of a disease. For this study we used all diagnostic Read
codes from primary care in the CPRD (i.e. chapters A, B, C, D, E, F, G, H, J, K, L, M, N, P, S) in
addition to all diagnostic ICD 10 codes from secondary care in HES (chapters A, B, C, D, E, F,
G, H, I, J, K, L, M, N, O, Q, S, T). These were extracted prior to two months before the cohort
start date (1st November 2004). This two-month exclusion periodwas chosen to avoid includ-
ing codes that were palliative or recording a final stage of life.

As there would remain too many codes in the Read and ICD 10 code systems to assess in a
single multivariate model and there were likely to be significant correlations between similar
codes we first needed to identify candidate groupings of codes to use as potential predictors.

However, grouping codes together incorrectlymight hide information about which codes
were or were not contributing to the group effect. Therefore, we used a hierarchy within a
Bayesian framework that allowed information to be shared at a group level whilst still estimat-
ing the effect of individual codes within the group. This hierarchy was defined as the sub chap-
ters in the Read code (the first two digits of the Read code) and the ICD 10 code blocks (the
first two digits of the ICD 10 code).
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Socioeconomicdata was available fromONS data linked to the CPRD. This provided the
average quintile of Index of Multiple Deprivation of the registered population at each primary
care practice [10].

Outcome

Dates of all-cause mortality for the whole cohort were extracted from the linked data using the
ONS death register. All deaths in England are coded and recorded in the ONS death register
from death certificates.

Score development

Data mining in a Bayesian framework. The individual unadjusted associations of each
Read and ICD 10 codewith survivalwere initially assessed in a random sample of 50% of the
whole CPRD taken in 2005 using a Cox proportional hazards model. The hazard ratios of individ-
ual codes were then re-estimated using the Bayesian hierarchy previously described to allow for
heterogeneous coding of a particular diseasewithout losing the detail of the individual codes. This
method has been previously used and published [7]. We then selected codes whose hazard ratio’s
99% confidence interval excluded 1.2 or whose group’s 99% confidence interval excluded 1.2. A
hazard ratio of 1.2 was selected as it was the lower limit used in the Charlson index. The groups
that these codes were categorised to were then reviewedmanually to assess whether the underly-
ing codeswere appropriate to these categories based on the authors’ clinical judgement. Categories
for consideration for selection for a new score were then defined from thesemodifiedgroups.
Prognostic model building. A Cox proportional hazards model was constructed contain-

ing all the categories defined in the previous section adjusted for age and sex. If there were differ-
ences between the Read and ICD 10 codes, this might have been due to the latter being a flag of
hospitalisation rather than a specific diagnosis. Therefore, an indicator for hospitalisation in the
previous year was also included in the model (excluding the twomonths prior to the study start
date). The category coefficientswith a hazard ratio of greater than 1.2 and a 99% confidence
interval excluding the null were then translated into weights [11]. The beta coefficient for each
category was multiplied by 10 and rounded to the nearest integer for convenience. Goodness of
fit was compared betweenmodels using Akaike’s Information Criterion and discrimination by
the Harrell’s C statistic. The model building process was repeated in bootstrapped samples and
the differences in Harrell’s C statistic between the score derived from the samples and the full
development score was used to provide an estimate of the optimism introduced [12].
Sensitivity analyses. The period before a patient’s death will include coding directly

related to the final outcome of death. To avoid including this outcome coding as part of the
exposure coding of co-morbidity we conducted two sensitivity analyses. First we rebuilt the
model excluding all codes recorded in the 6 months prior to 1st January 2005 (rather than the
2 months in the main analysis). Secondly we rebuilt the model excluding patients with less
than 1, 3, or 6 months of follow up.

