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Abstract
Alzheimer’s disease (AD) is characterized by accumulation of tau neurofibrillary tangles (NFTs) and, according to the 
prion model, transcellular propagation of pathological “seeds” may underlie its progression. Staging of NFT pathology with 
phospho-tau antibody is useful to classify AD and primary age-related tauopathy (PART) cases. The locus coeruleus (LC) 
shows the earliest phospho-tau signal, whereas other studies suggest that pathology begins in the transentorhinal/entorhinal 
cortices (TRE/EC). The relationship of tau seeding activity, phospho-tau pathology, and progression of neurodegeneration 
remains obscure. Consequently, we employed an established cellular biosensor assay to quantify tau seeding activity in fixed 
human tissue, in parallel with AT8 phospho-tau staining of immediately adjacent sections. We studied four brain regions 
from each of n = 247 individuals across a range of disease stages. We detected the earliest and most robust seeding activity 
in the TRE/EC. The LC did not uniformly exhibit seeding activity until later NFT stages. We also detected seeding activity 
in the superior temporal gyrus (STG) and primary visual cortex (VC) at stages before NFTs and/or AT8-immunopositivity 
were detectable. AD and putative PART cases exhibited similar patterns of seeding activity that anticipated histopathology 
across all NFT stages. Our findings are consistent with the prion model and suggest that pathological seeding activity begins 
in the TRE/EC rather than in the LC. In the analysis of tauopathy, quantification of seeding activity may offer an important 
addition to classical histopathology.

Keywords Alzheimer’s disease · FRET biosensor · Neurofibrillary tangles · Prion propagation · Tau seeding activity, 
Tau staging

Introduction

Tauopathies constitute a diverse group of neurodegenerative 
diseases that include Alzheimer’s disease (AD). They are 
defined by the deposition of aggregated phospho-tau protein 
in the central nervous system [13, 31]. Tau aggregation is 
directly linked to the pathogenesis of tauopathies, as tau 
mutations that increase the propensity of tau to aggregate 
cause dominantly inherited dementia [2]. The neuropathol-
ogy of AD, the most common form of dementia, features 
intraneuronal pretangle and neurofibrillary tangle (NFT) 
tau pathology as well as extraneuronal ghost tangles and 
various forms of extracellular amyloid beta (Aβ) plaques. 
This tau pathology has a characteristic regional pattern of 
progression, thereby permitting the distinction of different 
stages in asymptomatic and symptomatic individuals [4, 
8]. Recently, it was proposed that early NFT stages with 
pathological changes confined to the anteromedial temporal 
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cortex, and minimal or no Aβ deposits, may constitute a pri-
mary age-related tauopathy (PART) [11], a hypothesis that 
remains a source of debate [15]. The spatiotemporal pattern 
of tau pathology in AD correlates well with brain atrophy 
and cognitive decline observed in subjects [5, 20, 23]. Based 
on extensive experimental data, we and others have proposed 
that transcellular propagation of tau protein “seeds,” in the 
manner of prions, could underlie the inexorable spread of 
pathology in tauopathies [39].

Tau aggregates that accumulate in tauopathies exhibit a 
high degree of phosphorylation [31]. Traditional immuno-
histochemistry (IHC) has been the gold standard for disease 
staging and discrimination among tauopathy syndromes [1, 
25, 30]. The monoclonal antibody AT8, which recognizes 
phospho-serine 202 and phospho-threonine 205 on aggre-
gated tau protein, is a principal tool to define AD intraneu-
ronal pathology (pretangles and neurofibrillary tangles) [33]. 
The AT8 signal increases with disease progression (Suppl. 
Fig. 1a–c) [8]. It first appears in the locus coeruleus (LC), 
and thereafter in a few additional brainstem nuclei with dif-
fuse cortical projections (subcortical pretangle stages a–c). 
The first cortical lesions have been observed in neuronal 
processes (cortical pretangle stage 1a) and in projection 
neurons (cortical pretangle stage 1b) of the transentorhinal 
region (TRE) in the absence of Aβ deposits [9]. This led to 
the idea that tau aggregation in the LC may represent the 
earliest phase of AD pathogenesis [9, 16]. At neurofibrillary 
tangle (NFT) stage I, AT8 and Gallyas silver staining reveal 
neurofibrillary lesions restricted to selected brainstem nuclei 
and the TRE. Pathology then develops in the entorhinal cor-
tex (EC) of the parahippocampal gyrus at NFT stage II. At 
NFT stage III, it begins to involve the CA1 sector of the hip-
pocampal formation and enters the neocortical regions of the 
temporal neocortex adjoining the TRE. NFT stages IV and 
V are characterized by increasingly abundant tau pathology 
in neocortical regions. The superior temporal gyrus (STG, 
Brodmann Area 22) becomes involved at NFT stage V, and 
during NFT stage VI the primary neocortical areas, such as 
the primary visual field (VC, Brodmann Area 17), exhibit 
tau lesions [5, 8] (Suppl. Table 1). In comparisons of pathol-
ogy and clinical presentation, over half of the subjects at 
NFT stages III–IV exhibited signs of mild cognitive impair-
ment, and over 90% of subjects at NFT stages V–VI exhib-
ited moderate to severe dementia [25].

