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Abstract 

Identifying the neuronal markers of consciousness is key to supporting the different scientific theories of consciousness. Neuronal 
markers of consciousness can be defined to reflect either the brain signatures underlying specific conscious content or those supporting 
different states of consciousness, two aspects traditionally studied separately. In this paper, we introduce a framework to characterize 
markers according to their dynamics in both the “state” and “content” dimensions. The 2D space is defined by the marker’s capacity to 
distinguish the conscious states from non-conscious states (on the x-axis) and the content (e.g. perceived versus unperceived or differ-
ent levels of cognitive processing on the y-axis). According to the sign of the x- and y-axis, markers are separated into four quadrants 
in terms of how they distinguish the state and content dimensions. We implement the framework using three types of electroen-
cephalography markers: markers of connectivity, markers of complexity, and spectral summaries. The neuronal markers of state are 
represented by the level of consciousness in (i) healthy participants during a nap and (ii) patients with disorders of consciousness. On 
the other hand, the neuronal markers of content are represented by (i) the conscious content in healthy participants’ perception task 
using a visual awareness paradigm and (ii) conscious processing of hierarchical regularities using an auditory local–global paradigm. 
In both cases, we see separate clusters of markers with correlated and anticorrelated dynamics, shedding light on the complex rela-
tionship between the state and content of consciousness and emphasizing the importance of considering them simultaneously. This 
work presents an innovative framework for studying consciousness by examining neuronal markers in a 2D space, providing a valu-
able resource for future research, with potential applications using diverse experimental paradigms, neural recording techniques, and 
modeling investigations.
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Introduction
Giving a definition of consciousness with a coherent theoretical 
framework is a daunting task that would benefit from simple con-
ceptual dissociations to improve interpretability. Identifying the 
neural correlates of consciousness has become crucial to allow 
progress in the science of consciousness. Following the Koch and 
Crick seminal definition, neural correlates of consciousness are 

the minimal neural processes that must occur in the brain for a 

particular conscious experience to occur (Crick and Koch 1990). 

However, this definition leaves the possibility of multiple types 

of neuronal markers of consciousness, two of which are those of 

conscious contents and those of states of consciousness.

Traditionally, research on consciousness has developed sep-

arately in these two pillars. While some researchers, mainly 
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cognitive neuroscientists, primarily focused on the neuronal pro-
cesses behind conscious access of specific content (e.g. the capac-
ity to report stimuli as seen versus not seen or to discrimi-
nate stimuli). The second line of researchers focused on global 
states of consciousness (e.g. sleep, anesthesia, and disorders 
of consciousness) (Goupil and Bekinschtein 2012, Sanders et al. 
2012, Boly et al. 2013, Bayne et al. 2016). This research has 
been rather developed by physicians with questions of diagno-
sis and prognosis often sanctioned by ethical and end-of-life
questions.

Neuronal markers of content (NM-Cs) are a reflection of the 
neural processes that occur for a specific experience. On one hand, 
NM-Cs are studied by comparing conditions where specific con-
scious content (e.g. perception of sound or image) is present or 
absent while stimulus properties and the state of consciousness 
remain unchanged. The difference between the neural activities 
averaged by trials depending on the capacity to report (reported 
perceived, e.g. “seen”) compared to the lack of capacity to report 
(reported not perceived, e.g. “unseen”) is generally considered to 
be a marker of access content. Several different paradigms exist 
such as perceptual suppression, masking, or threshold paradigms 
in different sensory modalities (Kim and Blake 2005, Del Cul et al. 
2007, Dehaene and Changeux 2011). On another hand, there are 
tasks that assess the capacity to attend and integrate percep-
tual and cognitive hierarchical regularities such as the auditory 
local–global (LG) paradigm (Bekinschtein et al. 2009). The two 
different types of paradigms and examples show a gradient of 
content—where one end is about the mentioned access conscious-
ness (seen/unseen), and on the other hand is the processing of 
hierarchical regularities (the LG paradigm as an example). Vari-
ous methods such as electroencephalography (EEG), magnetoen-
cephalography, or functional magnetic resonance imaging (fMRI) 
allow for studying the neural correlates of these conscious percep-
tual experiences (Tsuchiya et al. 2015, Koch et al. 2016). From these 
studies, the NM-Cs differentiate the “seen” from the “unseen” 
range from the primary and secondary networks of early percep-
tual and cognitive integration to abstract cognitive implementa-
tion associative areas (Dehaene and Changeux 2011). Electrophys-
iological studies on monkeys and humans have revealed several 
signatures of auditory awareness like P3b event-related potentials 
and oscillations in 𝛼/𝛽 (9–30 Hz) and 𝛾 (>40 Hz) bands between the 
visual cortex and frontoparietal cortices (Dehaene and Changeux 
2011).

Neuronal markers of state (NM-Ss) are used to differentiate 
states of consciousness. These include conditions as diverse as 
sleep, partial complex seizures, general anesthesia, and patients 
in an unresponsive wakefulness syndrome (UWS) or minimally 
consciousness state (Laureys et al. 2004). NM-Ss can signal the 
emergence of consciousness, with the brain having to be at 
an appropriate level of processing to “ensure adequate cortical 
excitability” for the emergence of consciousness (Koch et al. 2016). 
Consciousness disorders in patients with brain injury are a good 
model as they provide a spectrum of different conscious states. 
The current taxonomy to describe these patients is based on 
behavioral responsiveness [Coma Recovery Scale-Revised, CRS-
R (Kalmar and Giacino 2005)]. This evaluation classifies these 
patients in different clinical conditions: UWS (Laureys et al. 
2010)—previously called the vegetative state, characterized by a 
behavioral examination of preserved reflexive behavior, such as 
eye-opening and spontaneous breathing, without apparent aware-
ness of self and the environment (Jennett and Plum 1972). The 
second clinical condition is the minimally conscious state (MCS) 
[more recently proposed to be renamed as cortically mediated 

state (Naccache 2018)], where patients show reproducible behav-
ioral responses, suggesting environmental awareness, such as 
slow visual pursuit or response to simple commands; and finally, 
the emergence from MCS, where the patient is able to maintain 
some degree of basic communication (Giacino et al. 2002). These 
three clinical categories can be considered “ordered” in a gradi-
ent reflecting the richness of conscious experience (Bayne et al. 
2016). Additionally, MCS can be subcategorized into MCS− and 
MCS+. MCS− refers to patients who demonstrate non-reflexive 
behaviors like visual pursuit and orientation to stimuli, whereas 
MCS+ denotes patients capable of more advanced behaviors such 
as command following and verbalization, signifying higher levels 
of awareness and communication ability within the MCS spec-
trum (Bruno et al. 2011, Edlow et al. 2021) (for a review, see Edlow 
et al. (2021) on further details of disorders of consciousness (DoC) 
and the patients’ emergence).

