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Introduction
The success of antiretroviral therapy (ART) has turned HIV/AIDS
from a disease with a high mortality rate to a manageable chronic
life-long illness. Treatment with ART can lead to restoration of
immune function and sustained viral suppression, which in turn
increases life expectancy for perinatally HIV-infected children and
adolescents [1,2]. Currently, HIV-infected children are able to
grow up and enter adolescence and young adulthood similarly to
their healthy peers [3]. Yet, these individuals do experience
several long-term, non-AIDS-related complications that are
obstacles to the goal of normal life expectancy and quality of life.
The emerging non-communicable diseases (NCDs) associated
with HIV infection and antiretroviral treatment include adverse
bone health, cardiovascular, liver and renal diseases, and other
metabolic and endocrinological disorders [3–5]. Among these
complications, adverse bone health has been recognised as an
important area of investigation during the past decade in children
and adolescents [6]. Since the maximum bone mineral accrual
occurs during the first two decades of life [7], reduced bone
deposition and increased bone resorption during these critical
periods can lead to serious consequences, in particular,
osteoporosis and bone fragility later in life [8,9]. This review
focuses on current knowledge regarding adverse bone health
among children and adolescents living with HIV, including the
magnitude of the problem, immunopathogenesis and factors
responsible for reduced bone mass, assessment of bone health in
clinical practices and up-to-date research studies of management
strategies to prevent bone loss and optimise bone health.

Prevalence of low bone mineral density among
perinatally HIV-infected children and adolescents
Dual energy X-ray absorptiometry (DXA) is a commonly used
technique to assess total body and lumbar spine bone mineral

density (BMD) in children and adolescents. Because adults have
already reached peak bone mass (PBM) [7], their BMD is assessed
using T-scores. In contrast, BMD measurements in growing
children need to be compared to healthy age-, sex- and
race-matched population norms and are reported as Z-scores.
BMD Z-scores less than or equal to -2 are regarded as low bone
mass [10]. The prevalence of low BMD among perinatally
HIV-infected children and adolescents is much higher in studies
conducted in middle-income countries than that observed in
resource-rich countries. The variation in prevalence might be
explained by the differences in HIV clinical staging at time of ART
initiation, duration of ART, lifestyles, nutritional status, food
intake and dietary supplements across studies (Figure 1) [11—16].

Resource-rich countries

In a longitudinal study of 66 HIV-infected Dutch children with a
median age of 6.7 years, almost all children (96%) were on ART
for a median duration of 3.4 years and 58% had undetectable
plasma viral load. The prevalence of lumbar spine and femoral
neck BMD Z-scores below -2 were 8% and 4%, respectively. The
median BMD Z-scores were 0.9 [interquartile range (IQR)
—1.6 to 0.1] for lumbar spine and 0.5 (IQR —0.2 to 1.2) for
femoral neck [11]. A large cross-sectional study was conducted
among 350 HIV-infected adolescents living in the United States
and Puerto Rico, with a median age of 12.6 years, median
duration of ART 9.5 years and 55% with plasma HIV RNA
<400 copies/mL. Similarly to the Dutch study, the prevalence of
low BMD was 7% for total body and 4% for lumbar spine. This
was higher than the low BMD prevalence in their uninfected peers
of 2% for total body and 1% for lumbar spine [12]. Likewise, the
Pediatric AIDS Clinical Trial Group (PACTG) 1045 found that post-
pubertal HIV-infected adolescent males had significantly lower
total body BMD [adjusted difference —0.10 g/cm2, 95%
confidence interval (CI) —0.16 to —0.04 g/cm2] and lumbar spine
BMD (adjusted difference —0.13 g/cm2, 95%CI —0.23 to —0.04
g/cm2), compared with HIV-uninfected males at similar Tanner
stage [17].
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Middle-income countries

There are four reports from Thailand [13,14] and Brazil [15,16].
The prevalence of low lumbar spine BMD among HIV-infected
Thais was 16–24%. The median ages of Thai participants in these
studies were 14.3–15.0 years. All of them were receiving stable
ART for a median duration of 7.0–9.3 years; of whom 90–96%
had virological suppression [13,14]. In a cross-sectional study
among 48 HIV-infected Brazilian adolescents with a mean age of
12.7 years, the prevalence of low BMD was 17% for total body
less head. Almost all participants (96%) were on ART, of whom
58% had plasma HIV RNA <50 copies/mL [15]. Another
cross-sectional Brazilian study found a 32% prevalence of low
BMD (total body and/or lumbar spine) among 74 HIV-infected
adolescents with a mean age of 17.3 years. Approximately 91%
of them received ART with a mean duration of 11 years, of whom
48% had undetectable virus [16].