The progressive accumulation of tau pathology in AD 
has long been recognized to involve neural networks [4, 
6]. Recent work in vitro [17] and in vivo [10, 26, 28, 36, 
38] indicates that in experimental systems tau assemblies 
(seeds) spread pathology between interconnected neurons 
and progressively trigger further aggregation of native 
tau. This is similar to the pathophysiology of prion dis-
eases, where prion protein (PrP) adopts a beta sheet-rich 
conformation that self-assembles and acts as a template 

to convert native PrP to a pathogenic form [35, 37]. In 
general, transcellular propagation of aggregation appears 
to be a common feature of various proteins implicated in 
neurodegenerative diseases [12, 17, 32, 34, 36].

The term “prion” is controversial as applied to nonin-
fectious neurodegenerative diseases [21, 22, 27, 44, 45]. 
We use it here to encompass the myriad of proteins that 
can shift conformation from a monomer to a self-replicat-
ing assembly that specifies biological activity based on its 
conformation [39]. Based on the prion hypothesis, we have 
hypothesized that tau seeding activity will mark incipient, 
submicroscopic protein aggregation before the occurrence 
of tau pathology that is visible by light microscopy.

We have previously developed a sensitive and specific 
cell-based “biosensor” assay to detect tau seeding activity 
in biological samples [18, 24]. When we used this assay 
in a transgenic mouse model of tauopathy, we observed 
seeding activity far in advance of detectable histopathol-
ogy or accumulation of insoluble tau protein [24]. In fresh 
frozen tissue from AD subjects, we have also observed 
seeding activity in advance of predicted neuropathologi-
cal changes [19]. However, in such studies fresh frozen 
samples are more difficult to obtain than fixed brain tissue, 
and do not allow direct anatomical comparison of seed-
ing activity with high quality histopathology. To resolve 
this problem, we recently developed a method to quantify 
tau seeding activity in fixed, archived human brain sec-
tions [29]. This has allowed simultaneous AT8 IHC and 
measurement of seeding activity in fixed tissues classified 
as AD and PART, and in asymptomatic individuals. We 
have now assessed the relationship of seeding to phos-
pho-tau pathology in the LC and in more distant cortical 
regions, thereby addressing fundamental questions about 
AD pathogenesis.

Methods

Culture of biosensor cells

Seeding assays were performed with a previously 
published biosensor cell line that stably express tau-
RD(P301S)-CFP and tau-RD(P301S)-YFP (ATCC CRL-
3275) [24]. All HEK293 cells were grown in complete 
media: Dulbecco’s Modified Eagle’s Medium (DMEM) 
(Gibco) with 10% fetal bovine serum (Sigma) and 1% 
penicillin/streptomycin (Gibco). Cells were cultured and 
passaged at 37 °C, 5%  CO2, in a humidified incubator. Dul-
becco’s phosphate buffered saline (Life Technologies) was 
used for washing the cells prior to harvesting with 0.05% 
Trypsin–EDTA (Life Technologies).
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Tau KO mouse breeding

To determine a true negative control tissue for assays, we 
used tau KO mice containing a GFP-encoding cDNA inte-
grated into exon 1 of the MAPT gene. These were obtained 
from the Jackson Laboratory and maintained on a C57BL/6J 
background [42]. Animals were housed on a 12 h light/dark 
cycle and provided with food and water ad libitum. All ani-
mal maintenance and experiments adhered to the University 
of Texas Southwestern animal care and use protocol.