The theoretical and behavioral findings are also verified—and 
in many cases enriched (Naccache 2018)—by NM-Ss. For example, 
different electrophysiological markers derived from EEG recording 
in a resting state (Chennu et al. 2014, Sitt et al. 2014) are able to 
discriminate UWS patients from MCS patients. In the same way, 
fMRI during a resting state period (Demertzi et al. 2014, 2015, 2019, 
Di Perri et al. 2016), positron emission tomography with metabolic 
markers (Stender et al. 2014, Hermann et al. 2021b) or the cal-
culation of an index reflecting the EEG reaction after stimulation 
by transcranial magnetic stimulation (Casarotto et al. 2016), is 
capable of discriminating between UWS and MCS patients. This 
contrast makes it possible to study the UWS as a state of wake-
fulness without awareness, and the MCS as a state with minimal 
behaviors consistent with awareness of the environment or the 
self. Sleep provides an additional valuable model of altered and 
reversible states of consciousness, with the advantage of the pos-
sibility of recording NM-Ss in healthy participants. Indeed, there 
are clear EEG markers (Comsa et al. 2019, Imperatori et al. 2021, 
Manasova and Stankovski 2023) and fMRI activity patterns char-
acterizing brain activity in wakefulness and during different sleep 
stages (Dang-Vu et al. 2010, Peigneux 2014, Song and Tagliazuc-
chi 2020). Additional models of interest include anesthesia (Lewis 
et al. 2012, Barttfeld et al. 2015, Chennu et al. 2016, Zelmann et al. 
2023) or complex seizures (Guo et al. 2016, Blumenfeld 2021).

Hence, there is rich literature studying particular brain activ-
ity features as putative NM-Ss or NM-Cs. However, not much is 
known when it comes to comparing those given features on both 
dimensions simultaneously. While several studies have attempted 
to study content and state separately, a theoretical development 
proposes a 3D axis with an x-axis corresponding to subjective 
conscious content (as reported by the participant), the y-axis to 
the objective state of consciousness (defined by behavior and 
body signals), and the z-axis to a subjective state of conscious-
ness (as reported by the participant) (Bachmann 2012). In the 
examples presented here, we used markers of objective state of 
consciousness in the y-axis. However, the proposed framework 
is also compatible when subjective state markers are considered. 
Bayne and colleagues, on the other hand, propose a multidimen-
sional graph like a radar chart with different axes (Bayne et al. 
2016): content-related (e.g. content gating and content range) and 
functional dimensions (e.g. relating to attentional control, mem-
ory consolidation, verbal report, reasoning, and action selection). 
The problem with this representation is that it is difficult to stan-
dardize and, hence, less applicable. Interestingly, Sergent et al. 
(2017) created a unique EEG protocol allowing the exploration 
of eight axes (own name recognition, temporal attention, spatial 
attention, detection of spatial incongruence motor planning, and 
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modulations of these effects by the global context) but the con-
struction of such a paradigm is complex. For Chalmers, studying 
content and conscious state at the same time is difficult in experi-
mental conditions (Chalmers 1997), with most studies contrasting 
variable content in a given state of consciousness or studying 
brain differences in different states.

A pertinent perspective to note is that the categorization of 
state and content is nuanced. Recent work shows that these 
categories are part of a spectrum that often overlaps (Andrillon 
2023, Andrillon and Oudiette 2023). On one hand, we have sen-
sory processing during different levels of arousal (Andrillon and 
Kouider 2020); content during states of low arousal (Solms 2000, 
Leslie et al. 2007); responsiveness to the environment during lucid 
dreams and other sleep stages (Türker et al. 2023); and phenom-
ena such as mind-wandering and mind-blanking during active 
wakefulness, which are hypothesized to originate from local sleep 
occurrences (Andrillon et al. 2021). However, in all of these cases, 
the content and state dimensions are present and can be disentan-
gled using subjective and objective measures (albeit without an 
existing unit of measurement and based on assumptions, which 
should always be well reported).

The simultaneous study of state and content neural correlates 
implies the following research question: what is the relationship 
of different neuronal markers in a 2D space of level and content 
of consciousness axes? Importantly, the same neuronal marker 
(e.g. delta power) can either reflect the same or different neu-
ronal process across levels and contents of consciousness. To 
address this question, we introduce a simple framework compris-
ing a 2D space to examine brain features across both dimensions 
concurrently. This approach facilitates the characterization of var-
ious types of markers based on their positioning within the 2D 
space. We explore this space using two experimental examples: 
a comparison of states of consciousness (normal sleep or disor-
ders of consciousness) and types of conscious content (auditory 
or visual). In this 2D space, we put the directionality of differ-
ent EEG markers when contrasting two conditions (e.g., perceived 
versus not-perceived or different levels of cognitive processing in 
the case of the content exploration; and a global state of con-
sciousness versus a global state of unconsciousness in the case 
of the state exploration). The capacity of the markers to dis-
tinguish the contrasted conditions is measured using an Area 
Under the receiver operating characteristic (ROC) Curve (AUC). 
The framework’s capability to assess simply the behavior of neu-
ronal markers on the state and content conditions demonstrates 
its relevance to the consciousness research community.

Materials and methods
In this study, we included three separate cohorts of healthy con-
trols and one patient population with disorders of consciousness. 
Each of the separate groups of healthy controls came in for one of 
the following EEG experiments: the visual masking paradigm (Del 
Cul et al. 2007), a session consisting of a period of resting wakeful-
ness followed by a nap, and an experiment using the LG paradigm 
(Bekinschtein et al. 2009). Whereas the patient population under-
went EEG recordings during the LG paradigm (Bekinschtein et al. 
2009).

Population
Healthy participants
Healthy participants were recruited on three separate occasions 
for three distinct experimental paradigms. The inclusion criteria 

were normal hearing, normal or corrected vision, and no history 
of neurological, psychiatric, or sleep disorder.