Pathogenesis of adverse bone health among
HIV-infected population 
Bone is a specialised supporting and protecting structure of the
body. It contains two major components: calcium phosphate, a
mineral compound that gives bone strength and rigidity; and
collagen, a protein that provides a flexible framework [18,19].
Bone is not a static structure, but one that constantly undergoes
longitudinal and radial growth, rebuilding and remodelling
throughout life [18,20].

Bone remodelling involves bone resorption, by osteoclasts, and
bone formation, by osteoblasts [18,20]. In general, bone
formation predominates over bone resorption during childhood
and young adulthood [20]. Thus, bone mass increases over time
and reaches its peak during the third decade of life. Subsequently,
bone remodelling becomes balanced between bone formation
and resorption, resulting in stable bone mass with small
variations [20]. Around 50 years of age, the rate of bone
resorption begins to outpace that of bone formation, and thus
bone mass declines [20].

Changes in bone mass with the course of HIV disease

In HIV-infected individuals, the physiological regulation of bone
remodelling can be disrupted by several factors: HIV itself, ART
and other HIV-related factors [21–23]. Bone mass changes with
the course of HIV disease. During the pre-treatment period, many
conditions, for example wasting syndrome, disrupt immune
system function through loss of CD4+ T and B cells [24,25].

Together with chronic systemic inflammation [26], this disturbs
bone homeostasis. Untreated individuals tend to have raised
inflammatory markers and dysregulated bone turnover compared
with healthy individuals [27–29]. This finding supports the
linkage between systemic inflammation and bone turnover
imbalance, a likely cause of bone demineralisation in HIV-infected
persons.

After ART initiation, HIV-infected persons usually have improved
health status and restored immunological system function.
Weight is regained and systemic inflammation is reduced [30].
However, such individuals may experience transient reduced bone
mass and worsening of bone health during the first 1–2 years of
ART [31–33]. Possible explanations are poor health status and
wasting before ART initiation [21], ART causing an imbalance of
bone turnover [34,35], and time lag between ART initiation and
improvement of BMD [21,31]. Accelerated bone loss, as much as
2–6%, has been demonstrated in HIV-infected individuals on
various ART regimens, including tenofovir disoproxil fumarate
(TDF) [31], efavirenz (EFV) [32], nevirapine [33] and boosted
protease inhibitors (PIs) [32,33]. In HIV-infected adults, both TDF
and PIs have been associated with a 33% increase in osteocalcin
(OC), a bone formation biomarker [34]. Another study
demonstrated that switching to TDF vs staying on zidovudine
resulted in a significant increase in both bone resorption marker,
C-terminal cross-linked telopeptide of type I collagen (CTX) and
bone formation markers, OC and procollagen type I amino-
terminal propeptide (PINP), which correlate with reductions in
lumbar spine BMD [35].

Immunoskeletal interface and bone health

In the context of untreated HIV infection, there are two
concurrent and important alterations in bone health: progressive
loss of immune function and accelerated bone resorption.
Emerging evidence suggests that the immune and skeletal
systems are deeply intertwined as a result of a centralisation of
common cell types and cytokine mediators [22]. This is called the
immunoskeletal interface (Figure 2). There is well-established
evidence of the association between immune and skeletal systems
observed in many inflammatory diseases such as rheumatoid
arthritis, inflammatory bowel disease and systemic lupus
erythematosus [36–38]. These immune alterations accelerate the
natural skeletal ageing process, contributing to adverse bone
health.