Mouse sample collection and preparation

Animals were anesthetized with isoflurane and perfused 
with chilled PBS with 0.03% heparin. Whole-brains were 
drop-fixed in 4% paraformaldehyde in PBS overnight at 
4 °C. Brains were incubated in 30% sucrose before section-
ing. Sections were collected to equivalent volume of human 
samples (100 μm thickness × 4 mm circular punch biopsy) 
and placed in TBS with protease inhibitors (Sigma Aldrich 
complete protease inhibitor, EDTA free) as described below. 
Mouse and human samples were subsequently prepared in 
an identical fashion.

Human sample staging and preparation

Human autopsy tissue used for this study was obtained 
from n = 247 individuals with AT8-positive tau pathology 
(116 females, 131 males, age range 14–97 years, Table 1) 
and 6 controls (4 females, 2 males, age range 45–72 years, 
Suppl. Table  2) in compliance with ethics committee 
guidelines at the University of Ulm as well as German 
federal and state law governing human tissue usage. The 
brain specimens included cases from university-affiliated 
hospitals in Germany. The brains were fixed in a 4% buff-
ered aqueous solution of formaldehyde and subsequently 

archived for up to 25 years. Tissue blocks were excised and 
embedded in polyethylene glycol (PEG 1000, Merck, Carl 
Roth Ltd, Karlsruhe, Germany), and 100 μm sections were 
collected as previously described [8].

Neuropathological staging and disease classification were 
performed according to a previously published protocol [9] 
by H.B. after AT8 immunostaining using a monoclonal anti-
body PHF-Tau [1:2000; Clone AT8; Pierce Biotechnology, 
Rockford, IL, USA (Thermo Scientific)] for recognition of 
phosphorylated tau protein in non-argyrophilic pretangle 
material and in argyrophilic NFTs of the Alzheimer type. 
AT8 IHC visualizes the broadest spectrum of intraneuronal 
pathological tau: pretangles, NFTs, neuropil threads (NTs) in 
dendritic processes, somatic aggregates, and, notably, axonal 
aggregates. By contrast, Gallyas silver-iodide staining visu-
alizes argyrophilic NTs and NFTs but not the aggregates 
in axons. Ghost tangles are extraneuronal lesions (‘tomb-
stones’) that display weak staining with the Gallyas method 
and strong staining with the Campbell-Switzer silver-pyri-
dine method. In contrast to both of these methods, AT8 IHC 
visualizes ghost tangles less effectively than Gallyas silver 
staining or not at all. The character and relative merits of 
thioflavin-S staining, Gallyas and Campbell-Switzer silver 
staining, as well as more conventional silver methods (the 
modified Bielschowsky and the Bodian methods) in relation 
to tau isoforms and to IHC have been discussed in detail 
elsewhere [40, 43]. Aβ deposition was staged using the mon-
oclonal anti-Aβ antibody 4G8 (1:5000; Covance, Dedham, 
MA, USA) as recommended previously [25, 41]. PART clas-
sification included cases with tau stages 1b-IV, Aβ phase 0 
(“definite PART”). AD classification included cases with tau 
stages 1b-VI, Aβ phase ≥ 1. Subjects that met the criteria for 
“possible PART” (Aβ phases 1–2) were included with the 
remainder of AD subjects, given the presence of concomi-
tant tau and Aβ pathology in these individuals [11].

