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Abstract
Several mathematical models to predict tumor growth over time have been developed
in the last decades. A central aspect of such models is the interaction of tumor cells
with immune effector cells. The Kuznetsov model (Kuznetsov et al. in Bull Math
Biol 56(2):295–321, 1994) is the most prominent of these models and has been used
as a basis for many other related models and theoretical studies. However, none of
these models have been validated with large-scale real-world data of human patients
treated with cancer immunotherapy. In addition, parameter estimation of these mod-
els remains a major bottleneck on the way to model-based and data-driven medical
treatment. In this study, we quantitatively fit Kuznetsov’s model to a large dataset of
1472 patients, of which 210 patients have more than six data points, by estimating
the model parameters of each patient individually. We also conduct a global practical
identifiability analysis for the estimated parameters. We thus demonstrate that several
combinations of parameter values could lead to accurate data fitting. This opens the
potential for global parameter estimation of the model, in which the values of all or
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some parameters are fixed for all patients. Furthermore, by omitting the last two or
three data points, we show that the model can be extrapolated and predict future tumor
dynamics. This paves the way for a more clinically relevant application of mathemat-
ical tumor modeling, in which the treatment strategy could be adjusted in advance
according to the model’s future predictions.

Keywords Mathematical oncology · Tumor growth modeling · Tumor growth
prediction · Parameter estimation · Parameter identifiability analysis

1 Introduction

Cancer immunotherapy with immune checkpoint inhibitors has revolutionized the
treatment of patientswith solid tumors in the last ten years. In addition to chemotherapy
and molecularly-targeted therapy, immunotherapy provides a new set of tools for the
oncology toolkit (Wheeler et al. 2004). In several tumor types such as melanoma,
non-small cell lung cancer (NSCLC), and genito-urinary tumors, immunotherapy has
markedly improved the average life expectancy of patients with advanced disease.
Both laboratory and clinical experiments have verified the importance of the immune
system in fighting cancer (de Pillis et al. 2006; Farrar et al. 1999; O’Byrne et al.
2000). Patients who suffer from acquired immunodeficiency syndrome (AIDS) are
very susceptible to having some rare forms of cancer (de Pillis et al. 2006; Dalgleish
and O’Byrne 2002). This also shows the significant role the immune system plays
against cancer.

One of the fundamental problems in treating patients with cancer immunotherapy is
the lack of predictive biomarkers. Ideally, before the treatment begins, patients could
be selected for immunotherapy, but existing biomarkers fail to deliver a high predictive
value in most tumor types (Chatterjee and Zetter 2005). In addition, most patients who
initially respond to immunotherapy experience a relapse: the tumor later on develops
immune escape mechanisms due to evolutionary pressure. Forecasting the time of
relapse or treatment resistance is of high practical relevance (Anderson and Quaranta
2008; Rockne and Scott 2019). However, predictions of such changes in the tumor
behavior are currently not possible in clinical routine. The main problem is that most
biomarkers such as tumor mutational burden (TMB) are static, i.e., they are measured
at a given time point but are not dynamically updated as the tumor evolves.

In other complex systems such as financial markets (Ledoit et al. 2001), climate sys-
tems (Manabe 1983) or complex industrial processes (Thompson and Kramer 1994),
differential equation models can provide a prediction of the behavior of the system
over time. By analogy, in oncology, a number of mathematical models to predict tumor
growth over time have been developed in the last decades (Norton et al. 1976). Most
notably, multiple of these models explicitly include the interactions of tumors with
the immune system and are therefore in principle suited to model response and resis-
tance to cancer immunotherapy (Kogan et al. 2012). de Boer and Hogeweg (1986)
modeled the cellular immune reaction to tumors. They demonstrated that small doses
of antigens lead to tumor dormancy (de Pillis et al. 2006). Kirschner and Panetta
(1998) linked the oscillations in the tumor size and the long-term tumor regression
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to the dynamics among immune cells, tumor cells, and Interleukin-2 (de Pillis et al.
2006). The most prominent of these models was presented by Kuznetsov et al. (1994).
Kuznetsov’s model has served as a blueprint for many other related models (de Pillis
et al. 2006; Rhodes and Hillen 2019; Makhlouf et al. 2020) and has been investigated
in several theoretical studies (Bellomo and Preziosi 2000; Kolev 2003; de Pillis et al.
2006; Owens and Bozic 2021).

However, none of these established oncological models are currently being used in
the clinic. What is more, very few of these models have been systematically fitted to
actual clinical data.While some studies have fittedmodels tomurine tumors on a small
scale (de Pillis et al. 2006; Benzekry et al. 2014; Vaghi et al. 2020), the pronounced
differences between mice and humans preclude the transfer of such insights to real-
world cancer patients (Ruggeri et al. 2014).

The structures of these mathematical models are well defined (Kuznetsov et al.
1994; Kolch et al. 2015; Tyson et al. 2011; Fröhlich et al. 2018). However, in the com-
plex biological environment of cells, little is known about the associated parameters
and kinetic constants. The parameter values are essential for quantitative modeling
and prediction of cancer progression. In mechanistic models, one can integrate the
data from various experimental procedures and sources, and design in silico experi-
ments to generate hypotheses for underlying mechanisms (Clegg and Gabhann 2015;
Baker et al. 2018). By fitting the model to the experimental data, we reverse-engineer
the parameters of the system. Parameter estimation of mathematical cancer models
remains a major bottleneck on the way to model-based and data-driven medical treat-
ment of the future.

In this study, we use a mathematical model based on Kuznetsov’s model to char-
acterize the interactions between the growing tumor and the immune system, and aim
to fill this conceptual gap in the literature. We use a large dataset of thousands of
cancer patients who underwent cancer immunotherapy as part of clinical trials. We
then investigate how well the model can represent the actual tumor volume changes
over time in these patients. After estimating the parameters of the model, we conduct
an identifiability analysis to examine the uniqueness of the estimated parameters (i.e.,
whether we have over-fitting). Finally, we investigate if the model can be used to
forecast treatment response or relapse under immunotherapy.