The immunoskeletal interface can be divided into two aspects:
the interactions of immune cells with osteoblasts and with
osteoclasts. Osteoblastic cells, derived from osteoprogenitor
mesenchymal stem cells, are able to modulate the immune system
by regulating the haematopoietic stem cell microenvironment in
which immune cells are derived [39]. Immune cells can produce
cytokine mediators, such as tumour necrosis factor-alpha
(TNF-α), that functions as a potent inhibitor of osteoblast
differentiation and activity [40]. Osteoclasts are derived from
mature cells of monocyte and macrophage lineage.
Osteoclastogenesis requires the presence of RANK ligand
(RANKL) and RANK interactions. RANKL is a receptor activator of
nuclear factor κβ ligand expressed by osteoblastic lineage cells,
while RANK is a receptor activator of nuclear factor κβ presented
on the surface of osteoclast precursors and mature
osteoclasts [41]. RANKL is recognised as a key osteoclastogenic
cytokine and the final effectors of osteoclast formation and
activity [42–45]. Additionally, it is considered to have important
immunological functions as a mediator for T cell proliferation and
dendritic cell function [46,47]. The interactions between RANKL
with RANK (RANKL–RANK system) induce the formation and

Figure 1. The prevalence of low bone mineral density among perinatally HIV-infected
children and adolescents.

Figure 1. Low bone mineral density (BMD) is defined as BMD Z-score ≤—2.
The BMD measurements shown are taken at lumbar spine, except where
otherwise indicated.
*Total body BMD and/or lumbar spine BMD; subtotal BMD
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differentiation of osteoclast precursors into pre-osteoclasts,
which then fuse together to form the mature osteoclasts [42,48].
The essential regulatory component of the RANKL–RANK system
is osteoprotegerin (OPG), a member of the TNF receptor
superfamily and a RANKL decoy receptor. OPG modulates RANKL
activity by binding itself to RANKL and prevents the RANKL–
RANK interaction, resulting in the inhibition of osteoclast
formation and maturation [42–44,48,49]. A new cytokine,
secreted osteoclastogenic factor of activated T cells (SOFAT), was
recently identified and observed to potently induce osteoblastic
IL-6 production [50], which in turn stimulates osteoclastogenesis
independently of RANKL [51].

B and T cells are critical for preserving bone homeostasis [52].
B cells produce OPG in response to T cell co-stimulation [53].
Activated T cells, through the CD40 ligand and its receptor CD40
on B cells, can promote B lineage OPG production in vivo [52].
However, under inflammatory conditions, B cells and activated
T cells turn into a significant source of RANKL and SOFAT
production [50,54–57]. In addition, several inflammatory
cytokines, including interleukin (IL)-1, IL-6, IL-7 and TNF-α,
overexpressed by immune cells during inflammation are able to
drive up RANKL-dependent osteoclastogenesis [58,59]. Taken all
together, osteoclastic bone resorption is enhanced (Figure 2).

Risk factors for adverse bone health among
perinatally HIV-infected children and
adolescents
The causes of adverse bone health among perinatally
HIV-infected children and adolescents are multifactorial. They
can be classified into traditional risk factors and HIV-specific
factors (Figure 2). The traditional risk factors for low bone mass
include malnutrition, short stature, low body mass index, delayed
puberty, vitamin D deficiency, inadequate calcium intake, physical
inactivity, smoking and steroid exposure [12—14,60,61]. HIV-
specific factors, including HIV itself, advanced HIV disease, poor
immunological status, uncontrolled viraemia, exposure to some
specific types of ART, as well as persistent immune activation and
chronic systemic inflammation also play a significant role in
driving bone loss among this population [11—17,62–70].

Traditional risk factors

Weight and height are independently associated with bone mass
in healthy individuals; however, the effects may be exaggerated
in the HIV-infected population because they usually have
significantly delayed linear growth and poor weight
gains [71—74]. Although low vitamin D has been considered a
traditional risk factor for poor bone health, there is no
well-established evidence demonstrating the significant direct
association between vitamin D deficiency or inadequate
vitamin D intake and adverse bone health in HIV-infected
adolescents [13,14,60]. Similarly, the evidence for inadequate
calcium intake as a determinant of reduced bone mass is limited
and controversial in this population [14,60,61]. A cross-sectional
study among 19 HIV-infected girls whose calcium intake was
20—50% lower than the recommended daily allowance
hypothesised that suboptimal calcium intake might lead to the
increased bone resorption and impaired bone mineral
acquisition [61]. In contrast, two cross-sectional studies carried
out in Brazil and the United States did not find such an
association [15,60]. Calcium supplementation may be only
beneficial to individuals with insufficient calcium intake.

The relationship between weight-bearing physical activity and
bone health among HIV-infected youth was demonstrated in a
few studies [12,15,62]. The challenge of these studies is the best
measure for physical activity level. Self-report and questionnaires
are used by some [12,62], while an accelerometer is used by
others [15].