For the first experiment, using the visual awareness paradigm, 
which took place in Paris, France, we recruited 35 participants (28 
women; age = 24.9 ± 4.1 years). For the second experiment, which 
took place in Cambridge, UK, participants came to the lab to 
be recorded during wakefulness and a nap period. In this study, 
26 participants (19 women; age = 24.3 ± 4.9 years) were recruited 
and gave written informed consent to procedures approved by 
the University of Cambridge Research Ethics Committee, in accor-
dance with the Declaration of Helsinki. For the third experiment, 
we recorded 36 participants (29 women; age = 25.3 ± 3.8 years) for 
the LG paradigm. The first and the third experiments which took 
place in Paris, France, were approved by the Ethical Committee 
of the Pitie Salpetriere Hospital, NeuroDoc protocol. In conforma-
tion to the protocol, participants gave written consent before the 
experiments took place.

Patients
We screened 443 patients (177 women; age = 47.2 ± 19.4 years) 
recorded between 2008 and 2019 in the neuro-intensive care at 
Pitié Salpetrière for an expert assessment of their conscious-
ness. During this evaluation, we performed several exams (clin-
ical assessment, magnetic resonance imaging, EEG, event-related 
potentials, positron emission tomography) to determine more 
accurately the state of consciousness. In the study, we included 
only patients assessed to be either in a UWS or MCS according to 
the best CRS-R score out of five completed during the evaluation 
week. Out of all the screened patients, we included 388 patients, 
who, according to the CRS-R behavioral exam, were in an MCS 
(N = 191) or in a UWS (N = 197). The patients were in a disorder of 
consciousness resulting from various etiologies either traumatic 
or non-traumatic. Because patients were non-communicating, 
informed consents were obtained from the patient’s relatives. 
The ethical committee of the Pitie-Salpetriere Hospital approved 
this research under the French label of “routine care research” 
(Comité de Protection des Personnes no. 2013-A01385-40 Ile 
de France, Paris, France, under the code “Recherche en soins
courants”).

Paradigms
Experiment 1: visual awareness paradigm
The first group of healthy controls (N = 35, recorded in Paris) under-
went EEG recordings of the visual awareness paradigm. Near-
threshold visual awareness was assessed using a visual backward 
masking paradigm modified from Del Cul et al. (2007). This visual 
awareness paradigm is designed to suppress visual perception by 
presenting a visual stimulus (“mask”) immediately after another 
visual stimulus (“target”). This manipulation causes a perception 
failure of the first stimulus. In this paradigm, a para-foveal numer-
ical target (“2”, “3”, “7”, or “8”, height = 1.7 cm, width = 1.1 cm) was 
presented for 16 ms either to the right or to the left of a central 
fixation point (8∘ visual angle) on a 60-Hz frame rate screen. The 
numerical target was followed after a variable Stimulus Onset 
Asynchrony (SOA, to 16 ms at 83 ms) by a visual mask, consist-
ing of letters surrounding the target, presented for 250 ms. After 
the target presentation at 800 ms, participants were asked to per-
form a subjective task of visibility rating of the target through a 
binary “seen”/“unseen” answer. Answers were collected via key 
press with a pseudo-randomization of response hand order and 
switch of response hand in the middle of the task. The entire 
task consisted of the presentation of 400 trials (64 trials per SOA 
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and 80 catch trials in which only a mask was presented, without
a target).

Experiment 2: nap
The second group of healthy controls (N = 26, recorded in Cam-
bridge) underwent EEG recordings during a nap. Participants 
arrived at the EEG lab either at 8:00 or at 13:00 and were accommo-
dated in a bed and instructed that they have a 2-h window during 
which they could fall asleep. They were informed that, while 
asleep, they might be presented with tones via the headphones 
and that, if they noticed them, they could ignore them and con-
tinue sleeping. The EEG signal was constantly monitored for mark-
ers of sleep. After having assessed stable non-rapid eye movement 
(NREM) Stage 2 sleep for at least 3 min, auditory stimulation 
including pure tones (500–5302 Hz, 100 ms, inter-stimulus inter-
val = 500 ms) was started. Tones were played with a slow fading-in 
to minimize the likelihood that participants would be awakened 
by the onset of the stimuli. Importantly, to minimize exposure to 
stimulation during arousals, whenever arousal occurred stimula-
tion was promptly stopped. Stimulation would then be resumed 
only after a stable NREM sleep had been reassessed. For the goal 
of this study, we used sections of the recording during which no 
sounds were presented.

Experiment 3: LG paradigm
The LG task is an oddball auditory paradigm that has two hier-
archical levels of regularities: a “local” regularity that triggers 
early responses that are preserved in conscious and unconscious 
states, and a “global” regularity that triggers late evoked responses 
that are only present in awake, conscious, and attentive partic-
ipants (Bekinschtein et al. 2009, Wacongne et al. 2011, Chennu 
et al. 2013, King et al. 2013, Strauss et al. 2015). The neural 
responses to the violation of each of these regularities can be 
quantified from two complementary contrasts: the local contrast 
[local deviant (LD) trials versus local standard (LS) trials] and the 
global contrast [global deviant (GD) trials versus global standard 
(GS) trials]. The LG paradigm is developed by Bekinschtein et al. 
(2009), and it is based on the repetition of two sequences of tones: 
XXXXX or XXXXY. In a low level (local regularity), XXXXX is the LS 
and XXXXY is the LD. The contrast between these two sequences 
reveals the occurrence of the mismatch negativity. This response 
is in a short range and is also reproduced during the loss of con-
sciousness associated with sleep, general anesthesia, or UWS. In 
a high level (global regularities), the repetition of the XXXXY or 
XXXXX is the standard condition and establishes the rule. In this 
case, we distinguish a GS rule and a GD. The violation of this reg-
ularity by the other sequence: XXXXX or XXXXY, respectively, is 
represented by the P3b waveform and requires conscious aware-
ness and working memory (Bekinschtein et al. 2009) [although 
see Sergent et al. (2021) for an updated view of P300]. Local and 
global regularities are manipulated orthogonally 2 × 2: the first 
type of blocks consists of LS–GS (XXXXX) and LD–GD (XXXXY) 
sounds. The second type of blocks is made up of LD–GS (XXXXY) 
and LS–GD (XXXXX) sounds. Both the patient cohort and the first 
group of healthy controls (N = 36, recorded in Paris) underwent 
EEG recordings of the LG paradigm. However, in the patient group, 
we computed the markers from segments of “pseudo-resting-
state” [during the first four repeated auditory stimuli (Engemann 
et al. 2018)] to contrast their power to index the different states 
of consciousness in patients regardless of the stimulus content
(Sitt et al. 2014).