The remainder of the article is structured as follows. First, we briefly present the
acquisition of patients data and its pre-processing in Sect. 2. In Sect. 3, we then provide
the model and all the methods used to estimate model parameters and fit the data,
conduct parameter identifiability analysis and extrapolate the model for tumor growth
prediction. Finally, before drawing conclusions in Sect. 5, we present and discuss the
obtained results in Sect. 4.

2 Data Acquisition

We briefly provide here the declaration and sources of the experimental data. For more
details, please refer to Ghaffari Laleh et al. (2022).
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2.1 Declarations and Data Sharing

We followed the Declaration of Helsinki and International Ethical Guidelines for
Biomedical Research Involving Human Subjects developed by the Council for Inter-
national Organizations ofMedical Sciences (CIOMS). In this study, we used a publicly
available set of anonymized patient data shared by Ghaffari Laleh et al. (2022), which
is originally derived from five large clinical trials, as we describe below. Patients
gave their informed consent for data analyses as part of the original clinical trials. No
specific ethical approval was sought or required for this retrospective analysis of a
publicly available dataset.

2.2 Data Measurement and Pre-processing

The original data for this study is from five clinical trials which were designed to
evaluate the efficiency of Atezolizumab (an immune checkpoint inhibitor). Table 1
shows the original number of patients and their treatment arms. Four out of these five
trials evaluated the effect of Atezolizumab on NSCLC and cohort GO29293 reported
this efficiency on bladder cancer. In two of the cohorts (GO28753,GO28915), patients’
responses to Atezolizumab treatment were compared to the outcome of the second
treatment arm who received Docetaxel (a chemotherapy drug) as treatment. In all
the trials, the longest diameter and shortest diameter (LD and SD) of the target and
non-target lesions (measured manually based on the CT scans) alongside the time
intervals are reported. Several patients have only one or two data points because of
tumor progression and potentially the death of patients. In this study, we use the
anonymized and publicly available subset of data from Ghaffari Laleh et al. (2022),
which was created by selecting the patients with three or more measurement points.
For each of these patients, only the LD measurement for one target lesion has been
selected. For this reason, the total number of original patients of clinical trials has been
decreased from 2693 to 1472. Considering patients that have very few data points will
lead to an over-parameterized problem. The version of the Kuznetsov model we used,
which we discuss in Sect. 3.1, has six parameters. The model in this case would easily
fit any combination of data points with many (essentially arbitrary) values for the
parameters. On the other hand, disregarding patients with few data points (patients
with tumor progression) introduces potential bias to the estimation problem and might
limit the model application in a clinical setting. All the pre-processing details for the
data generation have been described in more details in Ghaffari Laleh et al. (2022).
Moreover, before using the data we pre-process it by first removing repetitive and
null inputs. Following Ghaffari Laleh et al. (2022), Faustino-Rocha et al. (2013) and
Shevtsov et al. (2019), we converted the measured LD in mm to the number of tumor
cells (TC) by considering 8 × 10−6mm3/TC, where we consider spherical shapes of
the lesions and that the TC have 3/4 of the lesion volumes. Moreover, we consider
only patients with more than six net measurements because we are conducting model
extrapolation in Sect. 3.4 in which the last two or three data points are omitted when
estimating the model parameters. Thus, we preserve a minimum number of data points
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Table 1 Description of the original data

Study ID Cancer type No. of patients Treatment

GO28625 (Spigel et al. 2018) NSCLC 138 Atezolizumab

GO28753 (Fehrenbacher et al. 2016) NSCLC 287 Atezolizumab/Docetaxel

GO28754 (Peters et al. 2017) NSCLC 657 Atezolizumab

GO28915 (Rittmeyer et al. 2017) NSCLC 1182 Atezolizumab/Docetaxel

GO29293 (Balar et al. 2017) Bladder Cancer 429 Atezolizumab

Fig. 1 Number of patients (Pt.) considered per studies and arms, before and after data pre-processing (Color
figure online)

for parameter estimation also in this case (at least three). Figure 1 shows the number
of patients per study and arm before and after data pre-processing. Finally, the total
number of patients has been reduced from 1472 to 210.
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3 Methods

In this section, we introduce the mathematical model of Kuznetsov et al. (1994) with
slight modifications. Afterward, we show the optimization formulations for: the esti-
mation of the model parameters by fitting the clinical data and for the parameter
identifiability analysis. We finally investigate the extrapolation capabilities of the
model.

3.1 Mathematical Tumor Model

To predict the frequently observed phenomena in clinics like tumor dormancy and
tumor size oscillation, the tumor mathematical model has to include terms related to
the response of the immune system. The inclusion of the entire immune system in the
mathematical model can be very difficult (Perelson and Weisbuch 1997). The anti-
tumor immune response has highly nonlinear dynamics which are complicated and
not well understood. Therefore, models that describe the immune system response to
tumor presence should necessarily focus on those elements of the immune system that
have the highest effects on tumor dynamics (de Pillis et al. 2006). Kuznetsov’s model
(Kuznetsov et al. 1994) describes the response of the cytotoxic T lymphocyte (CTL)
to the growth of an immunogenic tumor. Usually, a cell-mediated immune response to
a tumor takes place. The cytotoxic T lymphocytes and natural killer (NK) cells play
the main role. The model considers immunogenic TC that are attacked by cytotoxic
effector cells (EC). The EC can be, for example, CTL or NK cells. The model takes
into account the possibility of EC inactivation as well as the infiltration of the TC by
EC. TC and EC interaction is described through the following reactions:

EC + TC
k1�
k−1

EC − TC,

EC − TC
k2−→ EC + TC∗,

EC − TC
k3−→ EC∗ + TC,

where EC–TC denotes conjugates of effector and tumor cells and EC∗ and TC∗ are
the inactivated effector and lethally-hit tumor cells, respectively. We define E , T , C ,
E∗, T ∗ as the number of EC, TC, EC–TC conjugates, EC∗, and TC∗, respectively.
The non-negative kinetic parameters, k1, k−1, k2 and k3, describe the rates of the
interactions. EC–TC conjugates can reversibly decompose without damaging the cells
with the kinetic rate k−1. However, they can also irreversibly result in EC∗ or TC∗
with respective kinetic rates k2 and k3. The following system of nonlinear differential-
algebraic equations describes those interactions, which is a slightly simplified version
of the model of Kuznetsov (Kuznetsov et al. 1994).

dE

dt

∣
∣
∣
t
= s + F(C(t), T (t)) − hE(t) − k1E(t)T (t) + (k−1 + k2)C(t),

(1a)

123



Can the Kuznetsov Model Replicate Page 7 of 26 130

dT

dt

∣
∣
∣
t
= aT (t) − k1E(t)T (t) + (k−1 + k3)C(t), (1b)

dC

dt

∣
∣
∣
t
= k1E(t)T (t) − (k−1 + k2 + k3)C(t), (1c)

F(C(t), T (t)) = f C(t)

g + T (t)
. (1d)

The rate of flow ofmature EC to TC localization area is characterized by the generation
term s. This rate is unaffected by the presence of TC. The destruction or migration of
EC from the localization region of TC is represented by the elimination rate h. The
model does not take into account any TC or EC–TC conjugates migration. Both multi-
plication and death of TC are included in parameter a that characterizes the maximum
growth rate of TC population. The function F(C, T ) represents the accumulation rate
of the cytotoxic EC in the TC localization area due to tumor existence (stimulated
accumulation), where f and g are positive constants. The EC accumulation, F(C, T ),
is due to signals, like released cytokines, generated by the EC in EC–TC conjugates.
Thus this stimulated accumulation has some maximum value when T becomes large.

The equations describing the rate of change of E∗ and T ∗ are not included in
the system because they are irreversibly formed and thus have no effect on the other
variables, and our target is to model T and E only. In Kuznetsov et al. (1994), the
model includes a sink term in the rate of change equation of T that represents TC
growth limitation due to biological environment conditions. It considers, for example,
resources competition like oxygen and substrates.Wedonot consider this termbecause
growth limitations of even high initial T are associated with high rates of cytotoxic
EC accumulation as well as the absence of their activity suppression by TC (de Boer
and Boerlijst 1994).

Following the suggestion of Kuznetsov et al. (1994), we consider a quasi-steady-
state assumption for (1c), i.e., dC/dt

∣
∣
t ≈ 0, because C is formed and dissociated at

much faster rates compared to the multiplication and influx of the EC, as well as the
lysis of the lethally-hit TC. Thus, C ≈ K ET , where K = kl/(k2 + k3 − k−1). As a
result, (1a) and (1b) become:

dE

dt

∣
∣
∣
t
= s + f K E(t)T (t)

g + T (t)
− hE(t) − Kk3E(t)T (t), (2a)

dT

dt

∣
∣
∣
t
= aT (t) − Kk2E(t)T (t). (2b)

For further analysis and use of the model in parameter estimation and identifiability
analysis, we use the same strategy of Kuznetsov et al. (1994) for non-dimensionalizing
model equations. We non-dimensionalize (2a) and (2b) by considering concentration
scales E0 = 107 cells and T0 = 109 cells for EC and TC, respectively (Kuznetsov
et al. 1994). We non-dimensionalize t by relating it to the deactivation rate of TC and
introducing τ = k2KT0t/100. The final model formulation is:

dx

dτ

∣
∣
∣
τ

= σ + ρx(τ )y(τ )

η + y(τ )
− δx(τ ) − μx(τ )y(τ ), x

∣
∣
τ=τ1

= x1, (3a)
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dy

dτ

∣
∣
∣
τ

= αy(τ ) − E0

T0
x(τ )y(τ ), y

∣
∣
τ=τ1

= y1, (3b)

where

x(τ ) = E(t)

E0
, y(τ ) = T (t)

T0
, σ = s

k2K E0T0
, ρ = f

k2T0
,

η = g

T0
, μ = k3

k2
, δ = h

k2KT0
, and α = a

k2KT0
.

Thus, the final model is composed of two ordinary differential equations (ODEs) with
two variables, x and y, with their respective initial values, x1 and y1, at the initial
normalized time, τ1, and six unknown parameters, σ , ρ, η, μ, δ, and α.

3.2 Data Fitting and Parameter Estimation

To determine the parameter values for the nonlinear system (3a) and (3b) that best
describe the experimental data, we conduct a regression analysis in the nonlinear
least-squares sense by minimizing the sum of the squared residuals. The considered
residuals are the differences between the measured values of tumor lesion longest
diameters (converted to tumor number of cells as previously discussed) and the ones
calculated from the model. In the present contribution, we do not seek global values
of parameters, i.e., the same values for all patients. Instead, we solve the optimization
problem for each patient individually to identify the parameter values that best describe
the data of that patient. This constitutes a first step to check whether the model can
describe the experimental data at all and analyze the ranges of parameter values. We
also estimate the initial normalized value of EC number, x1, because it is unknown.
In contrast, the initial normalized value of TC number, y1, is provided experimentally
and does not need to be estimated. The nonlinear least square problem for each patient
j ∈ J = {1, 2, . . . , J } is expressed as follows:

minimize
p j ,x1 j

∑

i∈I j
yi j (τi j ,p j , x1 j ) − ỹi j , (OP1)

subject to model equations (3a) and (3b),

plj ≤ p j ≤ puj ,

x l1 j
≤ x1 j ≤ xu1 j

,

where J is the total number of patients considered. After data pre-processing,
J = 210 patients. The index i ∈ I j is for the observed experimental values, where
I j = {1, 2, . . . , N j } with N j being the total number of observed values for patient j .
The non-dimensionalized model-predicted and observed values of TC number at the
normalized time τi j are yi j (τi j ,p j , x1 j ) and ỹi j , respectively. The initial value of the
non-dimensionalized EC number at τ1 j , x1 j , has lower and upper bounds x

l
1 j

and xu1 j
,

respectively. The vector p j contains the non-dimensionalized parameter values of the
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model equations, (3a) and (3b), for patient j , p j = [

σ j , μ j , δ j , α j , ρ j , η j
]

. The
lower and upper bounds of the components of p j are the components of vectors plj
and puj , respectively. The decision variables of the optimization problem are thus the
components of p j and x1 j . The dynamic optimization problem (OP1) is nonconvex
and nonlinear, and can thus have multiple (suboptimal) local solutions. Hence, global
optimization techniques are required to guarantee the global optimal solution, poptj and

xopt1 j
.