HIV-specific factors

HIV per se is one factor for bone abnormalities. Higher prevalence
of bone demineralisation was reported among treatment-naïve
HIV-infected adults compared with HIV-uninfected controls [75].
HIV infection is related to a high bone turnover state, as
demonstrated by the disturbances of histomorphometric
parameters and/or the dysregulation of biochemical markers of
bone formation and bone resorption, for example significant
increases in levels of RANKL and OPG [28,29,76].

Advanced HIV disease, uncontrolled viraemia and poor
immunological status are predictors of adverse bone health
among HIV-infected children and adolescents [11–16,63,64].

Figure 2. The immunopathogenesis and risk factors of low BMD among HIV-infected children and adolescents.
Figure 2. ■ Represent important risk factors of low BMD. ■ Represent components of the immune system. ■ Represent components of the skeletal system.

■ Represents the immunoskeletal interface

Figure 2. ART, antiretroviral treatment; BALP, bone-specific alkaline phosphatase; BMD, bone mineral density; CTX, C-terminal cross-linked telopeptide of type I collagen; IL-6, interleukin-6;
NTX, N-terminal cross-linked telopeptide of type I collagen; OC, osteocalcin; PICP, procollagen type I carboxy-terminal propeptide; PINP, procollagen type I amino-terminal
propeptide; RANKL, receptor activator of nuclear factor κβ ligand; SOFAT, secreted osteoclastogenic factor of activated T-cells; TNF-α, tumour necrosis factor-α; 
TRACP 5b, tartrate-resistant acid phosphatase 5b
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Individuals with severe clinical symptoms of HIV had a significant
impairment of BMD, evaluated by DXA [14] and quantitative
high-frequency ultrasound (QUS) techniques [63]. High plasma
HIV RNA also correlated with low bone mass [11,12]. A positive
correlation between current CD4 percentage and BMD/bone
mineral content (BMC) was observed in HIV-infected
youth [11,64].

Several studies demonstrated a significant linkage between ART
exposure and reduced bone mass [12,13,15–17,62,66–70]. These
were either performed in treatment-naïve patients [31–33,62,65]
or treatment-experienced patients who switch treatment because
of poorly controlled viraemia [69]. Although early loss of bone
mass within the first 1–2 years of ART initiation has been
observed in treatment-naïve adults and adolescents
[31—33,62,65], there are no data in young children. Significant
bone abnormalities after ART switching have also been
demonstrated in children and adolescents [69]. Early bone loss is
observed during the first 24–48 weeks of TDF but remained
stable thereafter. Such an effect is, however, not detected among
treatment-experienced children with stable clinical status and
controlled viraemia prior to switch to TDF [77]. Tenofovir
alafenamide (TAF), a prodrug of TDF, has a more favourable bone
safety profile. Two randomised clinical trials in HIV-infected adults
demonstrated significantly less bone toxicity (mean change of
lumbar spine BMD: —1.3% vs -2.9%, P<0.0001; total hip BMD:
—0.7% vs —3.0%, P<0.0001) among adults receiving TAF vs TDF
in combination with elvitegravir/cobicistat/emtricitabine [78].

Consequences of adverse bone health in
perinatally HIV-infected children and
adolescents
Childhood and adolescence represent the critical periods for bone
mineralisation and maturation, and at least 90% of final adult
bone mass is achieved during these periods [79]. Any factor
impairing bone mineral acquisition may diminish bone gain,
induce bone loss and compromise adult PBM [7,80]. From two
meta-analyses, the prevalence of osteopenia and osteoporosis
among HIV-infected adults was 52–67% and 15%,
respectively [81,82]. A study conducted in a large United States
cohort reported higher prevalence of overall fracture in the
HIV-infected group compared with uninfected controls
(2.87 vs 1.77 patients with fractures per 100 persons) [8].
Furthermore, the HIV Outpatient Study revealed that the
adjusted fracture rate among HIV-infected adults increased from
57.7 to 89.9 per 10,000 population between the years 2000 and
2008, respectively, and that it was 49.6–72.9% higher than in the
uninfected population over the study period [9]. However, an
increased risk of fracture events among HIV-infected children and
adolescents has not been documented. A prospective cohort
PACTG219/219C study, which followed more than
1,000 HIV-infected children for a median of 5 years showed a
similar incidence rate of fracture among HIV-infected
compared with HIV-exposed but uninfected children
(1.2 vs 1.1 per 1,000 person-years) [83]. Since fracture is a
long-term complication of adverse bone health, these
populations may be too young to demonstrate the increase in the
incidence of this condition.