Validation

Internal validation was carried out in the remaining 50% of the dataset not yet used in the
study. The AIC and Harrell’s C statistic were calculated for the new linked score as well as for
the Charlson index and the Elixhauser index for comparison. Confidence intervals for Harrell’s
C Statistic were calculated using Roger Newson’s somersD command available for download
for Stata (http://www.imperial.ac.uk/nhli/r.newson/stata12/somersd.zip).
Stratified analysis of the fit and performance of the linked score in predictingmortal-

ity. The performance of the linked score, Charlson index and Elixhauser index in the
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validation cohort were stratified by age, year of follow up after 2005 (up to 5 years), socioeco-
nomic status, and number of consultations in the previous year. All data management and
analyses were carried out using Stata 13 MP16 software (StataCorp. 2014. Stata Statistical Soft-
ware: Release 13. College Station, TX: StataCorp LP).
Performance of the score in adjusting for co-morbidity in diabetes and upper gastroin-

testinal bleeding. Diabetes is a disease that increases the risk of many other co-morbidities
that indirectly reduce survival [13], and upper gastrointestinal bleeding is an acute event in
which co-morbidity both predicts its occurrence and its subsequent mortality, both short and
long term [14–16]. We therefore used a Cox proportional hazards model adjusted for age and
gender to assess the ability of our linked score to adjust for the effect of co-morbidity on sur-
vival for both of these diagnoses. For the diabetes analysis we removed the category of diabetes
from the calculation of the Charlson index and the linked score, and for upper gastrointestinal
bleeding we removed bleed codes, to avoid including the diagnoses twice in the model.

For a chronic disease like diabetes the diagnosis date does not necessarily indicate disease
onset, therefore for the analysis we selected all patients with a recording of diabetes prior to
November 2004, and followed them up from 1st January 2004 (using the same definition as
when defining the Charlson index). This cohort was compared them to all patients without a
recording of diabetes prior to November 2004 and followed up from 1st January 2004[17].

In contrast upper gastrointestinal bleeding is an acute event with a defined date of onset. As
we have previously developed a method for defining upper gastrointestinal bleeding in the
CPRD we used this work to identify all patients with a first recorded bleed in our cohort
(2005–2010) [18]. In brief an episode was included if there was a specific code for an incident
gastrointestinal bleed in either the primary or secondary care dataset with a concurrent sup-
porting code in the other dataset. We dropped all patients with a less specific diagnosis of gas-
trointestinal bleeding.We followed all patients up following the first bleed and split the time
into the first 60 days for short termmortality, and subsequent to that for long termmortality.
Sixty days was chosen as that was the window between primary and secondary care used in our
initial definition. Follow up in the cohort still finished on 31st December 2010. For the compar-
ison cohort for upper gastrointestinal bleeding we followed up all patients in our cohort with-
out any upper gastrointestinal bleeding from a random observeddate.

Results

Study population

657,264 people 20–100 years old were available to be followed up from the 1st January 2005
until 1st January 2006 with 21,672 deaths. After allowing for censored individuals and deaths
the population had a mean follow up of 3 years. The age structure of the population was similar
to the UK population, as would be expected from a national population database [19].

Score development

Data mining in a Bayesian framework. The age and sex adjusted hazard ratios for each
ICD 10 and Read code (13,855 codes in total) in the development population sample
(n = 328,628) are shown in Fig 1.

These hazard ratios were re-estimated in the hierarchical Bayesian model using the coding
hierarchy to share information between similar codes (Fig 2). Of these re-estimated hazard
ratios 644 ICD codes and 801 ICD codes had 99% confidence intervals excluding 1.2. These
1445 codes were grouped by their sub chapters into 96 Read code groups and 97 ICD 10
groups. These produced 98 combined categories after mapping from ICD 10 to Read codes.
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These groups were then reviewedmanually to assess whether the included codes were clinically
appropriate to the groups.
Prognostic model building. Hazard ratios for the 98 potential categories where derived