Table 1  Summary of n = 247 
case samples

Tau stage N Female Male Aβ phase Average age Age range

Definite primary age-related tauopathy (PART)
 1b 24 11 13 0.0 39 14–55
 I 32 12 20 0.0 48 21–66
 II 40 25 15 0.0 65 41–83
 III 27 10 17 0.0 78 61–94
 IV 11 4 7 0.0 83 66–94

Alzheimer’s disease (AD)
 I 3 3 0 1.0 63 55–72
 II 17 5 12 1.9 72 45–85
 III 30 15 15 2.1 80 61–93
 IV 24 15 9 2.6 83 68–94
 V 26 15 11 3.3 80 62–97
 VI 13 7 6 3.9 81 70–90
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In the present study, 18 cases displayed coincident argy-
rophilic grain disease (AGD). Care was taken to exclude 
other non-AD tauopathies, including progressive supranu-
clear palsy, Pick’s disease, and corticobasal degeneration 
(Suppl. Tables 3 and 4). In addition, all cases were also 
immunostained and staged for sporadic Parkinson’s disease 
(PD), as described elsewhere [7]. A total of 18 cases showed 
coincident α-synuclein-positive Lewy pathology (Suppl. 
Tables 3 and 4). Two cases displayed coincident AGD and 
Lewy pathology.

From each case, including negative controls, 4 mm punch 
biopsies were collected by K.D.T. from unstained sections of 
the locus coeruleus (LC); the transentorhinal cortex (TRE) 
and entorhinal cortex (EC) (two separate adjacent punches 
were taken from this combined region, termed TRE/EC, for 
seeding analyses); the superior temporal gyrus (STG); and 
the primary visual cortex (VC) [8] with a punch biopsy tool 
(Kai Industries Co, Ltd. Japan) (Suppl. Fig. 2a–f). To avoid 
cross contamination of seeding activity between individu-
als and regions, punch biopsy tools were used only once 
for each sample. Samples were encoded and all subsequent 
preparation and seeding assays were performed in a blinded 
fashion. Tissue punches were stored in 1× TBS at 4 °C until 
use. Samples were transferred to 100 μL of 1× TBS with 
protease inhibitors (Sigma Aldrich complete protease inhibi-
tor, EDTA free), and water-bath sonicated in PCR tubes for 
120 min under 50% power at 4 °C (Qsonica Q700 power 
supply, 431MPX microplate horn, with chiller).

Transduction of biosensor cell lines

Biosensor cells were plated at 25,000 cells per well in 
96-well plates. After 18 h, cells were transduced with human 
tissue homogenates as previously described [32, 35]. Sam-
ples were added to Opti-MEM (Thermo Fisher Scientific) 
and incubated for 5 min (3.3 μL lysate with 6.7 μL of Opti-
MEM per well). Lipofectamine was incubated with Opti-
MEM (1.25 μL Lipofectamine with 8.75 μL Opti-MEM per 
well) for five minutes. Lipofectamine complexes were then 
mixed with samples and incubated for 20 min prior to addi-
tion to biosensor cells. Samples were assessed in triplicate. 
Cells were kept at 37 °C in a humidified incubator for 48 h, 
and subsequently dissociated with trypsin and prepared for 
analysis by flow cytometry.

Flow cytometry and analysis of seeding activity

Biosensor cell lines were harvested with 0.05% trypsin, 
and quenched with media (DMEM + 50% FBS, 1% Pen/
Strep, 1% Glutamax). Cells were spun at 500 × g and resus-
pended in 2% PFA in 1× PBS. Cells were subsequently spun 
and resuspended in flow buffer (HBSS + 1% FBS + 1 mM 
EDTA) and stored for less than 24 h prior to performing flow 

cytometry. Flow cytometry for all samples was performed 
using a BD Biosciences LSR Fortessa. Flow cytometry 
data were analyzed as previously described [33]. Seeding 
activity was calculated as (percentage of FRET-positive 
cells) × (median fluorescence intensity), which was nor-
malized to negative control samples (tau KO mouse brain).

Semiquantitative tau histopathology analysis

Individual microscopic slides from each case were staged 
for AD-associated lesions by H.B. prior to decoding and 
analysis of the corresponding punch biopsies made from 
adjacent unstained tissue sections (S.K., T.T.). The LC, 
TRE/EC, STG, and primary VC were assessed as follows: 
0 = no detectable AT8-immunoreactivity, (+) = at least one 
AT8-immunopositive axon and/or cell soma, + = mild AT8-
immunopositive pathology, ++ = moderate AT8-immuno-
reactive pathology, +++ = severe AT8-immunoreactive 
pathology. AGD was assessed as follows: 0 = no detectable 
AT8-immunoreactivity, 1 = mild pathology, 2 = moderate 
pathology, 3 = severe pathology.