Measurements to assess bone health in
HIV-infected children and adolescents

Standard measurement in clinical practice

DXA is a non-invasive imaging technique that uses two X-ray
beams with different photon energy levels aimed at the bone to

be measured. The BMD can be determined from the absorption
of each beam by bone once soft tissue absorption is subtracted.
DXA is the most commonly used bone densitometric technique
for children and adolescents throughout the world [10]. The
measurements provided include bone mineral content (BMC,
grams) and areal bone mineral density (BMD, g/cm2). The most
appropriate skeletal sites for performing densitometry in children
and adolescents are posterior–anterior (PA) lumbar spine and
total body less head [10]. Compared with conventional
radiographs, measurement of the spine provides more information
about the trabecular bone status, while total body measurement
focuses more on cortical bone status [84]. In children with short
stature or delayed growth, the areal BMD and BMC should be
adjusted in order to eliminate the influences of bone size and
skeletal dimension. For total body less head, adjustment should
be performed using the height Z-score. For the spine, adjustment
can be made by using either bone mineral apparent density
(BMAD) or the height Z-score [10]. According to the 2013
International Society for Clinical Densitometry (ISCD) Pediatric
Official Positions, an areal BMD Z-score less than or equal to —2.0
SD is described as low bone mass or BMD [10,85].

Advanced measurements in research settings
During the past decade, the concept of bone strength has
encompassed a number of bone characteristics, including
trabecular and cortical architectures, bone turnover,
mineralisation and cellularity, aspects of bone quality [86—88].
Summary of advanced techniques for assessing bone health are
shown in Table 1.

Bone histomorphometry is a histological examination of bone
biopsy specimens to obtain qualitative and quantitative
information on in vivo bone structure and remodelling. It is the
gold standard for bone metabolic and mineralisation
evaluation [89,90]. Currently, there are non-invasive imaging
techniques using three-dimensional reconstruction for bone
microstructure and microarchitecture analysis [91]; therefore
bone biopsy is frequently avoided.

Quantitative ultrasonography (QUS) is a non-invasive method
using high-frequency sound waves that are transmitted through
bone to assess the bone quality and strength. The longitudinal
sound wave transmitted through the calcaneus is the accepted
measurement to determine bone health status [92].

Quantitative computed tomography (QCT) is a three-dimensional
imaging technique to assess true volumetric density (mg/cm3)
without the overlapping of other tissues [93]. This technique
ranges from a volumetric QCT to advanced imaging modalities
such as high-resolution CT (hrCT) and microCT. Currently, there
is no preferred QCT method for clinical evaluation in children and
adolescents [94]. Most QCT studies in children investigated
peripheral sites, primarily the radius and tibia, because of
radiation exposure concerns [94]. The advantage of QCT over
DXA is that it provides a separate analysis of trabecular or cortical
components of bone.

Quantitative magnetic resonance imaging (QMRI) is a
non-invasive, non-ionising radiation technique that provides
three-dimensional imaging of trabecular bone architecture.
Magnetic resonance is based on the application of a strong
magnetic fields and a series of radiofrequency waves to generate
three-dimensional images of the hydrogen protons in the water
within skeletal tissues [88].

Biochemical markers of bone turnover are helpful research tools
to reflect the ongoing bone remodelling processes. Currently
available markers are classified into biochemical markers of bone
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formation and resorption [95–98]. Biomarkers of bone formation
are products of active osteoblasts expressed during different
developmental stages, including: (i) osteoblast-specific enzymes
such as bone-specific alkaline phosphatase (BALP);
(ii) osteoblast-related proteins such as OC; and (iii) by-products
of collagen synthesis such as PINP. All can be measured in serum
or plasma [95–98]. The biomarkers for bone resorption are
classified into: (i) osteoclast-specific enzymes such as
tartrate-resistant acid phosphatase (TRACP) 5b; and (ii) collagen
degradation products such as hydroxyproline, pyridinoline,
deoxypyridinoline, CTX, and N-terminal cross-linked telopeptide
of type I collagen (NTX) [95–98]. The measurements can be
performed from blood or urine.