EEG data processing
Experiment 1: visual awareness paradigm
High-density scalp EEG was acquired using 256 electrodes Hydro-
cel Geodesic Sensor Net on a Net300 Amplifier (Electrical 
Geodesics Inc. system) with a sampling frequency of 250 Hz dur-
ing the behavioral task. Impedances were set to <75 kΩ before 
the start of each recording. Electrodes with voltages >100 μV in 
more than 50% of the epochs were removed. Moreover, voltage 
variance was computed across all correct electrodes. Electrodes 
with a voltage variance Z-score of >4 were removed. This pro-
cess was repeated four times. Bad electrodes were interpolated 
using a spline method (Perrin et al. 1989). Epochs were labeled 
as bad and discarded when voltage exceeded 100 μV in >10% of 
electrodes. Moreover, voltage variance was computed across all 
correct epochs, and epochs with a Z-score of >4 were removed. 
This process was also repeated four times. Average reference was 
applied to the remaining epochs. Preprocessing was implemented 
using the MNE-Python package. To get rid of the confound of 
evoked responses to the mask, we proceeded to a mask subtrac-
tion procedure as in the study by Del Cul et al. (2007). We first 
realigned all epochs to the mask onset and computed the evoked 
response to the mask from the catch trials. We then subtracted 
this evoked response from all other trials. Finally, we realigned 
epochs on the target to obtain epochs stripped from the mask 
response (this procedure resulted in shortening the epochs which 
as a result went from −232 to 732 ms after target onset). The win-
dow of interest is between the presentation of the numerical target 
(0 ms) and +700 ms.

Experiment 2: nap
The EEG signal was recorded with 128-channel sensors using 
a GES 300 Electrical Geodesic amplifier, at a sampling rate of 
500 Hz (Electrical Geodesics Inc. system/Philip Neuro). Conductive 
gel was applied to each electrode to ensure that the impedance 
between the scalp and electrodes was kept <70 kΩ.

Two independent and experienced sleep examiners blind to 
stimuli onset/offset times scored offline 30 s-long windows of EEG 
data according to established guidelines (Berry et al. 2012). The 
two scoring lists were subsequently compared and controversial 
epochs were inspected again and discussed until an agreement 
was reached. EEG and EOG signals were first re-referenced to mas-
toids and then EEG signals were band-pass filtered between 0.1 
and 45 Hz, EOG between 0.2 and 5 Hz. EEG signals were obtained 
from local derivation and were high-pass filtered >20 Hz. Then, 
based on the sleep scoring, periods of wakefulness (319.4 ± 33.5 s) 
and NREM Stage 2 sleep (369.8 ± 93.6 s) when no auditory stimu-
lation was presented were selected. The nap EEG data was split 
into epochs of 800 ms, separately for the periods of NREM Stage 2 
sleep or wakefulness. The epoching was done using a random jit-
ter, between two epochs, from 550 to 850 ms. The EEG recordings 
were then preprocessed using the same fully automatic procedure 
as for the visual awareness and the LG paradigms.

Experiment 3: LG paradigm
The EEG data were recorded at a sampling frequency of 250 Hz 
with a 256-electrode Geodesic Sensor Net (Electrical Geodesic Inc. 
system) referenced to the vertex. Trials were band-pass filtered 
(0.5–45 Hz) and then segmented in epochs ranging from −200 to 
+1344 ms from the first sound onset. We removed non-scalp EEG 
electrodes, leaving 195 electrodes in the next preprocessing steps. 
The EEG recordings were then preprocessed using the same fully 
automatic procedure as for the visual awareness paradigm and 
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the nap experiment. The remaining stimulus-locked epochs were 
averaged and digitally transformed to an average reference. A 200-
ms baseline correction (before the fifth sound onset) was applied. 
In the LG dataset of the patient population, analyses were car-
ried out from −100 ms before the onset of the first sound to the 
onset of the fifth sound (+600 ms), what we call above the “pseudo-
resting-state.” All trials are selected independently of standard or 
deviant status. Whereas for the healthy participants, we used the 
period between +600 ms, which is the onset of the fifth sound, and 
+1300 ms.

Computation of markers
Normalized power spectral analysis
Spectral analysis is a well-established method for the analysis of 
EEG signals. We estimated power in five frequency bands [delta 
to gamma: delta (𝛿: 1–4 Hz), theta (𝜃: 4–8 Hz), alpha (𝛼: 8–13 Hz), 
beta (𝛽: 13–30 Hz), and gamma (𝛾: 30–45 Hz)]. Mathematically, the 
power spectral density is estimated by the Welch method (Welch 
1967). The power in a given band is calculated as the integral of 
the spectral power density then it is linearized using a logarithmic 
scale. The normalized power is calculated by dividing the power 
in each band by the total energy in the trial. It is expressed in dB 
and therefore represents a percentage of power. The abbreviations 
used in the text for the normalized power bands are the follow-
ing: delta normalized |𝛿|, theta normalized |𝜃|, alpha normalized 
|𝛼|, beta normalized |𝛽|, and gamma normalized |𝛾|.

Markers of complexity
“Permutation entropy (PE)” was developed by Bandt and Pompe 
(2002). The basic principle of this method is the transformation 
of the time signal into a sequence of symbols before estimating 
entropy. The complete description is given in Sitt et al. (2014). 
The transformation is made by considering consecutive subvec-
tors of the signal of size n (n = 3 here) and a parameter defining a 
specific frequency band. After the symbolic transform, the proba-
bility of each symbol is estimated, and PE is computed by applying 
Shannon’s entropy formula to the probability distribution of the 
symbols.

“The complexity of Kolmogorov–Chaitin (KS)” is represented 
by the size of the smallest computer program that can be made 
to define this signal. The lower limit is therefore estimated by 
applying lossless compression, that is to say, a compression that 
restores after decompression a series of bits strictly identical to 
the original. The degree of compression is then compared to the 
basic signal. Here we use an open-source compressor: gzip. It uses 
a compression algorithm, a method called Deflate including the 
LZ77 algorithm and Huffman coding.

The first is based on dictionary compression by transform-
ing the sequence into 32 symbols, then we replace the recurring 
sequences with the position and the length of the occurrences in a 
sliding window. The second is based on constructing a tree where 
we assign a weight to each redundant sequence. Thus, after hav-
ing calculated the number of occurrences of a sequence, the more 
redundant the sequence the more a small number of bits is allo-
cated to code it. Compression by gzip is therefore based on signal 
redundancy. We then compare the size of the compression com-
pared to the initial file. The more compressed the file, the less 
information it contains.