3.3 Parameter Identifiability Analysis

Parameter identifiability analysis determines if model parameters can be uniquely
estimated (Walter and Pronzato 1997). Different definitions of identifiability analysis
are available in the literature.Miao et al. (2011) reviewed severalmethods of parameter
identifiability analysis for nonlinear ODEmodels and distinguished between different
methodologies including structural and practical identifiability analyses. In the former
analysis, one determines if a given structure of amodel allows the realization of unique
parameters when certain measured variables are provided (Walter and Pronzato 1997).
However, it only provides necessary conditions for identifiability because it does not
take into consideration parameters precision (Jung et al. 2019; Raue et al. 2011). In
contrast, practical identifiability aims to predict confidence intervals for the estimated
parameters (Jung et al. 2019; Gábor et al. 2017). It can be conducted locally (in the
neighborhood of the estimated parameter values) or globally over the entire range of
values. We here carry out the latter analysis and evaluate it globally to improve the
confidence in the parameter values that are determined by solving (OP1).

We conduct the global practical identifiability analysis by determining the smallest
box that contains the so-called feasible parameter set Pe j for each patient j , as sug-
gested in Jung et al. (2019). This set includes all values of parameters in p j for which
the differences between model predictions yi j (τi j ,p j , x

opt
1 j

) and optimal model pre-

dictions yopti j
(determined by solving (OP1)) fall within certain defined bounds ∀i ∈ I j ,

that is

Pe j = {p j ∈ Pj | −εyopti j
≤ yi j (τi j ,p j , x

opt
1 j

) − yopti j
≤ εyopti j

}, ∀ j ∈ J, (4)

where yopti j
= yi j (τi j ,p

opt
j , xopt1 j

), ε is the percentage of deviation, and Pj is the set of

parameter values in p j bounded by the components of plj and p
u
j defined in (OP1). The

set Pe j is depicted in dark gray as shown in Fig. 2 for the case of a two-dimensional
vector p j . We approximate the nonconvex set Pe j by a rectangular box (light gray
color),whose edges are formedby the extremevalues of the elements ofp j (pmin

j1
, pmax

j1
,

pmin
j2

, pmax
j2

). We determine these extreme values by solving a series of constrained
dynamic optimization problems. For a vector p j that consists of K parameters, the
optimization problem for parameter number k is formulated ∀ j ∈ J, and ∀k ∈ K as
follows (Jung et al. 2019; Paulen et al. 2016):

123



130 Page 10 of 26 M. E. Wajeh et al.

maximize
pmin
j ,pmax

j

pmax
jk − pmin

jk , (OP2)

subject to − εyopti j
≤ yi j (τi j ,p

max
j , xopt1 j

) − yopti j
≤ εyopti j

, ∀i ∈ I j ,

− εyopti j
≤ yi j (τi j ,p

min
j , xopt1 j

) − yopti j
≤ εyopti j

, ∀i ∈ I j ,

model equations (3a) and (3b),

poptj ≤ pmax
j ≤ puj ,

plj ≤ pmin
j ≤ poptj ,

with K = {1, 2, . . . , K } and K = 6. We set ε to 20%, which means that the differ-
ences between model predictions for p j = pmax

j and p j = pmin
j , and optimal model

predictions for p j = poptj fall within 20% of the optimal prediction values ∀i ∈ I j .

For each parameter p jk in p j , its minimum value pmin
k j

in pmin
j and its maximum value

pmax
jk

in pmax
j are determined by solving (OP2). Therefore, (OP2) is solved K times

for each patient j ∈ J. As a result, the approximation of Pe j is determined, and its
edges are the elements of pmin

j and pmax
j . The set Pe j allows for the determination of

confidence regions of the estimated parameter values in poptj . When Pe j covers a large

space in the direction of p jk , the estimated parameter poptjk
is not identifiable, in the

sense that there is a large range of values for p jk that could lead to a good fit. When
the set covers a small space, poptjk

is identifiable because the parameter is determined
to a sufficient accuracy. To decide on identifiability a certain threshold is thus needed.
We here do not define a cutoff, we rather analyze the identifiability qualitatively.

If estimates of the errors in tumor lengthmeasurementswere available, then depend-
ing on the confidence intervals of the measurements, the threshold value of 20% in
the practical identifiability analysis could be changed accordingly. For instance, for
wide error margins in the measurements, the threshold value should be increased to
account for those wide margins. However, we do not have estimates of measurement
errors. The longest and shortest diameters were measured manually by radiologists in
the original clinical trial. Such manual measurement is currently the state of the art,
although our previous experience indicates that there can be a 1–2 mmmargin of error
in these measurements (McNitt-Gray et al. 2015).