Bone-health assessment in HIV-infected children
and adolescents in clinical practice
The recommendations for the evaluation and management of
bone disease in HIV-infected adults have recently been developed
by HIV specialists from 16 countries [103]. Screening for adverse
bone health depends on an individual’s risk for fragility fracture.
For individuals with major risk factors, including a previous history
of fragility fracture; receipt of glucocorticoid treatment for more

than 3 months; and at high risk for falls; BMD assessed by DXA
should be performed. Additionally, DXA, if available, is
recommended for all men aged >50 years, postmenopausal
women and individuals with a 10-year risk of major osteoporotic
fracture >10% by the Fracture Risk Assessment Tool (FRAX)
score. For those without major risk factors, including men aged
40–49 years and premenopausal women aged ≥40 years, FRAX
(without DXA) is the recommended assessment [103]. FRAX is a
prediction tool for assessing an individual’s fracture risk and is
applicable for people aged between 40 and 90 years. The model
incorporates several components such as age, race, sex, body
mass index, smoking, alcohol consumption, long-term use of
glucocorticoids, vitamin D deficiency, prior fragility fracture and
parenteral history of hip fracture into the calculation [103].
Therapeutic management guidelines vary by country and are
based on the availability, as well as cost of diagnostic tools and
medications. In the United States, anti-osteoporosis treatments
are prescribed in individuals presenting with hip or vertebral
fracture, osteoporosis (T-score no more than —2.5), or osteopenia
(T-score between —1.0 and —2.5) with a 10-year probability of
hip fracture ≥3% or major osteoporosis-related fracture ≥20%
based on FRAX [104]. The follow-up interval of DXA should be

Table 1. Methods for assessment of bone health in HIV-infected children and adolescents

Method of Advantages Disadvantages Clinical data from HIV-infected children
assessment and adolescents

Bone mineral density (BMD) and bone mineral content (BMC)

Speed of sound (SOS) and broadband ultrasound attenuation (BUA)

True volumetric bone density and bone microarchitecture

Bone turnover rate, osteoclast and osteoblast activity

BALP: bone-specific alkaline phosphatase; CTX: C-terminal cross-linked telopeptide of type I collagen; NNRTI: non-nucleoside reverse transcriptase inhibitors;
NTX: N-terminal cross-linked telopeptide of type I collagen; PI: protease inhibitor; PINP: procollagen type I amino-terminal propeptide

• HIV-infected adolescents had high prevalence of BMD
Z-score ≤—2 (16–32%) in middle-income countries
[13–16]

• BMD and BMC of HIV-infected adolescents is
significantly lower than healthy controls [12,14]

Dual-energy X-ray
absorptiometry
(DXA)

• Widely available
• Safe
• Excellent precision
• High reproducibility
• Examination time 5 minutes

• Subject to systematic errors
• Cannot differentiate cortical

and trabecular bones
• Limited paediatric normative

data references

• HIV-infected children with severe clinical symptoms
had lower calcaneal BUA Z-score [63] and phalangeal
SOS [99] compared with healthy controls

• Tibial and radial SOS were associated with lumbar
spine BMC and BMD, and total body BMC and
BMD [100]

Quantitative
ultrasonography
(QUS)

• Radiation free
• Portable and simple to

operate
• Correlates well with DXA
• Cost-effective

• Limited skeletal site of
measurement

• Lack of paediatric normative
data for interpretation 

• Similar vertebral volumetric bone density in
HIV-infected children compared with controls [101]

• DXA Z-scores were significantly lower than QCT
Z-scores in HIV-infected children [101]

• Cortical BMD (peripheral QCT) was positively
associated with NNRTI use, but negatively associated
with PI use [64]

• None

Quantitative
computed
tomography (QCT)

Quantitative
magnetic
resonance imaging
(QMRI)

• More accurate assessment of
BMD than DXA

• Provides separate analysis of
cortical and trabecular bones

• Not susceptible to
degenerative changes of
bone calcifications

• Lack of ionising radiation
• Ability to investigate marrow

fat content, marrow diffusion
and marrow perfusion

• High radiation dose
• High cost
• Hard to access
• Lack of paediatric normative

data for interpretation

• Long acquisition time
• Requires specialised machine
• High cost
• Lack of paediatric reference

data

• Higher serum BALP and urine NTX in
ART-experienced HIV-infected children compared with
untreated children and healthy controls [102]

• Significantly reduced osteocalcin and urinary
deoxypyridinoline in HIV-infected children with severe
clinical symptoms compared with healthy controls [63]