Statistical analyses

All samples collected by punch biopsy in Ulm were blinded 
to neuropathological stage prior to performing seeding assay 
analyses in the Diamond laboratory. All samples from an 
individual brain region were assessed in parallel with tau 
KO mouse brain samples. A stringent seeding threshold was 
set at 4 standard deviations (SD) above the average signal 
obtained from negative control tau KO mouse brain sam-
ples. Flow cytometry gating and analysis of seeding activ-
ity were completed prior to the decoding and interpretation 
of seeding results. All statistical analysis was performed 
using GraphPad Prism. Kruskal–Wallis one-way analysis 
of variance (ANOVA) with Dunn’s multiple comparisons 
test was performed to compare seeding between tau stages 
and control tau KO samples within each brain region. A 
K-W ANOVA was also performed to compare PART and 
AD subjects at NFT I–IV for each brain region. The TRE/EC 
and LC were directly compared to tau KO control samples 
by K-W ANOVA. Spearman r correlation was calculated for 
correlation of seeding activity between each brain region.

Results

Reproducible seeding activity in adjacent sections

We previously developed a protocol to compare seeding 
activity from fixed brain section punch biopsies in mice with 
AT8 immunostaining in adjacent tissue sections [29]. To 
verify the reliability of this method in the human brain, we 
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compared seeding activity in two adjacent 4 mm punch biop-
sies taken from the combined TRE/EC region in individual 
AD and putative PART fixed brain samples. We homog-
enized samples using sonication, and transduced lysate into 
previously described biosensor cells [24]. We then quantified 
tau seeding based on the degree of intracellular aggrega-
tion measured by FRET flow cytometry, relative to brain 
samples from tau KO mice [24, 29]. In these studies, we set 
a highly stringent threshold of 4 SD over background as a 
“positive” signal. In the present study, we observed good 
correlation between adjacent punch biopsy samples (n = 247 
cases, r = 0.90, p < 0.0001) (Fig. 1).

Seeding increases with higher tau stages in AD 
and PART 

Next we assessed seeding activity in a blinded fashion at 
progressive tau stages. We compared cases classified as the 
recently defined “definite primary age-related tauopathy” 
(PART, cortical pretangle stage 1b and NFT stages I–IV, 
Aβ phase 0) with AD cases (AD, NFT stages I–VI, Aβ 
phase ≥ 1). 29% of stage 1b subjects and over 50% of NFT 
stage I subjects displayed seeding activity in the TRE/EC 
punches (Fig. 2a). In contrast, at stage 1b, a mild AT8 sig-
nal was present in the LC and in single or a few pyramidal 
cells in the TRE. In the LC biopsy punches, 8% of subjects 
displayed a small degree of tau seeding activity (Fig. 2b). 
The TRE/EC demonstrated significant seeding activity com-
pared to tau KO control samples at stage 1b, whereas the 
LC did not display significant seeding activity at this stage 

(p < 0.0001 for TRE/EC, ns for LC). Further, we detected 
robust seeding activity in the TRE/EC in over 90% of sub-
jects at NFT stage II or higher (Fig. 2b). Seeding in this 
brain region peaked by NFT stage IV and remained high in 
later disease stages (Fig. 2b).

When comparing all tau stages to tauKO control sam-
ples for each brain region, the TRE/EC and LC displayed 
significant seeding activity prior to the STG and primary 
VC. However, in the STG, where AT8 pathology in cortical 
projection neurons does not develop until NFT stage V, we 
detected seeding activity at NFT stage III in over 50% of 
individuals (Fig. 2c). Similarly, 33% of subjects exhibited 
seeding activity in the primary VC as early as NFT stage 
III, although AT8 pathology in cortical nerve cells typically 
develops in this brain region only during the latest stages 
of AD (Fig. 2d). Seeding in these regions was significantly 
above tau KO samples as early as tau stage III. Thus, the 
seeding assay detects tau pathology prior to that which can 
be visualized by AT8 IHC in brain regions, such as the STG 
and primary VC. Further, our data are inconsistent with the 
LC as the origin of seeding in AD and PART, as the TRE/
EC shows significant seeding prior to the LC, which did 
not exhibit robust and consistent seeding activity until NFT 
stages III–VI.