from a Cox proportional hazards models adjusted for age and gender. Categories derived from
Read and ICD 10 codes were added separately. Those categories whose hazard ratio did not sig-
nificantly differ whether derived from ICD 10 codes or Read codes were then combined. The
hazard ratios with 99% confidence intervals excluding the null were then translated into integer
weights by rounding the beta coefficient to one decimal place and multiplying by 10 are pre-
sented in Table 1 and the codes used have been included as supporting information with this
paper (S1 and S2 Tables). The resulting score had a C statistic of 0.882 and an AIC of 244934.
Bootstrapping the model building process provided an estimate of the optimism of the C statis-
tic of only +/-0.0005.
Sensitivity analyses. Applying the same weights to ICD 10 and Read codes did not have a

large effect on the discrimination of the score (C = 0.880, AIC = 245434), and neither did
excluding co-morbidity recorded in the 6months prior to the start of follow (C statistic = 0.881).
As only 4 categories had a weight above 10 we assessed the effect of capping the weights at 10.
This did not alter the score’s discrimination (C = 0.882, AIC 244986). Ten percent of deaths

Fig 1. Age and sex adjusted hazard ratio for each individual ICD 10 and Read code. The vertical lines represent the 99% confidence intervals with

the colour representing the frequency density as indicated in the colour side bar. The hazard ratios are exponentiated coefficients from the Cox

proportional hazards model. For clarity only the broader chapters for codes are labelled (from the mapped Read code chapters).

doi:10.1371/journal.pone.0165507.g001
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(n = 1,100 in the development cohort) occurredwithin the first 30 days of follow up. Excluding
patients with less than 1, 3 or 6 months of follow up from the score development only reduced
the discrimination of the score slightly (Table 2).

Validation

Compared to the Charlson index when assessing the prediction of death in the second half of
the dataset (328,636 people with 10,984 deaths within the first year), the linked score resulted
in a better spread across higher values resulting in more stable hazard ratios (S3 Table). Using
the score as a categorical or continuous variable did not alter the discrimination (C statis-
tic = 0.879 and 0.878 respectively) but goodness of fit was significantly improved for the former
(p< 0.0001 for likelihood ratio test and AIC = 252464 and 252787 respectively). The linked
score had significantly improved discrimination and fit compared to the Charlson index and
the Elixhauser index (Table 3).
Stratified analysis of the fit and performance of the linked score in predictingmortal-

ity. There was a significant interaction between age group and the linked score in predicting
mortality (likelihood ratio test with nested model without interaction p< 0.0001) and so an
age stratifiedmodel is presented in Table 4. When stratified by age the discrimination of the
linked score was higher than either the Charlson index or the Elixhauser index, particularly in
younger age groups. There was also a significant interaction between the linked score and the
consultation rate (likelihood ratio test with nested model without interaction p< 0.0001) with
some reduction in discrimination for all measure for those who consulted with their general
practitionermore than 14 times a year (Table 5). However, the linked score still performed
slightly better than the Charlson and Elixhauser index. Finally, when we assessed the perfor-
mance of the Charlson index during additional years of follow up, the C statistic reduced
slightly for each individual year of follow up for the linked score in a similar manner to the
Charlson and Elixhauser index (Table 6). When predicting death across the full 5 years of fol-
low up the C statistic for the linked score was 0.85 (0.85–0.85). The linked score had a slightly
improved discrimination across most socioeconomicclasses (S4 Table), however the addition
of socioeconomicdata to the model with the linked score produced only a slight improvement
in discrimination and was therefore not included in our main analysis.
Performance of the linked score in adjusting for co-morbidity in diabetes and upper gas-

trointestinal bleeding. The effect of an upper gastrointestinal bleeding event or a chronic diag-
nosis of diabetes on all-causemortality is shown in Table 7 adjusted for the linked score, Charlson
index, and Elixhauser index. The linked score had a greater effect in adjusting associatedmortality
for the effect of long term co-morbidity in both diabetes and upper gastrointestinal bleeding.