Markers of connectivity
The weighted symbolic mutual information (wSMI) can be used to 
evaluate long-distance connectivity, and details of the calculation 

are explained in King et al. (2013). The wSMI is a measure based on 
the prediction of the theory of the global workspace and experi-
ments concerning the conscious perception of subliminal stimuli. 
Indeed, several studies (Dehaene et al. 2001, 2003) have shown a 
late use of the frontoparietal network and above all an increase in 
the sharing of information between brain areas. The EEG signal is 
transformed into a sequence of six symbolic figures then the PE)is 
calculated: we then take each pair of electrodes and observe the 
conjunction of symbolic elements. Mutual information measures 
the quantity of information distributed on average by a realization 
of X over the probabilities of realization of Y. The SMI is weighted 
to ignore conjunctions of identical or opposite symbols that may 
come from a common source of artifacts. The connectivity mea-
surement is obtained by taking the median value of all pairs of 
electrodes.

Statistics
The area under the curve (AUC) is calculated from the ROC curve. 
The ROC curve is a graph representing the performance of a binary 
classification model for all classification thresholds. It is plotted 
from the rate of true positives (sensitivity) versus the rate of false 
positives (1 − specificity). It is then possible to calculate the area 
under this curve, or AUC, using a sorting algorithm. The AUC 
provides an aggregate measure of performance for all possible 
classification thresholds. The AUC can be interpreted as a mea-
sure of the probability that the EEG marker used will correctly 
classify trials or conditions (here, UWS/MCS patients, wake/N2 
sleep in healthy participants, GD/GS, LD/LS; or seen/unseen tri-
als). In our proposed framework, we use AUC to represent the 
performance of a given neuronal marker to distinguish two condi-
tions (e.g. UWS versus MCS in the state dimension or seen versus 
unseen and different levels of cognitive processing in the content 
dimension) independent of a classifier—we only give the marker 
values and condition A or B. In our case conditions, condition A 
are seen, wake, LD, GD, and MCS, whereas condition B are unseen, 
sleep, LS, GS, and UWS. An AUC value close to 1 shows that the 
marker is higher in the A condition than in the B condition, close 
to 0.5 the distributions overlap, and an AUC value close to 0 shows 
that the marker is higher in the B condition than in the A condi-
tion. For the paired conditions (unseen/seen; sleep/wake; GS/GD; 
LS/LD), the distributions of the markers per epoch were z-scored, 
and the trimmed means were calculated (excluding the bottom 
and top 10% of the distributions). This results in one value per sub-
ject per condition per marker. The AUC values were calculated on 
these group-level distributions. For the UWS/MCS recordings, the 
same analysis was done with the exception of z-scoring. We report 
significant AUC for the content or the state if the AUC values of the 
two distributions are significantly different with a Wilcoxon two-
sided test, Bonferroni corrected—for the paired conditions and 
a Mann–Whitney U test, Bonferroni corrected—for the unpaired 
condition (UWS/MCS).

The 2D framework: state versus content 
dimensions
We propose a system to study the state and content of conscious-
ness in the same coordinate space. In our framework, we use the 
AUC to depict the performance of a specific neuronal marker, con-
trasting a binary classification of state (NM-S) along the x-axis 
(two examples provided: wake/sleep and UWS/MCS) and a binary 
classification of content (NM-C) along the y-axis (two examples: 
seen/unseen and GS/GD) (Fig. 1).

As an example of neuronal markers, we computed a set 
of previously proposed putative EEG markers (Sitt et al. 2014,
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Figure 1 A 2D representation of state of consciousness and conscious content. The decomposition of the space forms four quadrants. The upper right 
and lower left quadrants correspond to the quadrants in which the content markers decrease when the level of consciousness decreases and vice 
versa; the upper left and lower right quadrants correspond to an increase of content markers when the level of consciousness decreases (or vice 
versa); the band around the x-axis represents a significant difference only in the state contrast, the band around the y-axis only for the content 
contrast, and the area around the origin is not specific to both content and state contrasts

Engemann et al. 2018) in state-of-consciousness contrasts and 
conscious content contrasts (either conscious access or contrast-
ing two different levels of cognitive processing). The markers 
used in this study belong to a few conceptual families in neural 
dynamics (spectral, information theory, and connectivity) and are 
defined in the aforementioned studies (Sitt et al. 2014, Engemann 
et al. 2018) (also see the “Computation of markers” section). These 
markers have been shown to have discriminatory power across 
the DoC (Sitt et al. 2014, Engemann et al. 2018) and sleep spectra 
(Strauss et al. 2022, Türker et al. 2023). Importantly, the algo-
rithms and parameters used to compute the proposed markers 
were identical in both cases.

Three types of markers were computed: (i) markers of 
connectivity—wSMI in the theta band (consciousness state sen-
sitivity reported by King et al. 2013); (ii) markers of complexity—
Kolmogorov–Chaitin complexity and PE; and (iii) markers of fre-
quency power—delta power, theta power, alpha power, beta power, 
and gamma power. The result is expressed with the AUC quanti-
fying each marker’s discriminative power between the two groups 
within each contrast (e.g. wakefulness and N2 sleep or between 
MCS and UWS patients).

To test the implementation of the framework we provide a 
series of examples. In the first example, we used a popular 
contrast, the comparison of NM-Ss during wakefulness versus 
Stage 2 (N2) of NREM sleep in healthy participants. In the sec-
ond example again for the conscious state (x-axis), we use the 
contrast between UWS patients and MCS patients, the UWS as 
a state of wakefulness without awareness and the MCS as an 
awake state with minimal or inconsistent awareness of self or the
environment.

In our examples, conscious content (on the y-axis) is rep-
resented by the same markers used on the x-axis but in this 
case, contrasting a perceptual task between a conscious con-
dition and an unconscious condition or contrasting two differ-
ent levels of cognitive processing. We also use the AUC of each 
marker to differentiate between two conditions. We used two 
examples of conscious content tasks in healthy participants: (i) 
the visual awareness paradigm using a visual backward masking 

paradigm (contrasting seen/unseen trials and (ii) the auditory LG 
paradigm that is a complex auditory oddball paradigm (quanti-
fying the marker differences between GD and GS trials, LD and
LS trials).

