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Objective: To date, no vascular model to analyze frictional forces between

stent retriever devices and vessel walls has been designed to be similar

to the real human vasculature. We developed a novel in vitro intracranial

cerebrovascular model and analyzed frictional forces of three stent

retriever devices.

Methods: A vascular mold was created based on digital subtraction

angiography of a patient’s cerebral vessels. The vascular model was

constructed using polydimethylsiloxane (PDMS, Dow Corning, Inc.) as a

silicone elastomer. The vascular model was coated on its inner surface with

a lubricating layer to create a low coe�cient of friction (∼0.037) to closely

approximate the intima. A pulsatile blood pump was used to produce blood

flow inside the model to approximate real vascular conditions. The frictional

forces of Trevo XP, Solitaire 2, and Eric 4 were analyzed for initial and maximal

friction retrieval forces using this vascular model. The total pulling energy

generated during the 3 cm movement was also obtained.

Results: Results for initial retrieval force were as follows: Trevo, 0.09 ± 0.04N;

Solitaire, 0.25 ± 0.07N; and Eric, 0.33 ± 0.21N. Results for maximal retrieval

force were as follows: Trevo, 0.36 ± 0.07N; Solitaire, 0.54 ± 0.06N; and Eric,

0.80± 0.13N. Total pulling energy (N·cm) was 0.40± 0.10 in Trevo, 0.65± 0.10

in Solitaire, and 0.87 ± 0.14 in Eric, respectively.

Conclusions: Using a realistic vascular model, di�erent stent retriever devices

were shown to have statistically di�erent frictional forces. Future studies using

a realistic vascular model are warranted to assess SRT devices.

KEYWORDS

acute ischemic stroke, vascular model, frictional retrieval force, Trevo XP, Solitaire 2,

Eric 4
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Introduction

Acute ischemic stroke (AIS) is one of the leading causes

of mortality in the world and is associated with a high rate of

morbidity (1). Despite initial poor outcomes for stent retriever

thrombectomy (SRT) in three early trials in 2013 (2–4), five

key randomized controlled studies in 2015 (5–9) demonstrated

good outcomes for SRT relative to controls. As a consequence

of these successful trials and later validation studies, SRT is now

considered the gold standard technique for patients with large

vessel occlusion AIS (10).

Although SRT is an established technique, it still carries a

risk of complications such as subarachnoid hemorrhage and

arterial dissection (11). During retrieval, frictional resistance

can stretch vessels and cause dissection or rupture (12, 13).

Theoretically, different SRT devices, such as Trevo, Solitaire, and

Eric, exert different frictional forces on vascular architecture,

which could lead to different rates of associated complications,

but evidence on this is still limited. Animal models have

provided some evidence on this, but the implications of

frictional force effects of SRT devices in humans are limited due

to differences in vessel size and curvature (14). Artificial vascular

models have been introduced to explore these issues. There have

been several experimental models with a shape similar to that

of the human vasculature, although they did not experiment

on frictional force in stent retrievers (15–18). However, these

models did not apply a human-like inner surface, which is not

suitable for measuring the friction force of a stent. To date, there

has been no vascularmodel to analyze interaction forces between

stent retriever devices and artificial vessel walls that is designed

to be similar to the real human vasculature.

We developed a novel in vitro intracranial cerebrovascular

model designed to quantitatively estimate friction forces of stent

retriever devices. In this pilot study, we compared the friction

forces for three commercially available stent retriever devices,

the Trevo XP, the Solitaire 2, and the Eric 4.

Materials and methods

This study received approval from our local institutional

review board.

Preparation of vascular mold for artificial
vascular model

To prepare the model, a patient’s cerebral blood vessels were

visualized using digital subtraction angiography (DSA), and the

vascular model was constructed based on the images. First,

vascular images were formatted with a virtual reality modeling

language (VRML) file. Once acquired, the images were imported

into Mimics
R©

software (Materialize, Inc.) and converted into

a stereolithography (STL) file (Figure 1A). The STL file format

was then imported into Meshmixer
R©

software (Autodesk,

Inc.). Following that, the shape, size, and configuration of the

vascular model were modified to the desired shape (Figure 1B).

A standardized shape of the cerebral vessel was molded from

the proximal internal carotid artery to the M2 segment of the

middle cerebral artery. Finally, the 3D substrate was printed

with an acrylonitrile butadiene styrene (ABS) resin utilizing

a fused deposition method (FDM) 3D printer (uPrint
R©

SE

Plus, Staratasys, Inc.) (Figure 1C). Then, the vascular 3D

substratemade of ABS resin was smoothened with acetone for

30 s (Figure 1D).