Discussion

The use of linked population based data to derive a new co-morbidity score resulted in an
improvement in model fit and discriminationwithin a validation cohort compared to existing

Fig 2. ICD 10 and Read code hazard ratios re-estimated in a Bayesian hierarchy. The three panels are

stacked to demonstrate the related probability distributions at each level of the Bayesian hierarchical model

with information sharing between codes at both the mapped Read subchapter (leading 2 code digits) and

chapter (leading code digit) level: (a) Re-estimated ICD 10 and Read code hazard ratios (b) Mapped Read

subchapter group probability distributions. (c) Mapped Read chapter group probability distributions. For all

three panels the vertical dimension represents the 99% confidence intervals with the colour representing the

probability density as indicated in the colour side bar. For clarity only the broader chapters for codes are

labelled on the x axis (from the mapped Read code chapters). A normal prior on the log scale was used for all

estimated categories (mean = 0, standard deviation = 1000).

doi:10.1371/journal.pone.0165507.g002
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Table 1. Linked score categories and weights.

Score for Read codes or combined codes* Score for ICD 10 codes where significantly

different**

Category label based on Read Sub chapter Hazard Ratio 95%

confidence

interval

Score weight Hazard Ratio 95% confidence

interval

Score weight

Neoplasm Histology 1.2 ( 1.0 - 1.3) 1

Malignancy of digestive organs and peritoneum 1.8 ( 1.6 - 2.1 ) 6

Malignancy of respiratory tract and intrathoracic

organs

3.5 ( 3.0 - 4.0) 12

Malignancy of genitourinary organ 1.5 ( 1.3 - 1.6 ) 4

Malignancy of other and unspecified sites 1.8 ( 1.5 - 2.3 ) 6

Malignancy of lymphatic and haemopoietic tissue 1.5 ( 1.3 - 1.8) 4

Metastases 2.9 ( 2.5 - 3.3) 11

Non thyroid and non-diabetic endocrine gland disease 1.5 ( 1.2 - 1.9 ) 4

Diabetes 1.1 ( 1.0 - 1.2) 1

Non deficiency and non-haemolytic anaemias 1.1 ( 1.0 - 1.2) 1

Non-malignant white cell, platelet and splenic

disorders

1.2 ( 1.0 - 1.4) 2

Non-organic psychoses 1.3 ( 1.2 - 1.5) 3

Other central nervous system disorders 1.4 ( 1.0 - 1.9) 3

Epilepsy 1.2 ( 1.1 - 1.4) 2

Paralysis 1.2 ( 1.1 - 1.4) 2

Dementia 1.4 ( 1.2 - 1.6) 4 2.0 ( 1.8 - 2.2 ) 7

Parkinson’s disease 1.5 ( 1.3 - 1.7) 4

Spinal disease 1.5 ( 1.2 - 2.0) 4

Multiple Sclerosis 2.4 ( 1.7 - 3.5 ) 9

Heart conduction disorders 1.2 ( 1.1 - 1.2) 2

Cerebrovascular disease 1.2 ( 1.1 - 1.3) 2

Peripheral vascular disease 1.1 ( 1.0 - 1.2) 1 1.4 ( 1.2 - 1.5 ) 3

Heart failure 1.4 ( 1.3 - 1.5) 3

Chronic obstructive pulmonary disease 1.1 ( 1.0 - 1.2) 1 1.5 ( 1.3 - 1.6 ) 4

Lung disease due to external agents 1.6 ( 1.2 - 2.0) 5

Pleural disease 1.1 ( 1.0 - 1.2) 1

Interstitial lung disease 1.5 ( 1.3 - 1.8) 4

Oesophageal, stomach and duodenal diseases 1.1 ( 1.0 - 1.2) 1

Liver disease 1.4 ( 1.1 - 1.7) 3

Cirrhosis 1.6 ( 1.3 - 2.1) 5

Nephritis, nephrosis and nephrotic syndrome 1.3 ( 1.2 - 1.4) 2

Connective tissue diseases 2.9 ( 1.1 - 8.0 ) 11

Congenital musculoskeletal deformities 17.3 ( 2.8 - 108.2 ) 29

Chromosomal anomalies 2.0 ( 1.1 - 3.4) 7

Burns 1.2 ( 1.0 - 1.5) 2

Alcohol or illegal drug use 1.3 ( 1.1 - 1.5) 3 1.8 ( 1.5 - 2.1 ) 6

Linked score categories and weights. Each category is included in the overall score once with the highest weight depending on whether it was identified

from Read codes or ICD 10 codes.