The proposed axes divide the plane into four quadrants, sub-
divided into nine zones. The correspondence of each marker to 
a given quadrant determines how the marker behaves in terms 
of state and content (Fig. 1). The top right (AUC-x > 0.5 and AUC-
y > 0.5) and bottom left (AUC-x < 0.5 and AUC-y < 0.5) quadrants in 
light violet correspond to markers that behave in unity in the state 
and content dimensions (increase in conscious state and con-
scious content or decrease in both dimensions). In contrast, the 
top left (AUC-x < 0.5 and AUC-y > 0.5) and bottom right (AUC-x > 0.5 
and AUC-y < 0.5) quadrants in dark violet correspond to markers 
that have opposite behaviors in both dimensions (increase in con-
scious state and decrease conscious content, or vice versa). In 
addition, two blue/red zones around the x-/y-axis correspond to 
either an increase or decrease of the markers that are only valid 
for state (x, blue) or content (y, red), and the white area ∼0.5 corre-
spond to markers with no state- or content-specific information. 
The white zone in the middle of the plane represents markers 
unrelated to either state of content.

Results
Example 1: visual awareness paradigm and nap 
in healthy participants
In this example, we represent different EEG markers in the pro-
posed 2D space to differentiate their behavior according to the 
state of consciousness or the conscious content (Fig. 2). For the 
x-axis, we use 26 EEG recordings in healthy participants during a 
nap opportunity of 2 h, and we order the markers according to 
the AUC discrimination on wakefulness versus N2 sleep. For the 
y-axis we used high-density EEG recordings in 35 healthy partic-
ipants during a visual, backward masking, awareness paradigm 
(Del Cul et al. 2007). In this example, the values for each marker 
on the y-axis are determined by the AUC when contrasting seen 
versus unseen trials (Fig. 2).
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Figure 2 Example 1, behavior of EEG markers in the state and content 
dimensions for the visual awareness dataset and healthy participants 
nap. The coordinate of each point in the x-axis represents the ability of 
the marker to discriminate between wakefulness and N2 sleep; the 
coordinate in the y-axis of the same point represents the ability of the 
marker to discriminate between seen and unseen targets during the 
visual awareness paradigm; the values of the AUC and their confidence 
intervals, as well as the statistical test results, can be found in 
Supplementary Tables S1 and S2. KS: Kolmogorov complexity; wSMI: 
weighted mutual symbolic information; 𝛿: delta; 𝜃: theta, 𝛼: alpha; 𝛽: 
beta; 𝛾: gamma

In the state dimension, described by the sleep and wake con-
ditions, all markers had significantly different AUC values from 
0.5 [Supplementary Tables S1 and S2; Fig. 2; |𝛿| (AUC = 0.026, 
Z(2626) = 3, P < .0001), |𝜃| (AUC = 0.142, Z(2626) = 37, P = .01), |𝛼| 
(AUC = 0.947, Z(2626) = 7, P < .0001), |𝛽| (AUC = 0.977, Z(2626) = 6, 
P < .0001), |𝛾| (AUC = 1, Z(2626) = 0, P < .0001), KS (AUC = 0.996, 
Z(2626) = 1, P < .0001), PE (AUC = 0.96, Z(2626) = 8, P < .0001), wSMI 
(AUC = 0.9, Z(2626) = 23, P = .001)]. Whereas in the content axis, 
represented by the experimental categories of seen and not seen 
visual stimuli, four of the markers are significantly different 
than 0.5 [|𝛿| (AUC = 0.825, Z(3535) = 96, P = .001), |𝜃| (AUC = 0.806, 
Z(3535) = 122, P = .009), |𝛽| (AUC = 0.162, Z(3535) = 101, P = .002), |𝛾| 
(AUC = 0.193, Z(3535) = 114, P = .005)], which is not the case for the 
rest of the markers (|𝛼| (AUC = 0.304, Z(3535) = 169, P = .127), KS 
(AUC = 0.395, Z(3535) = 245, P = 1), PE (AUC = 0.323, Z(3535) = 186, 
P = .273), wSMI (AUC = 0.514, Z(3535) = 305, P = 1)].

Most of the markers are on the lower right half of the graph (|𝛼|, 
|𝛽|, |𝛾|, KS, wSMI, PE), but contrary to the second example, none of 
the markers are content-only. Interestingly, wSMI, KS, PE, and |𝛼| 
are significant only for state, whereas |𝛽| and |𝛾| are significant for 
both state and content. The two last markers |𝛿| and |𝜃| are in the 
top left quadrant and significant for both state and content, which 
means that they increase for content while they decrease with the 
state of consciousness.

Example 2: auditory LG paradigm and disorders 
of consciousness
For the second example, on the x-axis, representing level, we use 
the “pseudo resting state” (see the “Methods” section) of patients’ 
data and we order the markers according to the AUC on the UWS 
versus MCS contrast. For the y-axis, representing content, we used 
the global–local paradigm in healthy participants’ data and we 
sorted the markers according to the AUC on the GD versus GS 

conditions (Fig. 3a). Here we focus on the global contrast as it 
indicates some level of conscious content processing.

One part of the markers are significantly different than the 
threshold 0.5 for the state dimension contrasting UWS and MCS 
(Supplementary Tables S1 and S2; Fig. 3), specifically the mark-
ers |𝛿| [AUC = 0.38, U(197 191) = 14 294, P = .0003], |𝜃| [AUC = 0.649, 
U(197 191) = 24 410, P < .0001], |𝛼| [AUC = 0.678, U(197 191) = 25 520, 
P < .0001], PE [AUC = 0.668, U(197 191) = 25 138, P < .0001], and wSMI 
[AUC = 0.656, U(197 191) = 24 697, P < .0001], which is not the case 
for the AUC values of |𝛽| [AUC = 0.528, U(197 191) = 19 880, P = 1], 
|𝛾| [AUC = 0.481, U(197 191) = 18 113, P = 1] and KS [AUC = 0.559, 
U(197 191) = 21 034, P = .355]. Whereas all markers besides |𝜃| 
[AUC = 0.68, Z(3636) = 208, P = .39] had significant AUC values for 
the content dimension contrasting the conditions GS and GD 
{|𝛿| [AUC = 1, Z(3636) = 0, P < .0001], |𝛼| [AUC = 0.033, Z(3636) = 1, 
P < .0001], |𝛽| [AUC = 0.077, Z(3636) = 41, P < .0001], |𝛾| [AUC = 0.149, 
Z(3636) = 80, P = .0002], KS [AUC = 0.016, Z(3636) = 3, P < .0001], PE 
[AUC = 0.038, Z(3636) = 8, P < .0001], wSMI [AUC = 0.12, Z(3636) = 13, 
P < .0001]}.