3.4 Tumor Growth Prediction

Beyond being able to reproduce experimental data a posteriori, a more clinically
relevant application of mathematical tumor modeling would be if the model was able
to predict tumor growth. This could lead to model-based tumor treatment, as the
supplied doses to patients could be adjusted in advance according tomodel predictions.
In Sect. 3.2, we fitted the model to all experimental data points when estimating the
parameters. In order to comparemodel extrapolation capabilities and future predictions
to the clinical data, we now do not include the last ζ points of the data when fitting
the model and solving (OP1). For each patient j , we solve an optimization problem
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Fig. 2 Illustration of parameter identifiability via global confidence intervals (based on Jung et al. 2019).
The dark gray region indicates the feasible set Pe j that includes all values of parameters in the two-

dimensional vector p j for which the differences between model predictions yi j (τi j , p j , x
opt
1 j

) and optimal

model predictions y
opt
i j

fall within certain defined bounds. The light gray region shows the rectangular

box that conservatively approximates this feasible set, where the box edges are the extreme values of the
elements of p j (p

min
j1

, pmax
j1

, pmin
j2

, pmax
j2

)

similar to (OP1), but using only the data points in the set Iextj instead of I j , where

Iextj = {1, 2, . . . , N j − ζ }. The optimal values of the decision variables obtained

from this problem are called pextj and xext1 j
. We then integrate the model equations

for p j = pextj and x1 j = xext1 j
from τ1 j to τ(N j) j

, thus extrapolating beyond the

data used for fitting. The results of the integrated yexti j
= yi j (τi j ,p

ext
j , xext1 j

) between
τ(N j−ζ) j

and τ(N j) j
are the extrapolated part of the model that can be compared with

the remaining ζ data points to gauge the extrapolation capabilities. We consider two
model extrapolation cases in which ζ is equal to two and three.

Moreover, we formulate another optimization problem to investigate how far model
extrapolation could deviate from the actual values. We aim to find two “extreme-case”
lines that are designed to be as far away from each other at the final time point (τ(N j) j

)

while both being within some θ tolerance of the found optimal fit (yexti j
) for the fitted

time before extrapolation starts. For this, we solve the following optimization problem
∀ j ∈ J:

maximize
puppj ,plowj ,xupp1 j

,x low1 j

y(N j) j
(τ(N j) j

,puppj , xupp1 j
) − y(N j) j

(τ(N j) j
,plowj , x low1 j

), (OP3)

subject to − θ yexti j ≤ yi j (τi j ,p
upp
j , xupp1 j

) − yexti j ≤ θ yexti j , ∀i ∈ I
ext
j ,

− θ yexti j ≤ yi j (τi j ,p
low
j , x low1 j

) − yexti j ≤ θ yexti j , ∀i ∈ I
ext
j ,
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model equations (3a) and (3b),

plj ≤ puppj ≤ puj ,

plj ≤ plowj ≤ puj ,

x l1 j
≤ xupp1 j

≤ xu1 j
,

x l1 j
≤ x low1 j

≤ xu1 j
,

where puppj and plowj are the vectors that contain the parameter values for the upper and
lower “extreme-case” model extrapolation deviations, respectively. The initial values
of the non-dimensionalized ECnumber at τ1 j for these upper and lower deviation cases
are xupp1 j

and x low1 j
, respectively. We set θ to 10%. By integrating (3a) and (3b) from τ1 j

to τ(N j) j
, we get yuppi j

= yi j (τi j ,p
upp
j , xupp1 j

) and ylowi j
= yi j (τi j ,p

low
j , x low1 j

), which

allow the comparison of these two “extreme-case” extrapolation deviations with the
remaining ζ data points after τ(N j−ζ) j

(start of extrapolation).

If estimates of the measurement errors were available, then the deviations of the
“extreme case” predictions from the experimental measurements could be assessed
while taking into consideration those error estimates. One could then conclude if
the “extreme case” predictions still lie within the measurement uncertainty or not.
However, as aforementioned, we do not have estimates of the measurement errors.

3.5 Implementation

We implement the model, (3a) and (3b), in MATLAB R2019b (MATLAB 2019). All
optimization problems are solved in the MATLAB version of the global optimization
toolbox MEIGO using the enhanced scatter search metaheuristic (eSS) method (Egea
et al. 2014). The eSS is stochastic and employs some elements of the scatter search
and path re-linking methodologies (Egea et al. 2010). We set the maximum number of
function evaluations, the maximum CPU time and the maximum absolute violation of
the constraints to 105, 100 s and10−5, respectively.Weuse a 50%probability of biasing
the search toward bounds and the dynamic hill climbing (DHC) (Yuret and de LaMaza
1993) as a local search method. For all aforementioned optimization problems, we set
x l1 j

and xu1 j
to 10−2 and 102, respectively. All elements of plj and puj are set to 10−2

and 102, respectively. Because of the non-dimensionalization described in Sect. 3.1,
we expect that the parameter values are close to one. Therefore, we arbitrarily chose
those bounds. Wider bounds might result in lower optimal objective values and hence
better fits, but the computational cost would increase too. We also tried for several
patients to use wider bounds (e.g., 10−3 and 103). However, it did not yield significant
improvements for the majority of the cases.

The ODE (3a) and (3b) are solved using the variable-step, variable-order (VSVO)
solver based on the numerical differentiation formulas (NDFs) of orders one to five
(ode15s) (Shampine and Reichelt 1997). We set the relative and absolute error toler-
ances to 10−3 and 10−6, respectively. The solution refinement factor is one, and the
maximum step size is 0.1(τ(N j) j

− τ1 j ).
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Although MEIGO is a global solver, since it is stochastic, the solution depends
on the initial guesses. Thus, the global optimum is not guaranteed. For all patients,
we performed multiple optimization runs from different initial guesses and chose
the decision variables that resulted in the lowest objective functions. In general, the
improvements were very slight. However, for some patients whose profiles are difficult
to predict (e.g., wavy profiles), the multi-start optimization did improve the optimal
solution that was found.

4 Results and Discussion

We now show the results of estimation, identifiability, and predictions. We show the
results of six selected patients in detail and give performance measures for all 210
patients. We selected those six patients in a way to provide the different profiles of TC
dynamics. Data fitting and growth prediction results of all 210 patients are provided
in the supplementary material.