*Read or ICD 10 category adjusted for age, sex and all other categories in table.

**If weighting and hazard ratio significantly different (p < 0.005) from the Read or combined hazard ratio the weighting for the ICD 10 code is shown here.

doi:10.1371/journal.pone.0165507.t001
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Charlson and Elixhauser indices. There was also a greater ability to adjust for the indirect effect
of co-morbidity in the chronic disease of diabetes and the acute event of upper gastrointestinal
bleeding. The improvement in discriminationwas most notable for younger age groups, and
was comparable across different consultation rates and follow up times.

The improved discrimination in younger age groups reflects the strength of using the linked
data within an unselected general population rather than only data derived from restricted hos-
pital admissions. This improvement partly reflects the additional disease categories identified
of psychotic, neurological, and congenital conditions in addition to alcohol excess, drugmisuse
and traumatic burns. However, the improvements cannot be explained by just the inclusion of
a greater number of diagnoses, as it also performed better than the Elixhauser index which has
a similar number of diagnoses. In our previous work we have found that simply adding pri-
mary care data to secondary care data did not improve the performance of the Charlson index
[17], and we confirmed that for most categories there was no difference whether the category
was coded in primary or secondary care. Furthermore, there were some categories such as mul-
tiple sclerosis and genitourinarymalignancy that were only relevant when coded in secondary
care. However primary care categories, even when a differential effect was observed, still had a
significant association with mortality.

A potential weakness of the study was including all codes in the automated model building,
rather than deriving clinical disease categories from existing prior knowledge.However, this
was the intention of the design of the study to allow the identification of novel groups of codes
that predicted survival that might have been overlooked in pre-existing scores. The disadvan-
tage of this method is that it might over fit a model and simply reflect bias existing within the
coding rather than real clinical associations.Whilst we will have minimised this through our
manual review for implausible associations, there is also a benefit in using real life patterns of
coding in primary and secondary care. The resulting score therefore will have real utility in
future research as it will take into account these patterns of coding where this predicts reduced
survival. The bootstrapping to test for testimation bias did not suggest a large bias from over-
fitting within the score development, and the internal validation we performed in a separate
CPRD cohort produced similar results to the main development cohort.

As with all observational epidemiology there is still the possibility of unmeasured residual
confounding, bias and random error generating spurious results. The likelihoodof selection
bias occurringwas small as the unselected study population included all available people in the

Table 2. Discrimination of the Linked score in the development cohort when developed with patients

with less than 1, 3, and 6 months of follow up excluded.

Minimum follow up Number of people Total person years Linked score

�1 323224 1.08e+08 0.88

�3 312300 1.07e+08 0.87

�6 297135 1.05e+08 0.87

doi:10.1371/journal.pone.0165507.t002

Table 3. Performance in the validation cohort for Charlson index, Elixhauser index, and the linked score adjusted for age, gender and recent

hospitalisation.

Score AIC Harrell’s C statistic 95% Confidence intervals

Elixhauser 254368 0.868 (0.866–0.871)

Charlson index 253724 0.872 (0.869–0.874)

Linked score (categorical) 252460 0.879 (0.876–0.881)