Fabrication of artificial vascular model

The artificial vascular model was constructed using a replica

molding technique with the printed vascular 3D substrate. First,

the vascular model was dip-coated three times with a silicone

elastomer. Polydimethylsiloxane (PDMS, Dow Corning, Inc.) as

a silicone elastomer was thoroughlymixed in a plastic beaker at a

10:1 weight ratio of base and curing agent, respectively. For one-

time dipping, a one-time curing process was performed. Before

curing, the model was air-dried for 10min to form an even

thickness. The attainable membrane thickness was controlled to

determine the withdrawing velocity. The withdrawing velocity

was precisely adjusted using a dip coating system consisting of a

Z-axis motorized stage and a programmable motion controller.

The membranes dip-coated with PDMS were cured in an 80◦C

oven for 40min. Finally, a hollow artificial vascular model

composed of only PDMS film was obtained by dissolving the

mold in acetone with sonication for 2 h (Figure 1E). The PDMS,

which is stable in transparent and diverse environments, acts as

a media with an elastic modulus (∼3 MPa) similar to that of the

original blood vessel (19).

Lubricated coatings inside artificial
vascular model

The artificial vascular model was coated on its inner

surface with a lubricated layer to satisfy all the conditions

necessary for stent retriever simulation. For an even and thin

lubricant coating of the inner surface of the tortuous vascular

model, we used a coating method of polymerizing a hydrogel

pre-gel solution (10% acrylamide in DI water, containing

hydrophilic photocurable initiators [1% Irgacure 2959]) with

ultraviolet (365 nm) light (20). A more detailed fabrication

process and inner surface coating method of our vascular model

were introduced in previously published papers (20, 21). The

lubricated layer was determined to have a low coefficient of
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FIGURE 1

The process of creating an artificial vascular model. (A,B) Using a source image of 3-dimensional rotational digital subtraction angiography,

format the design of the vascular model suitable for 3d printing. (C,D) The mold was printed with an acrylonitrile butadiene styrene resin and

smoothened with acetone. (E) A transparent and hollow vascular model was made by dip-coating methods with silicone elastomer. (F) After a

lubricating coating was applied on the inner surface, it was finally applied to the stent retrieval experiment.

FIGURE 2

Stent types used in this experiment: Solitaire 2 (left), Eric 4

(middle), Trevo XP (right). Solitaire and Trevo are cylindrical,

while Eric is a series of spheres.

friction (∼0.037) similar to that of native tissues to closely

approximate the intima (22). Additionally, this provided an

environment for pulsation using blood-like liquids and external

stimuli during the stent retrieval test (Figure 1F).

Experimental setup to analyze pulling
load of stent retrievers

In order to use the created model in the experiment, it was

cut leaving only the ICA, proximalM2, and proximal A2 regions.

The mean internal diameter of the vascular model was 5mm for

ICA, 2.7mm for M1, and 2.5mm for M2. The frictional forces

of Trevo XP (4 x 20mm, Stryker, Kalamazoo, Michigan, USA),

Solitaire 2 (4 x 20mm, Medtronic, Irvine, California, USA)

and Eric 4 (4 x 18mm, Microvention, Aliso Viejo, California,

USA)were analyzed in this experiment (Figure 2). All stents

were advanced to the M1 segment of the vascular model before

retrieval. After full expansion of the stent in the M1 segment, a

motorized traction device retrieved the stent. A load cell (1 kg,

BONGSHIN, Inc.) and digital indicator (BS-205, BONGSHIN,

Inc.) were used to measure the friction force. The load cell was

fixed on a motorized stage. The pulling load was measured using

a data acquisition board (USB-6009, National Instruments, Inc.).

As the motorized stage moved in a proximal direction with a

velocity of 1 mm/s, the stent retriever connected to the load

cell was withdrawn. The friction force was measured from the

time the motorized stage began to move until the stent exited

the internal carotid artery. The inside of the silicon vascular

model was filled with saline solution, and a pulsatile blood

pump (Model 1405 PBP, Harvard Apparatus, Inc.) was used

to generate a pulsating flow with approximately physiological

conditions (5ml stroke volume; 60/min stroke rate) (Figure 3).

Two forces were measured in this experimental study. The first

was the initial force, which was defined as the force at which
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the stent begins to move within the artificial silicon vessel.

The second was the maximum force, which was defined as the

force at the point of maximum resistance during the entire

retrieval process (Figure 4). The total pulling energy generated

while the motorized stage moved 3 cm was calculated using the

measured area of each graph. Retrieval attempts were repeated

and measured 10 times for each stent device.

Statistical analysis

Frictional resistance values for each stent were presented as

mean ± SD. Frictional resistance values were compared and

analyzed using the Dunnett T3 test. Results were considered

statistically significant for P < 0.05.