4.1 Data Fitting and Parameter Estimation

We fitted the parameters of a modified Kuznetsov model on a dataset of solid tumors
in human patients under immunotherapy treatment. The model predicted the different
tumor growth profiles represented by a selection of representative patients, as well
as in the total (unselected) cohort. As shown in Fig. 3 and Table 2, model prediction
and experimental data profiles are qualitatively and quantitatively very close for these
patients. The mean absolute error (MAE), the root-mean-square error (RMSE), and
the coefficient of determination (R2) for the selected six patients are given in Table 2.
We found that the model gave very high goodness of fit as measured by R2. Across
210 patients in all studies, an average R2 of 0.784 was achieved with median and
range values of 0.896 and 1.594, respectively. According to the statistical Lilliefors
normality test, this R2 distribution does not follow a Normal distribution. Moreover,
Table 4 provides the number of patients and the R2 values per study and per arm.
Study 1 and Study 5 have higher R2 than the remaining studies. Arm 1 has the highest
R2 in all studies except for Study 2. Although direct comparison of this performance
with the previous work in Ghaffari Laleh et al. (2022) is not possible, comparing the
MAE of the selected six patients with the reported average MAE in the previous study
indicates good fitting performance of the developed Kuznetsov model. Furthermore,
by analyzing the goodness of fit in individual patients, we found that the modified
Kuznetsov model was able to fit clinically interesting patterns. In particular, the mod-
ified Kuznetsov model was able to predict relapse after initial tumor response (patient
#207 in Fig. 3) and other types of fluctuating behavior, solving a key limitation of
previously used simpler models as in Ghaffari Laleh et al. (2022).

We fitted the parameters of the modified Kuznetsov model to a large clinical dataset
obtained fromfive clinical trials. In general, the distributions of the resulting parameter
values were similar between the studies (Fig. 4). These ranges can be useful for further
studies because they enable other researchers to determineplausible ranges andoptimal
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Table 2 Quantification of the
goodness of fit of the model as
shown in Fig. 3

Patient # MAE RMSE R2

22 0.178 0.226 0.931

83 0.065 0.103 0.996

163 0.084 0.108 0.963

186 1.171 1.993 0.949

203 1.638 2.039 0.974

207 0.115 0.154 0.987

All patients (1 → 210) – – 0.784

We compare the values of all data points to model results when calcu-
lating MAE, RMSE and R2

boundaries when fitting the same model to other datasets, thereby simplifying the
optimization procedure. A global parameter estimation, however, was not performed
in this study and could be attempted in future studies.

Figure 4 shows the estimated values (black dashes) of model parameters of all 210
patients. All parameter values vary per patient. The values are distributed all over the
bounds, except for α, which has a maximum of 6.331. The parameter α is the normal-
ized parameter for a, which represents the maximum growth rate of TC population.
In addition, most of the values of μ and ρ are close to the upper bound. Although
parameter values are quite distributed between the bounds, the aforementioned find-
ings can help in narrowing the expected ranges of values of parameters when global
parameter estimation is targeted. Moreover, the distribution of parameter values is
compared among the considered five studies. As we can see in Fig. 4, the distribution
densities between the bounds of parameter values are the same for all studies.

We also provide box plots for the results of each parameter in Fig. 4. The medians
of the parameter values in all studies and arms have close values. In addition, we
performed statistical Lilliefors normality tests, for the parameter value distributions in
each study and arm. The parameter σ follows Normal distributions in Study 1, Study
2, Study 5 and all the Arms of Study 3 except Arm 6. The parameter ρ follows Normal
distributions in Study 1, Study 2, Study 3, and Arm 1 of Study 4.

4.2 Parameter Identifiability Analysis

Figure 5 provides the identifiability analysis results of the estimated model parame-
ter values of the selected patients. Depending on the patient and the parameter, the
estimated parameter values can be unique or take other values. For patient #22, the
approximated feasible parameter set covers a small space in all parameters directions.
Their estimated parameter values are close to being unique and thus identifiable. On
the other hand, the approximated feasible parameter set for patient #203 covers a large
space in all parameter directions. Therefore, the found values are not unique and other
combinations of values could lead to good fits and predictions. For the remaining
selected patients, the feasible parameter sets can be small or large depending on the
patient and the parameter.
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Fig. 3 Data fitting results of TC number of the selected patients. The solid (black) line shows model results,
where all data points are used when estimating the parameters. The points represent the measured data.
Ordinates: normalized number of tumor cells. Abscissas: normalized treatment time, where negative values
indicate time before the start of treatment. The model can fit experimental data with different qualitative
trends (e.g., up, down and “U”-curve)

Figure 6 shows the averages of the indicator functions for each parameter range
(found by the identifiability analysis) for all patients. These averages provide the
most frequent ranges of parameter values within their bounds. They are equivalent to
histograms where the output is between zero and one (indicator function output). The
ranges are quite distributed all over the parameter bounds for all parameters. The only
exception is α, for which there is a maximum bound after which no values could be
found. The most frequent ranges are close to the median values in Fig. 4, except for
μ, for which it is at the lower bound of the parameter value.

When the target is to estimate parameter values of the tumor dynamics model of a
certain patient, identifiable values are what we need. However, when the aim is to find
global parameters values for all patients, large spaces of the feasible parameter sets
can be desirable for finding those global values, in which they are independent of a
considered patient. In summary, the results of Figs. 5 and 6 show that for several com-
binations of parameter values, good data fitting andmodel predictions can be achieved.
This opens the potential for global parameter estimation, in which the estimated val-
ues of all or some model parameters are the same for all patients. However, using
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Fig. 4 Estimated values (black dashes) of the parameters of (3a) and (3b) model for all 210 patients (after
data pre-processing) individually. The bottom and top of the boxes of the box plots are the 25th and 75th
percentiles of the data, respectively. The distance between the bottom and top of each box is the interquartile
range. The red line in the middle of each box is the data median. The outliers (red plus sign) are the values
that are more than 1.5 times the interquartile range away from the bottom or top of the box. Ordinates:
parameter values. Abscissas: non-dimensionalized model parameters. The values are scattered all over the
bounds’ ranges, but α values, which have a maximum of 6.331. Moreover, the distribution densities of
parameter values are very close to each other among the studies (Color figure online)