Linked score (continuous) 252755 0.878 (0.875–0.880)

doi:10.1371/journal.pone.0165507.t003
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CPRD, and random error was reduced due to the large population size. Some under reporting
or missing data for risk factors will be inevitable in routine data; however, by using data from
both primary and secondary care we increased the sensitivity for detecting relevant co-morbid-
ities. Misclassificationwas also possible, however the components of the Charlson index have
previously been validated in the GPRD against case records (myocardial infarction [20, 21],
heart failure [22, 23], cerebrovascular disease [24–26], dementia [27–29], respiratory disease
[30–32], connective tissue disease [33–36], peptic ulcers [37], liver disease [38, 39], renal failure
[40], cancer [41], leukaemia and lymphoma [42]). The HES data submissions are regularly
cleaned and monitored for data quality and consistency. An in depth government audit of sam-
ples of UK hospital data confirmed accuracy approaching 90% [43]. Similarly, CPRD primary
care records undergo regular quality and consistency checks and a practice’s data is only
included when it is of high enough quality to be used in research (at these times the data is said
to be “up to research standard”) [44]. The CPRD has been extensively validated with paper rec-
ords for a wide range of diagnoses with a mean positive predictive value of 89% [45].

Another potential limitation of our study was the use of the C statistic as a measure of dis-
crimination rather than a more ‘up to date’ method such as the Net Reclassification Index [46,
47]. We were only able to show small improvements in the C statistic within our cohort
because we were making comparisons betweenmodels that all had excellent discrimination. To
obtain larger improvements in the C statistic would require risk factors with unrealistically
large hazard ratios [48, 49]. However, alternatives that are more sensitive to improvements in
discrimination, such as the Net Reclassification Index, have been shown to be misleading, as it
has been demonstrated that adding non informative data to a model can result in a beneficial
Net Reclassification Index [50, 51]. Instead we show confidence intervals for C statistic

Table 4. Discrimination of the Linked score, Charlson index and Elixhauser index stratified by 10-year age groups in the validation cohort.

Age (years) N (%) Linked score Charlson index Elixhauser index

20–29 70140 0.21 0.78 (0.72–0.85) 0.69* (0.63–0.75) 0.71 (0.66–0.77)

30–39 68104 0.21 0.81 (0.76–0.85) 0.73* (0.69–0.78) 0.77 (0.73–0.81)

40–49 46328 0.14 0.81 (0.78–0.84) 0.73* (0.70–0.76) 0.75* (0.72–0.78)

50–59 37433 0.11 0.78 (0.76–0.80) 0.76 (0.74–0.78) 0.75* (0.73–0.77)

60–69 30634 0.09 0.74 (0.72–0.75) 0.73 (0.71–0.74) 0.70* (0.69–0.72)

70–79 32203 0.10 0.70 (0.68–0.71) 0.67* (0.66–0.68) 0.66* (0.65–0.67)

80–89 33687 0.10 0.65 (0.64–0.66) 0.63* (0.62–0.64) 0.63* (0.62–0.64)

�90 10107 0.03 0.60 (0.59–0.62) 0.58* (0.57–0.59) 0.58* (0.57–0.59)

* Indicates significantly different from linked score C statistic (p<0.05)

doi:10.1371/journal.pone.0165507.t004

Table 5. Discrimination of the Linked score, Charlson index and Elixhauser index stratified by primary care consultation rate in the validation

cohort.

N (%) Linked score Charlson index Elixhauser index

0 69586 0.21 0.88 (0.86–0.89) 0.87* (0.85–0.89) 0.87* (0.85–0.89)

1 35081 0.11 0.91 (0.89–0.92) 0.90* (0.88–0.91) 0.90* (0.89–0.92)

2–3 52924 0.16 0.91 (0.90–0.92) 0.90* (0.88–0.91) 0.90* (0.89–0.92)

4–7 67443 0.21 0.87 (0.87–0.88) 0.86* (0.86–0.87) 0.86* (0.86–0.87)

8–13 38206 0.12 0.83 (0.82–0.83) 0.81* (0.81–0.82) 0.82* (0.81–0.82)

�14 65396 0.20 0.76 (0.75–0.76) 0.75* (0.74–0.75) 0.73* (0.73–0.74)

* Indicates significantly different from linked score C statistic (p<0.05)

doi:10.1371/journal.pone.0165507.t005
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comparisons and test improvements in goodness of fit. As our models were not nested we used
the AIC to perform the comparisons in goodness of fit. All the improvements in C statistic
were associated with significant improvements in goodness of fit as assessed by the AIC.