Looking at the combined position in the coordinate system, the 
markers are arranged in all four quadrants (Fig. 3a). Several of the 
markers (|𝛼|, wSMI, PE, see the “Methods” section for the marker 
abbreviations) are located in the lower right quadrant, meaning 
that these markers increase with the state of consciousness but 
decrease with conscious content. Conversely, |𝛿| is on the upper left 
quadrant, indicating increasing values for conscious content but 
decreasing for the state of consciousness. Finally, other markers 
like |𝛽|, |𝛾|, or KS were only significant for conscious content but 
not for state. Finally, |𝜃| was only significant for the conscious state 
but not for content, reflecting increasing values with the state of 
consciousness (minimally conscious > UWS states).

When looking into the LS/LD contrast, representing the content 
dimension (Supplementary Tables S1 and S2; Supplementary Fig. 
S1), all markers had significant AUC for the content dimension {|𝛿| 
[AUC = 0.857, Z(3636) = 72, P < .0001], |𝜃| [AUC = 0.764, Z(3636) = 156, 
P = 0.037], |𝛼| [AUC = 0.188, Z(3636) = 83, P = .0002], |𝛽| [AUC = 0.243, 
Z(3636) = 155, P = .035], wSMI [AUC = 0.29, Z(3636) = 134, P = .01]}, 
except for |𝛾| [AUC = 0.309, Z(3636) = 194, P = .227], KS [AUC = 0.355, 
Z(3636) = 225, P = .732], and PE [AUC = 0.322, Z(3636) = 196,
P = .246].

Notably, a sharp difference in the AUC of the EEG markers can 
be observed when local or global contrasts are used for the con-
tent dimension (Fig. 3b; Supplementary Fig. S1). We present the 
differences between the two contrasts in terms of absolute value 
(−0.5) as we wish to show the amplitude or strength of the effect 
and not the directionality (here directionality refers to whether a 
given marker has a bigger value in LS compared to LD, or GS com-
pared to GD). The performance of the markers to distinguish LD 
versus LS is systematically lower compared to GD versus GS (P-
value .016 of a paired Wilcoxon signed-rank test). All but one (|𝜃|) 
of the markers shows a lower discriminative performance for the 
global effect in contrast to the local effect.

Discussion
In this work, we propose a framework that permits the direct com-
parison of EEG markers of state and conscious content in the same 
space. With two implementation examples, we show that neu-
ral correlates depict different properties in discriminating these 
dimensions of consciousness.

The challenge in a 2D representation of neuronal markers of 
consciousness is to find a minimal relevant contrast. In these 
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Figure 3 (a) Example 2, distribution of EEG markers in the state and content dimensions for the auditory modality and disorders of consciousness 
patients. The coordinate of each point in the x-axis represents the ability of the marker to discriminate between UWS and MCS patients. The 
coordinate at the same point in the y-axis represents the ability of the marker to discriminate between the GD and the GS trials in the LG paradigm in 
healthy participants. Note that the crossing of the x-axis and y-axis is centered at 0.5, which corresponds to discrimination at the level of chance. 
Points are colored according to their statistical significance in either the content dimension, the state dimension, or both. (b) The performance of EEG 
markers to discriminate GD to GS is higher than the power of EEG markers to discriminate LD to LS. The detection of the GD is a marker of conscious 
content, whereas the LD is an automatic response to the novelty. In the figure, 0.5 is subtracted from the values of the AUC. The values of the AUC and 
their confidence intervals, as well as the statistical test results, can be found in Supplementary Tables S1 and S2. KS: Kolmogorov complexity; wSMI: 
weighted mutual symbolic information; 𝛿: delta; 𝜃: theta, 𝛼: alpha; 𝛽: beta; 𝛾: gamma

two examples, we contrast both conscious state and conscious 
content, but independently. The state was studied by contrast-
ing healthy participants in non-REM Stage 2 sleep and in the 
awake state. We also studied the state condition by contrasting 
MCS patients and UWS patients, diagnosed in the clinic, since the 
MCS state is considered an altered state of consciousness, and the 
UWS state as a state of wakefulness without awareness. However, 
we have to note here that the UWS versus MCS contrast is less 
dichotomous than it seems due to the possibility that some UWS 
patients are in a covert conscious condition (as called cognitive 
motor dissociation) (Owen et al. 2006, Schiff 2015) as well as the 
heterogeneity within the two clinical categories (Naccache 2018, 
Hermann et al. 2021a). The conscious content was studied in two 
modalities: visual and auditory. There is a high distance in the con-
trast of the conscious content between the sensory modalities, but 
also due to the type of perceptual processing (masking, threshold 
vision, and detection of novelty), the challenge is to find a suf-
ficiently salient contrast between the two conditions to capture, 
unambiguously, the perceptual or cognitive differences to obtain 
a robust neural characterization.

The first example, wake-sleep, and visual conscious access use 
the proposed representation with a task such as a visual per-
ception protocol as well as other states of consciousness such 
as NREM sleep (Fig. 3). The second example, the auditory LG 
paradigm is particularly powerful because it allows for a dual 
analysis, first, the study of the early, automatic response to nov-
elty (Fig. 3b; Supplementary Fig. S1), and, second, the late and 
conscious response (Fig. 3). The analysis of this early response is, 
therefore, a kind of control, since previous studies demonstrated 
that the brain processing of this rule does not require conscious 
awareness (Bekinschtein et al. 2009). In this example, we confirm 
with the LD/LS contrast that the putative EEG markers are less 
able to discriminate between the two conditions compared to the 
GD/GS contrast.

The comparison between the two examples highlights and 
challenges the fact that the different EEG markers evolve in the 
same direction according to the level of consciousness and the 
conscious content. One might intuitively hypothesize that most 
markers would be located in the light purple quadrants (top-right 
and bottom-left) of the graphical representation (Fig. 1), i.e. mark-
ers that increase with the state of consciousness and that also 
increase with the conscious content. In fact, most of the markers 
lie in the quadrants of the inverse relationship between state and 
content suggesting that they might play different roles in the state 
and content contrast. This result stresses the relevance of the pro-
posed 2D framework to characterize simultaneously the behavior 
of markers in both the state and content dimensions.