data from patients diagnosed with different cancer types (e.g., NSCLC and bladder
cancer) might make it unlikely to find global values for all parameters. Nevertheless,
we are not certain about that. Also, immunotherapy is tumor-agnostic and we wanted
to pursue this tumor-agnostic approach. The applied version of the Kuznetsov model
has six parameters. The model could describe different tumor growth profiles of both
the NSCLC and bladder cancer when estimating the parameter values individually. It
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Fig. 5 Identifiability analysis results of estimated values of model parameters of the selected patients. Ordi-
nates: parameter values. Abscissas: non-dimensionalized model parameters. The points are the estimated
values. The arrowheads are the maximum and minimum values found by the analysis. The results show that
there are several combinations of parameter values at which the model can fit the experimental data (Color
figure online)

might be thus possible that the model could still describe the tumor dynamics of both
cancer types while estimating only the initial values of EC with possibly one or two
additional parameters while fixing the others.

Global parameter estimation would have the advantage of fixing part or all of
the Kuznetsov model parameters so that the estimation problem is simplified when
applied to each patient in clinical practice. However, fixing all the model parameters
and only estimating the initial values of the EC contradicts personalized modeling. In
personalized modeling, patient-specific characteristics, treatment types, and metadata
are included in the model as combined or additional terms. One could thus fix the
parameters that are not specific to the patient or treatment types and estimate the
others. The parameters specific to treatment types could be also fixed if only a certain
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Fig. 6 The results of the averages of the indicator functions for each parameter range (found by the identi-
fiability analysis) for all patients. The graphs are equivalent to histograms indicating the frequency of the
estimated ranges among the patients. Ordinates: indicator functions values, between zero and one (esti-
mated ranges frequencies). Abscissas: non-dimensionalized model parameters. The most frequent ranges
of parameter values are close to the median values in Fig. 4, except for μ, the range is most frequent at the
lower bound of the parameter value. These median values are here the vertical lines (Color figure online)

treatment type or strategy is applied. Parameters for metadata terms like gender, age,
etc., could be also fixedwithin each group. Therefore, the approach of global parameter
estimation should be applied to the parameters involved in the model terms describing
common phenomena (which are tumor-agnostic) among tumor types, independent of
treatment type or metadata, such as the terms in the Kuznetsov model.
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4.3 Tumor Growth Prediction

In clinical decision making, a possible role of mechanistic models is forecasting tumor
growth during treatment, potentially enabling physicians to adjust the treatment strat-
egy earlier.We found that themodifiedKuznetsovmodel indeedwas able to extrapolate
beyond the initial time points when the last two or three data points are not included
when fitting themodel. The solid black lines in Fig. 7 showmodel extrapolation results
of the selected patients when the last two data points are not considered for fitting. For
the six patients, the model quantitatively forecasts tumor dynamics, except for patient
#186. The last data point of patient #186 is almost impossible to forecast because it
suddenly shifts upward after a mild and constant increase in tumor growth. However,
the model can still qualitatively predict the growth. For the other patients, the predic-
tions are very close to the experimental data. In Table 3, the first sub-table “optimal
Extra.” provides theMAE, RMSE, and R2 of the selected patients, as well as the mean
absolute percentage error (MAPE) for the extrapolated part, defined as:

MAPE = 1

ζ

N j
∑

i=N j−ζ+1

∣
∣
∣
∣
∣

ỹi j − yi j (τi j ,p j , x1 j )

ỹi j

∣
∣
∣
∣
∣
.

The values of R2 for the six patients are close to one except for patient #186 due to
the aforementioned explanation. Compared to the previous work in Ghaffari Laleh
et al. (2022), model extrapolation results here have higher R2 values, specifically, an
R2 of 0.979 was reached for patient #207. The average values of R2 and MAPE of
all 210 patients are also provided in the table. The R2 value is 0.419 with median and
range values of 0.685 and 6.717, respectively. According to the statistical Lilliefors
normality test, this R2 distribution does not follow a Normal distribution.

Model extrapolation results when omitting the last two data points for all 210
patients are provided in the supplementary material. By analyzing the performance
of model extrapolation results of the 210 patients, we could not generally classify the
tumor dynamic profiles into different subtypes. However, the model could not predict
the future growth for several patients where tumor dynamics suddenly increase after
steady profiles (e.g., patient #186). In addition, the performance ofmodel extrapolation
for patients receiving chemotherapy is better than for those receiving immunotherapy.
Also, the model performed in general well when extrapolating curves that have slight
slope changes after starting future predictions. In addition, we provide model extrap-
olation results while omitting the last three data points for the selected six patients
in the supplementary material. For the latter results, the model could also predict the
growth very well.

Table 4 provides the R2 andMAPE values per study and per arm for model extrapo-
lationwhen omitting the last two data points. In general, and as expected, the calculated
average R2 for the extrapolation experiment is lower than the R2 when using all the
data points in all the studies. Similar to data fitting, Study 1 and Study 5 have higher R2

than the remaining studies. In Study 3, Arm 2 and Arm 3 have the lowest R2. Interest-
ingly, in Study 2 and Study 4, the extrapolation performance of the model is markedly
better for the Docetaxel group (Arm 2) than for the Atezolizumab group (Arm 1). This
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indicates that patients receiving docetaxel have a more predictable response trajectory
compared to patients receiving immunotherapy in whom unexpected patterns of tumor
response can occur even at later time points. Moreover, in Study 3 where all patients
received immunotherapy, Arm 1 (MPDL3280A-1a) and Arm 3 (MPDL3280A-1a)
have better model performance in both fitting and extrapolation than the rest of the
arms.