Notably, we detected no difference in tau seeding activity 
in the TRE/EC between AD and putative PART subjects at 
NFT stages I–IV (p > 0.05, one-way ANOVA). As for AD, 
PART subjects also displayed positive seeding activity in 
brain regions, such as the superior temporal gyrus and pri-
mary visual cortex in NFT stages II, III, and IV, despite 
the absence of AT8-positive NFT pathology. PART and 
AD exhibited similar overall patterns of progression and 
levels of tau seeding activity despite the differences in Aβ 
pathology.

We examined seeding activity in samples that contained 
concomitant argyrophilic grain disease (AGD), Lewy pathol-
ogy, or both (Suppl. Fig. 3a–d, Suppl. Tables 3 and 4). Tau 
seeding was robustly positive in the TRE/EC of cases with 
concomitant AGD pathology in both PART and AD cases 
(Suppl. Fig. 3a). This trend was not observed in other brain 
regions (Suppl. Fig. 3b–d). Coincident Lewy pathology did 
not appear to enhance tau seeding activity.

Tau seeding vs. AT8 histopathology

NFT staging is performed by determining the presence of 
an AT8 signal across multiple brain regions [8, 25], but 
direct comparison between AT8 IHC and tau seeding in 
AD required blinded analysis of an AT8 signal in individual 
brain regions. Thus, we used AT8 to stain 100 µm brain 
sections immediately adjacent to those used for the seed-
ing assay. We scored AT8-positive phospho-tau pathol-
ogy on a semiquantitative scale (see “Methods” section). 

Fig. 1  Tau seeding assay reliably detects tau aggregate pathol‑
ogy in formaldehyde‑fixed tissue from neuropathologically staged 
cases. Seeding activity from adjacent punch biopsies correlated sig-
nificantly with one another (n = 247, p < 0.0001). Two adjacent punch 
biopsies were taken from the TRE/EC region and tested for phos-
pho-tau seeding activity. Seeding activity correlated well between 
punches. Spearman r and p values are displayed on the graph
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We then plotted seeding activity against the assessment of 
AT8-positive IHC in the LC, TRE/EC, STG, and primary 
VC (Fig. 3a–d). We observed AT8-positive pathology in 
the absence of detectable seeding, to some extent in the 
TRE/EC (Fig. 3a), and particularly in the LC (Fig. 3b). We 
also observed tau seeding in the absence of an AT8 signal, 
most notably in the STG and primary VC (Fig. 3c, d). How-
ever, the vast majority of samples with strong AT8-positive 
pathology also displayed robust seeding activity. These data 
were consistent with our prior observation that tau seeding 

anticipates AT8 IHC in cortical regions that typically score 
positive at late NFT stages [19].

TRE/EC seeding precedes tau pathology in other 
brain regions

To further evaluate the pattern of progression of aggregated 
tau in different brain regions, we correlated tau seeding 
between the TRE/EC and other brain regions for individual 
subjects (Fig. 4). The TRE/EC exhibited seeding activity 
when other regions did not, consistent with the idea that 

Fig. 2  Tau seeding activity across brain regions. Tau seeding activ-
ity and tau staging was performed blinded for each of four brain 
regions in n = 247 subjects: TRE/EC, LC, STG (Brodmann Area 
22), and primary VC (Brodmann Area 17, striate area). For cortical 
pretangle stage 1b, samples were taken only from the LC and TRE/
EC. a Seeding activity was first observed in the TRE/EC at stage 
1b, and increased several-fold at later NFT stages. Every individual 
examined showed positivity in this region by NFT stage IV. b Seed-
ing in the LC was first detectable at NFT stage I in a small num-
ber of cases. Most samples exhibited tau seeding by NFT stage III. 
c Seeding activity in the STG was observed in a limited number of 