Previous studies have shown that using linked primary and secondary care data improved
the identification of a limited number of diseases compared to using unlinked data sources.
Specifically, it increased the sensitivity of identifying both acute and chronic diseases; such as
diabetes [52, 53], cirrhosis [39], venous thromboembolic events [54], acute myocardial infarc-
tion [55], pneumonia [56], and acute upper gastrointestinal bleeding [18]. In contrast using
only primary care data reduced the positive predictive value for acute events whilst not identi-
fying the more severe cases found only in hospital data [18, 39, 55, 56]. Our previous work on
validating the Charlson index in the linked data supported these findings, and found that pri-
mary care records did not improve the performance of the Charlson index derived from hospi-
tal records [17]. However, our study now shows that the addition of categories derived from
both primary and secondary care can perform better than existing scores, demonstrating that
there was discriminating information in primary care data additional to that in secondary care
data. A recent paper has shown an improvement in discrimination in survival by adding socio-
economic data to the Charlson index [6]. Our linked score had a slightly improved discrimina-
tion across most socioeconomic classes (S4 Table), however the addition of socioeconomic
data to the model with the linked score produced only a slight improvement in discrimination
and was therefore not included in our main analysis.

Table 6. Discrimination by different follow up periods for the Linked score, Charlson index, & Elixhauser index.

Follow up Number of people follow up (person years) Harrell’s C Statistic

Linked score Charlson index Elixhauser index

0–1 328636 1.08e+08 0.88 (0.88–0.88) 0.87* (0.87–0.87) 0.87* (0.87–0.87)

1–2 263390 1.82e+08 0.85 (0.85–0.86) 0.85* (0.85–0.85) 0.85* (0.84–0.85)

2–3 206199 2.16e+08 0.84 (0.84–0.84) 0.84* (0.83–0.84) 0.84* (0.83–0.84)

3–4 155371 2.19e+08 0.83 (0.83–0.83) 0.83* (0.82–0.83) 0.82* (0.82–0.83)

4–5 112786 1.99e+08 0.81 (0.81–0.82) 0.81* (0.81–0.81) 0.81* (0.81–0.81)

* Indicates significantly different from linked score C statistic (p<0.05)

doi:10.1371/journal.pone.0165507.t006

Table 7. Hazard ratios for the effect of a first upper gastrointestinal bleed on mortality.

Model with all-cause mortality as the outcome Adjusted* hazard ratios for the effect of a coded diagnosis of upper gastrointestinal

bleeding or diabetes (95% confidence interval)

Upper Gastrointestinal bleeding 60 days 61 days—5 years

Age & gender only 5.81 (5.29–6.39) 1.44 (1.31–1.57)

Charlson index from ICD 10 & Read codes 4.71 (4.28–5.17) 1.19 (1.09–1.31)

Linked score 4.59 (4.17–5.04) 1.14 (1.04–1.25)

Linked score & recent hospitalisation 4.51 (4.10–4.96) 1.12 (1.02–1.22)

Diabetes 5 years

Age & gender only 1.38 (1.31–1.46)

Charlson index from ICD 10 & Read codes 1.18 (1.12–1.25)

Linked score 1.14 (1.08–1.20)

Linked score & recent hospitalisation 1.12 (1.06–1.18)

*Exponentiated coefficients all adjusted for age and gender (age included in baseline hazard).

doi:10.1371/journal.pone.0165507.t007
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Conclusion

We have been able to demonstrate methods to derive a co-morbidity score from linked data in
the unselected general population, and have shown that this derives a score that performs bet-
ter across all age groups and in particular among those younger than 50 years old. The score
remains robust across different consultation rates and follow up periods, and provides better
adjustment for co-morbidity in both a chronic and acute disease known to have associations
with mortality.
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