Moreover, Fig. 7 shows how far model extrapolation could deviate from the actual
values. The results of the two “extreme-case” (dash-dotted blue and the dashed
magenta) lines are designed to be as far away from each other at the final time point
(τ(N j) j

) while both being within some 10% tolerance of the found optimal fit for

the fitted time before extrapolation starts. For some patients, the “extreme-case” lines
can significantly deviate from the actual values, especially for the upper case (dash-
dotted blue lines), as for patients #22 and #83. In contrast, the “extreme-case” lines
for patients #163 and #186 are very close to the optimal extrapolated ones. Sub-tables
“Upper Extra.” and “Upper Extra.” in Table 3 provide theMAE,RMSE, R2 andMAPE
for the selected patients for the two “extreme-case” extrapolations.

To sum up, themodel can forecast tumor dynamics of the patients and the “extreme-
case” extrapolation scenarios were conducted to check the worst model predictions.
For some patients the “extreme-case” extrapolation results deviate from the actual
values, for others they remain close to the optimal extrapolation results.

5 Conclusion

In this study, we show that quantitative mathematical models can be used to describe
and forecast the behavior of cancer. Previous studies have used the same datasets to
fit very simple ODE models to the tumor volume measurements over time (Ghaffari
Laleh et al. 2022). However, in Ghaffari Laleh et al. (2022), it was observed that all
established ODE models were not able to fit “U”-shaped trajectories well. In clinical
terms, patientswho relapsed after an initial response, or patientswho showed a delayed
response, were not adequately represented in these previous models. Compared to
this, the present study evaluates a more complex model which has the benefit of being
able to describe a larger variety of real-world time series. This specific model is a
slight simplification of the Kuznetsov model (Kuznetsov et al. 1994), which has not
been linked with or validated in large amounts of quantitative real-world human data.
Specifically, it could quantitatively fit the Kuznetsov model to a large dataset of 1472
patients.Data are collected frompatients undergoing immunotherapy or chemotherapy
treatments.

In the parameter estimation for each patient, we found that some parameters for
some patients are not unique (identifiability analysis). This means that many combi-
nations of parameter values could lead to good fitting and predictions. This opens the
potential for global parameter estimation, in which parameter values are the same for
all patients. However, since we did not consider patients with few data points (patients
with early tumor progression and potentially their death), potential bias to the estima-
tion problem is introduced that might limit the clinical applicability of the model with
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Table 3 Quantification of the goodness of fit and prediction of the model as shown in Fig. 7

Patient # MAE RMSE R2 MAPE

Optimal Extra. 22 0.179 0.229 0.929 0.049

83 0.171 0.279 0.971 0.474

163 0.086 0.117 0.956 0.079

186 3.020 8.194 0.134 0.414

203 1.745 2.044 0.974 0.323

207 0.152 0.196 0.979 0.068

All patients (1 → 210) – – 0.419 0.768

Upper Extra. 22 0.394 0.566 0.568 1.295

83 0.484 1.302 0.363 1.503

163 0.106 0.140 0.938 0.330

186 2.983 8.035 0.168 0.403

203 3.561 5.719 0.798 1.559

207 0.625 0.834 0.618 0.428

Lower Extra. 22 0.301 0.372 0.813 0.720

83 0.224 0.409 0.937 0.721

163 0.122 0.151 0.928 0.475

186 3.258 8.499 0.069 0.485

203 3.538 4.145 0.894 0.828

207 0.465 0.811 0.639 0.348

Here the last two data points are not considered for parameter estimation. We compare the values of all
data points to model results when calculating the errors and R2. The average deviation of model prediction
results from the measured values during extrapolation time (shaded region in Fig. 7) is represented by
MAPE. The Optimal Extra. sub-table shows the values for the optimal model prediction results (the solid
(black) line in Fig. 7). The Upper Extra. sub-table relates values to the upper “extreme-case” extrapolation
deviation results (the dash-dotted (blue) line in Fig. 7). The Lower Extra. sub-table relates values to the
lower “extreme-case” extrapolation deviation results (the dashed (magenta) line in Fig. 7)

global parameters. Still, the model could predict tumor growth (2–3 omitted measure-
ments) which could indicate practical usefulness as a predictive biomarker. This is a
more clinically relevant application of mathematical tumor modeling. Specifically, the
model fitting and prediction could potentially describe and forecast the behavior of
cancer, improve the understanding of underlying biological mechanisms, and provide
model approaches for cancer treatments, as the supplied doses to patients could be
adjusted in advance according to model predictions. Future studies should attempt
a global parameter estimation, use deterministic and less computationally demand-
ing solution methods. Another possibility is the reduction of the number of model
parameters in order to have less number of parameters to estimate and thus enhance
the possibility to reach global values. In addition, the mixed-effects modeling (pop-
ulation approach), which allows the simultaneous modeling of tumor dynamics and
inter-individual variability within a statistical framework, could be considered as a
potential work for future investigation.
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Fig. 7 Model extrapolation results of the selected patients. The solid (black) line represents the optimal
model prediction. The dash-dotted (blue) and the dashed (magenta) lines show the upper and the lower
“extreme-case” model extrapolation deviation results, respectively. Here the last two data points are not
considered for parameter estimation. The points show the measured data. Shaded areas highlight regions
of model extrapolation. Ordinates: normalized number of tumor cells. Abscissas: normalized treatment
time, negative values indicate time before the start of treatment. The model is capable of forecasting tumor
dynamics qualitatively and sometimes quantitatively (Color figure online)

The model complexity is mostly limited by the availability of suitable data. There-
fore, if more data become available, it would be possible to include other terms in the
model, e.g., metadata, explicitly representing different types of immune cell popula-
tions or multiple cancer cell clones.

A general limitation of our approach is that mechanistic models of tumor growth
are competing against statistical models of tumor growth, including machine learning
models. In order to forecast clinical response to immunotherapy and to guide clinical
decisions, both types of models could be applied. However, it is still unclear which
approach will ultimately translate to clinical application. While mechanistic models
are attractive because they integrate expert knowledge into their predictions, they are
also constrained by these assumptions. Our study contributes empirical evidence that
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mechanistic models can make clinically relevant predictions in a relevant use case,
but further work is required to validate this in other disease contexts and compare the
predictions to statistical models.
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