cases by NFT stage II and increased at later stages. d The primary 
VC displayed positive seeding activity as early as NFT stage III, but 
approximately 15% of the individuals sampled did not show positiv-
ity even at NFT stage VI. KO = tau knockout mouse brain. Thresh-
old values were set at 4SD above tau KO negative control samples. 
Kruskal-Wallis one-way ANOVA comparing TRE/EC tau stage 1b vs 
tau  KO controls and LC stage 1b vs tau  KO controls demonstrated 
significant seeding activity only in the TRE/EC (++++ = p < 0.0001). 
Additional Kruskal-Wallis ANOVA analysis was performed by com-
paring tau stages within each brain region to tau KO controls. Error 
bars = S.E.M, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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the TRE/EC rather than the LC is the first region to develop 
pathogenic forms of tau. When seeding activity was com-
pared between the LC, STG, and primary VC, we observed 
a hierarchical pattern, with seeding developing in the LC 
and FTG without a strong AT8 signal in the VC (Suppl. 
Fig. 4a–c).

Accumulation of tau seeding within subjects

To examine the progression of tau pathology across all brain 
regions, we created a heat map of tau seeding activity for 
each subject studied (Fig. 5). The TRE/EC reliably devel-
oped seeding first in AD and PART cases, and seeding inten-
sity increased in all subjects at later NFT stages. Moreover, 
we observed a clear hierarchy within individual subjects, 
with the highest seeding typically appearing in the TRE/

EC. We saw no consistent increase in seeding within the LC 
until NFT stage III. In contrast, we consistently observed 
early stage seeding in the TRE/EC and late stage increases 
in seeding in the STG. Several PART subjects also displayed 
seeding activity in the primary VC as early as NFT stage III, 
and we observed a clear gradient of seeding activity across 
individual subjects at increasing stages. Despite a similar 
pattern and degree of seeding in AD and PART, a larger 
number of AD subjects had robust seeding in the primary 
VC at NFT stages III and IV (Fig. 5). However, this differ-
ence was not statistically significant at this number of cases 
(p > 0.05, one-way ANOVA).

Fig. 3  Tau seeding activity versus semiquantitative AT8 histo‑
pathology. Seeding activity and AT8 histopathology were each per-
formed blinded, and the results compared. a Subjects with a range of 
AT8 tau pathology (0, (+), +, ++, +++) displayed robust seeding 
activity in the TRE/EC. Subjects with a higher degree of AT8 signal 
displayed higher levels of seeding activity. b Tau seeding activity in 
the LC was compared to AT8 signal. Subjects with mild to moderate 

tau AT8 pathology (levels (+) to ++) had a range of seeding activi-
ties, and a substantive number exhibited no seeding activity despite 
AT8 signal. c Seeding in the STG was detectable prior to AT8 pathol-
ogy in several AD and PART brain samples. d Seeding in the primary 
VC could be detected prior to an AT8 signal in multiple AD and 
PART brain samples. Note: PART subjects only spanned NFT stages 
1b-IV
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Discussion

To test fundamental ideas about AD and PART, we have 
used a highly sensitive and specific tau biosensor assay to 
measure seeding activity quantitatively in formaldehyde-
fixed brain tissues ~ 100 µm from adjacent sections staged 
by classical AT8 IHC. There has previously been uncertainty 
about the origin of AD pathology and whether it arises in 
the LC or the TRE/EC. Similarly, it remains unclear whether 
AD and PART constitute distinct neuropathological pro-
cesses or are variants of the same disorder. Finally, it has 

Fig. 4  Correlations of tau seeding activity across brain regions. 
a Tau seeding activity was typically observed in the TRE/EC before 
seeding in the LC and was higher in this brain region for the major-
ity of subjects. Spearman r and p values are displayed on the graph. 
b Seeding typically appeared first in the TRE/EC and at higher levels 
than in the STG or c  the primary VC. Spearman r and p values are 
displayed on the graph

Fig. 5  Tau seeding activity across multiple brain regions for 
individual AD and PART cases. Cases were categorized as AD vs. 
PART based on neuropathological criteria. Samples from each indi-
vidual were directly compared across multiple brain regions. A con-
tinuous heat map of tau seeding activity (logarithmic scale) was plot-
ted for each case and organized by staging and disease entity (AD, 
PART). AD subjects were arranged within each stage from low to 
high Aβ. Gray boxes represent unavailable samples. Tau seeding in 
the TRE/EC increased first and remained high for each disease stage. 
Subjects typically displayed less seeding in the LC, STG and primary 
VC vs. the TRE/EC. The level of tau seeding in these secondary brain 
regions was higher at later tau stages. Cases categorized as “definite 
PART” (Aβ phase 0) displayed a similar trend for the spatiotempo-
ral progression of seeding activity when compared to AD. Grey boxes 
indicate absent samples
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not been definitively tested whether tau seeding activity 
in human brain anticipates subsequent NFT pathology, as 
would be predicted by the prion model.