• CTX and PINP levels were not different between
HIV-infected adolescents with and without low BMD,
but PINP was significantly inversely correlated with
BMD Z-score [13]

Bone biochemical
markers

• Non-invasive
• Can be performed from blood

and urine specimens
• Helpful tools in diagnosis and

treatment assessment of
bone health and diseases

• Diurnal variation
• Limited paediatric normative

data and cut-off levels
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adjusted according to degree of bone demineralisation, repeated
after 1–2 years for those with advanced osteopenia (T-score
between —2.0 and —2.5) and after 5 years for those with mild to
moderate osteopenia (T-score between —1 and —2) [103].

The objective of bone health assessment in the paediatric
population is to screen children who fail to achieve the expected
gains in bone size, mass and strength, and which leaves them
vulnerable to fracture as they age. The ISCD 2013 Statement
recommends that DXA should be considered only in children and
adolescents who may benefit from interventions and those whose
DXA results will influence management [105]. Among chronic
diseases, cystic fibrosis has a well-established recommendation for
bone health assessment and monitoring. The European Cystic
Fibrosis Mineralisation Guidelines recommend the first routine
bone density scans at age around 8–10 years, to be repeated every
5 years if the BMD Z-score is above -1; every 2 years if the Z-score
is between —1 and —2; and every year if the Z-score is below —2
[106]. However, to date, there is no specific recommendation for
DXA screening among HIV-infected children and adolescents in
any national or international guidelines. In settings where DXA is
available and accessible, bone density scans may be performed at
6–12 months after ART initiation since transient reductions in
bone mass may be occurring, with repeat measurements every
year if BMD Z-score is less than or equal to —2. In settings where
access to DXA is limited, one may consider performing bone
density scans only in individuals who have a combination of
multiple risk factors for bone demineralisation, for example history
of wasting or stunting, advanced HIV disease, use of TDF with
ritonavir-boosted PIs and vitamin D deficiency.

Management of adverse bone health in
perinatally HIV-infected children and
adolescents
As adverse bone health during childhood and adolescence may
result in adult osteoporosis and bone fragility, several approaches,
primarily to prevent bone loss and optimise bone health, should
be implemented during these critical periods.

General management

Promoting a healthy lifestyle

Healthy lifestyle choices include avoiding smoking and heavy
alcohol consumption. Smoking is a major lifestyle risk factor for
osteoporosis. Studies in twins have provided a powerful study
design by controlling for age, sex and genetic background to
identify the effects of smoking on bone health [107–109].
A cross-sectional study of 41 pairs of female twins found that
smoking one pack of cigarettes per day throughout adulthood
would reduce BMD by approximately 5–10%, thus increasing the
risk for osteoporosis by the time of menopause [107]. Similarly,
a study of 146 female twin pairs showed that a discordance of
10 pack-years smoking was related to a 2.3–3.3% decrease in
BMD at the lumbar spine, proximal femur and total body [108].
Furthermore, meta-analyses indicated that smoking substantially
increased hip fracture risk by 31–60% when comparing current
smokers with non-smokers [110–112].

Alcohol consumption negatively impacts bone health in several
ways. First, excessive alcohol consumption causes hypo-
vitaminosis D, which in turn reduces calcium reserves [113,114].
Secondly, chronic heavy alcohol consumption can disturb
testosterone production, a male hormone linked to the
production of osteoblasts [115], while, cortisol, a hormone that
arrests osteoblast differentiation, is increased [116].

Exercise

Weight-bearing and muscle strengthening exercises are important
for building and maintaining bone density. Weight-bearing
exercise can be either high impact, such as dancing, running,
jumping, gymnastics, soccer, basketball or low impact, such as
fast walking or low-impact aerobics. Muscle strengthening
exercises include weight lifting, using elastic exercise bands or
weight machines, or functional movements. Previous studies
showed that children who usually participate in high-impact
activities have higher bone mass compared with individuals who
are less active or frequently engage in non-weight bearing
exercises [117–120]. The American College of Sports Medicine
recommends exercising for 10–20 minutes per day, at least 3 days
per week [117]. These exercise prescriptions could improve bone
strength in children and adolescents.