Although the analyses of the exact location of each marker lie 
beyond the original objectives of this work, we will briefly interpret 
them. The NM-S analysis in the first example (Fig. 2) is mostly con-
sistent with well-established knowledge of the relative spectral 
characteristics of wakefulness versus various sleep stages (Imper-
atori et al. 2021, Manasova and Stankovski 2023). In N2 sleep, 
we observe an increase in the relative delta and theta powers, 
as well as a decrease in alpha, beta, and gamma bands, which 
is aligned with previous reports (Imperatori et al. 2021) where all 
band comparisons are reported to be significant except for theta. 
Furthermore, we observe an increase in wSMI for the theta band 
in N2 sleep, which is present, but not strong enough (Imperatori 
et al. 2021). The NM-Ss in the second example (UWS/MCS contrast, 
Fig. 3) have an intuitive interpretation that is aligned with existing 
literature: while delta decreases with higher states of conscious-
ness theta and alpha both increase and higher frequencies are less 
informative (Sitt et al. 2014).

In terms of conscious content in the first example (Fig. 2), we 
found that delta and theta were higher in seen conditions, and in 
the second example (Fig. 3) this is the case only for delta, which is 
higher in GD compared to the GS condition, that may reflect the 
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slow late potentials associated with conscious access, a process 
uniquely underlying awareness. In the first example (Fig. 2), con-
trary to some results in the literature we also found a reduction of 
gamma power, this is likely due to the more careful computation 
we used (20–40 Hz, the average across all electrodes, and normal-
ized to the full spectrum power), as supported by Dwarakanath 
et al. (2023), who investigate the changes in conscious content 
in the prefrontal cortex using a binocular rivalry paradigm and 
show that there is a suppression of 20–40 Hz activity concurrent 
with 1–9 Hz transients, both of which follow the exogenous stimu-
lus changes of physical stimulus alternations. Importantly, these 
high-frequency suppressions and 1–9 Hz transients precede the 
endogenous binocular rivalry perceptual transitions. The same is 
true for markers of complexity and functional connectivity that 
decrease in the post-perceptual period with conscious content 
(Example 1, Fig. 2). This could be explained by a “gating” mecha-
nism, where the conscious perceptual input would close, creating 
a refractory period, which is reflected in a decrease of these mark-
ers in post-perceptual time. The reduction in complexity with 
conscious content is also compatible with the proposal of higher 
stability of neuronal activity during conscious access (Schurger 
et al. 2015).

Further reflecting on Figs 2 and 3 and the inverse relationship 
of the markers of content with those of the state, we can there-
fore think that there is a temporal constraint on the functional 
cognitive architecture theorized under the name of a cognitive 
cycle (Madl et al. 2011). According to its authors, awareness would 
consist of cascading cycles of recurrent cerebral events. Each 
cognitive cycle would then detect the current situation and inter-
pret it according to a given context. According to Franklin et al. 
(2005), “conscious events occur as a sequence of discrete, coherent 
episodes separated by quite short periods of no conscious content” 
similar to the frames of a movie, and these frames of conscious-
ness would be discrete but the conscious experience would seem 
continuous. A complementary framework is proposed by Herzog 
et al. (2016), where the authors argue for a rendering of the uncon-
scious content in discrete conscious moments. They propose a 
two-stage model that is different from “snapshot” theories. Visual 
information is processed unconsciously with a high temporal res-
olution followed by a discrete conscious percept (the outputs of 
unconscious processing) at a slower rate than the visual sampling 
(Herzog et al. 2016). This rate of conscious percepts is not fixed 
but depends on the unconscious processing reaching an attractor 
state (Herzog et al. 2016).

Advantages, limitations, and opportunities of the 
proposed framework
The proposed framework is flexible and can be extended to, for 
example, subcategories of states of consciousness such as MCS+
versus MCS− but also to choose contrasts in other circumstances: 
rapid eye movement sleep, lucid dreams or anesthesia in healthy 
participants. Although these contrasts have not been presented 
here, as long as there is a grounded rationale of a given contrast 
(e.g. the difference of language comprehension and the underly-
ing metabolic network activations in MCS− and MCS+ patients), 
this framework can be applied. This framework is also generaliz-
able across functional modalities and markers. Here we use EEG 
recordings that have a high temporal resolution and can cap-
ture fast neural changes in response to the aforementioned task 
paradigms. But this framework can be extended to other neu-
roimaging modalities that allow distinction of state and content 

of consciousness (e.g. functional magnetic resonance, magne-
toencephalography, intracranial recordings, fNIRS, and calcium 
imaging).

The two examples presented here should only be considered 
use cases, and we postulate that the proposed space character-
izing neuronal markers of consciousness should be compatible 
with types of contrasts represented in the y-axis (e.g. crowding 
protocols, subliminal images, binocular rivalry, and non-report 
paradigms) or in the x-axis (e.g. anesthesia, epileptic seizures, 
and developmental stages). In a similar vein, the markers that we 
used to populate the coordinate space are examples of EEG-based 
markers used in the literature, our proposed framework permits to 
include any markers (and in any neuroimaging modality) as long 
as it can be computed in state and content assessments.

We would like to emphasize that although we map the space 
of these content and level correlates, we do not imply that only 
empirical neuronal markers (and not their underlying mecha-
nisms) can be studied. Ideas coming from information theory such 
as the information decomposition approach (Mediano et al. 2022, 
Vinck et al. 2023) and biophysical models (Luppi et al. 2023) try to 
capture the neural signatures that are potential echoes (and not 
correlates) of the neural implementation of the processing of a 
content or the underlying dynamics that maintain a specific state. 
The framework that we propose can in turn be used as one form 
of evaluation of these models. For example, summary metrics of 
a biophysical model, or neural signatures that can be interpreted 
in terms of information and not simple communication or shared 
oscillatory activity, can be put into the 2D space and depending on 
whether they underlie processes of states of consciousness or pro-
cess of the perception of specific contents, they will be expected 
in a certain quadrant.

Conclusion
Our study introduces a novel 2D state–content space that effec-
tively represents EEG markers related to the state and content 
of consciousness. This innovative framework reveals significant 
relationships between these markers across both dimensions. In 
our examples, we observed an anticorrelation between the state 
and content dimensions in certain EEG markers, indicating that as 
one dimension’s value increases, the other’s decreases. This find-
ing highlights the nuanced interplay between state and content 
markers and provides deeper insights into their behavior. The pro-
posed 2D space has broad applicability across different perceptual 
modalities and various contrasts, offering a unified framework 
for examining consciousness. The value of this representation is 
both theoretical and experimental because it allows to disentangle 
content and state of consciousness signatures by studying multi-
ple contrasts in the same framework, constituting an important 
tool to better interpret the true neuronal mechanisms underlying 
consciousness and cognition in different states and for different 
contents.
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