Recent work proposes that AD and PART may be differ-
ent diseases [11]. PART cases are defined as having minimal 
Aβ pathology or lacking it entirely, and generally feature 
a relatively limited spread of tau pathology into cortical 
regions beyond the TRE/EC and hippocampus [11]. In this 
study, we did not observe a pattern of tau histopathology in 
AD (i.e., with coincident Aβ pathology, n = 113) that was 
clearly distinct from cases considered to represent “defi-
nite PART” (Aβ phase 0, n = 134), and seeding activity was 
similar in both groups across the TRE/EC, LC, STG, and 
primary VC. With one exception (primary visual cortex at 
NFT stage IV), we observed a similar pattern of progression 
and seeding activity for both groups across all neuropatho-
logical stages despite different levels of Aβ deposition. This 
contrasts with a recent report of higher seeding activity in 
the presence of plaque pathology [3]. This may reflect that 
we sampled identical regions from the same fixed tissue 
block (separated by ~ 100 µm) instead of separate fresh and 
formaldehyde-fixed tissues, and that we evaluated a larger 
number of cases (n = 247 vs. n = 11). It remains unknown 
whether PART and AD might arise from distinct tau prion 
strains. Future work that examines the tau seed conforma-
tions (i.e., strains) present in these cases will help elucidate 
whether PART constitutes a separate disease entity [11] or 
represents a prodromal form of AD [14, 15].

Despite the  early AT8-positive signal, we typically 
observed tau seeding activity in the LC only after it was 
already prominent in the TRE/EC, i.e., at later NFT stages 
(IV–VI). This is not consistent with the LC as the origin of 
tau seeding pathology. Instead, our data are consistent with 
the idea that tau seeds spread from the TRE/EC to the LC 
and then to more distant cortical regions, such as the STG 
and, subsequently, the primary VC.

We have attempted to combine two orthogonal meas-
ures of pathology: classical IHC and a cell-based assay that 
depends on detection of bioactive tau seeding activity. Seed-
ing and phospho-tau pathology did not uniformly correlate. 
For example, we observed AT8-positivity in the LC in the 
absence of seeding activity and seeding activity in the STG 
and primary VC in the absence of clear NFT pathology. In 
this study, we only examined tau seeding activity in brain 
regions that had been previously described to accumulate 
phospho-tau pathology by AT8 IHC, and thus were biased 
towards brain regions “classically” affected with NFTs. 
Indeed, other brain regions may also show seeding activ-
ity in the absence of AT8-positivity. To fully understand 
the relationship of seeding to pathology in AD, testing of 
multiple brain regions across NFT stages will be required. 
Interestingly, we note that in our prior study of tau seed-
ing activity in fresh frozen tissue of subjects with AD, we 

observed seeding activity in the cerebellum of 3/6 subjects 
with late stage AD (a region that virtually never shows overt 
NFT pathology) [19].

In testing various ideas about the origins and progression 
of AD and PART, this work is the first to combine a bioassay 
of tau seeding activity directly with classical histopathol-
ogy on adjacent, formaldehyde-fixed tissue sections. We 
observed no discernible differences between AD and PART 
with regard to AT8 immunostaining at NFT stages I–IV. 
We also found no evidence to support the idea that an early 
AT8 signal in the LC indicates that this region is the initial 
source of pathogenic seeding in AD. Instead, our data are 
consistent with the TRE/EC as the first site that develops 
tau seeding activity. Finally, we clearly observed that tau 
seeding activity anticipates detectable NFT pathology in the 
STG and primary VC, which is consistent with the prion 
model of transcellular propagation of tau seeds as a driver 
of disease progression.
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