Nutrition

Key bone nutrition includes calcium and vitamin D [121]. The
Institute of Medicine (IOM) recommendation for daily calcium
intake for children and adolescents age 9–18 years is 1,300 mg
per day [122]. In clinical practice, diet should be the primary
source for calcium. Calcium supplementation should be provided
to individuals who are unable to obtain adequate calcium from
their diet and who are at high risk for adverse bone health.
Common dietary sources of calcium are dairy products, soymilk,
soybeans, dark leaf greens and sardines. According to the IOM,
the recommended vitamin D intake for children and adolescents
age 9–25 years, is 600 IU per day [122]. The most common
source of vitamin D is sunlight. However, in countries without
year-round sunlight, foods containing vitamin D such as fatty fish
(e.g. salmon, tuna and mackerel) and fish oils are among the best
sources. Vitamin D-fortified foods may be available in
resource-rich countries [123], but they are not in resource-
limited settings.

A high prevalence of vitamin D deficiency and insufficiency
among HIV-infected children and adolescents has been reported,
ranging from 71% to 96% [124–127]. Vitamin D deficiency may
diminish calcium absorption in the gastrointestinal tract.
Therefore, if 25-hydroxyvitamin D (25-OHD), a surrogate for
vitamin D levels, is lower than 30 ng/mL, supplementation should
be initiated. However, in settings where 25-OHD measurement
is not available, supplementation should be considered based on
history of vitamin D intake and the clinician decision. However,
evidence demonstrating the benefit of calcium and vitamin D
supplementation on bone health among HIV-infected children
and adolescents is limited and controversial [128,129].
A randomised clinical trial assessing the effects of calcium
(1 g per day) and vitamin D3 (1,600 IU per day) supplementation
for 2 years on bone mineral accrual among HIV-infected children
and adolescents with normal baseline BMD in the United States
found no significant difference in BMD when compared with
placebo groups [128]. In contrast, a recent small observational
study supplementing 1,200 mg calcium and 400 IU vitamin D3
daily for 6 months showed a significant improvement of lumbar
spine BMD and BMD Z-scores among HIV-infected Thai
adolescents with low BMD at baseline [129]. Currently, there are
ongoing randomised clinical trials determining the impact of
calcium and/or vitamin D supplementation on BMD among
HIV-infected adolescents (Table 2).

Pharmacological interventions
There are several agents used in the treatment of low BMD in
HIV-infected populations, including anti-resorptive therapies
(bisphosphonates, serum oestrogen receptor modulators or
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SERMs, and monoclonal antibodies to RANKL), strontium
ranelate and peptides of the parathyroid hormone family [130].
Among all treatment options, bisphosphonates are the longest
established therapy for osteoporosis. Bisphosphonates are
derivatives of inorganic pyrophosphate that have a high affinity
for bone minerals. These agents are preferentially incorporated
into sites of active bone remodelling and accelerated bone
turnover and inhibit hydroxyapatite breakdown, which in turn
suppresses bone resorption [131]. This property results in their
utility as clinical agents for osteoporosis treatment. Alendronate
and zolendronate are the only two agents recommended for
HIV-infected adults with osteoporosis [103]. However, clinical
evidence for efficacy of these medications in HIV-infected
individuals is scarce and no studies in children and adolescents
have taken place. Previous randomised clinical trials of the
bisphosphonates, alendronate (weekly) or zolendronate
(annually), in HIV-infected adults with low bone density
demonstrated significant improvement of BMD compared to
placebo groups [132–137]. Before bisphosphonates can be
recommended as an anti-osteoporosis treatment, larger studies
with longer follow-up periods should be performed. Currently,
there are several ongoing randomised clinical trials that aim to
determine the efficacy of alendronate on bone density among
HIV-infected adolescents and young adults (Table 2).

Conclusions
Adverse bone health is common in perinatally HIV-infected
children and adolescents, particularly those living in
middle-income countries. The pathogenesis of low BMD is
complex, and is related to HIV disease course and systemic
inflammation (immunoskeletal interface). Many factors, both
traditional and HIV specific, can lead to adverse bone health. An
important consequence of low bone density during childhood
and adolescence is compromised PBM, which may result in

osteoporosis and bone fracture later in life. Refraining from
smoking and heavy alcohol consumption, performing regular
weight-bearing exercises and adequate dietary intake of calcium
are basic health education messages for patients to optimise bone
health. More data are required to support the efficacy of calcium
and vitamin D supplementation, and bisphosphonates in restoring
bone mineralisation and preventing bone loss among
HIV-infected children and adolescents.
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