Results

Table 1 showed the results of the force retrieval experiment.

For both the initial and maximal retrieval forces, Trevo

demonstrated the lowest resistance values and Eric

demonstrated the highest resistance values. Results for the

initial retrieval force were as follows: Trevo, 0.09 ± 0.04N;

Solitaire, 0.25 ± 0.07N; and Eric, 0.33 ± 0.21N. Results for the

maximal retrieval force were as follows: Trevo, 0.36 ± 0.07N;

Solitaire, 0.54 ± 0.06N; and Eric, 0.80 ± 0.13N (Figure 5). The

maximum force did not occur at the beginning of the retrieving

process for any device. Results for total pulling energy (N·cm)

were 0.40 ± 0.10 in Trevo, 0.65 ± 0.10 in Solitaire, and 0.87 ±

0.14 in Eric (Figure 6).

Differences between the stent retrievers were also

determined. For initial resistance, the differences were as

follows: Solitaire – Trevo, 0.1583, p < 0.001; Solitaire – Eric,

−0.0756, p = 0.699; Trevo – Eric, −0.2338, p = 0.035. For

maximal resistance, the differences were as follows: Solitaire –

Trevo, 0.1889, p < 0.001; Solitaire – Eric, −0.2615, p = 0.001;

Trevo – Eric, −0.4505, p < 0.001. For total pulling energy, the

differences were as follows: Solitaire – Trevo, 0.2485, p = 0.001;

Solitaire – Eric, −0.2218, p = 0.001; Trevo – Eric, −0.4703,

p=0.001. Significant differences were shown for all comparison

values except for the initial force between Solitaire and Eric. The

greatest differences in both initial and maximum forces were

between the Trevo and Eric devices.

Discussion

This is the first study to our knowledge to investigate

frictional forces of SRT devices in a realistic vascular model.

The main finding of our pilot study was that different

stent retriever devices have statistically significant differences

in associated frictional forces, which could affect different

rates of complications in real clinical practice. Future studies

using a realistic vascular model are warranted to assess

more detailed areas of the vasculature and evaluate any

associations between frictional forces using SRT devices and

real-world complications.

To date, several studies have analyzed in vitro stent retrieval

(23–25). However, the artificial vascular models used in these

studies were designed to have only simple curvatures that were

not similar to real cerebral vascular structures. To determine

how stents work in the human cerebral artery, it is necessary

to create a more similar vascular environment. Therefore, we

attempted to develop a cerebral artery model using 3d printing

based on a real human cerebral angiogram. In order to realize

elasticity similar to that of an actual blood vessel, silicone

elastomer-hydrogel skin multilayers were used (19, 26, 27).

In addition, an inner hydrogel coating was used to provide

lubrication similar to the endothelium of real human blood

vessels (22, 28). During the stent retriever test, blood flow

similar to human physiology was also realized using a pulsatile

blood pump.

The three devices we investigated regarding their frictional

force were the Trevo XP, the Solitaire 2, and the Eric 4. The Trevo

XP is a wire-mounted non-detachable stent with a specialized

strut form and cut surface that minimizes the effects of radial

forces on vascular walls (29). The solitaire stent has a more

rigid stent strut, making it more difficult to navigate within

vessels (23). This feature could lead to a higher frictional

force. Eric is an embolus retriever with an interlinked case

and a geometrical design different from other stent retrievers.

Gruber et al. reported that intraprocedural complications were

generally low for all three stent retrievers (30). Previously, Arai

et al. (13) evaluated vascular damage caused by stent retriever

thrombectomy devices using a histological examination in an

animal model. In that study, the authors compared the Solitaire

FR 4mm and the Trevo ProVue. They identified vascular

damage after stent retrieval by observing intimal thickening.

They concluded that the Trevo appeared to induce less vascular

damage compared to the Solitaire FR. Likewise, differences in

intimal thickening between devices evaluated in this study are

hypothesized to be due to differences in the structure of the

stents. In accordance with that previous study, our experiments

showed that the Trevo stent had a statistically lower friction

value than Solitaire or Eric.

Similarly, we found Eric had the highest retrieval frictional

force in our experimental study. Interestingly, the contact

surface of Eric to the vessel wall is smaller than the other

retrievers, and this has been offered as an advantage of the device

(31, 32). However, in general, the friction force is independent of

the contact area. Since the frictional force is proportional to the

normal force and the friction coefficient at the contact surface,

regardless of the contact area, it may explain why Eric had the

highest retrieval frictional force, given it exerted the largest radial

force. Machi et al. (23) reported that the radial force of Eric was

the highest in comparison to Trevo and Solitaire. Therefore, our
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FIGURE 3

The setting for measurement of stent retrieval frictional force. A circulation system including a pulsatile pump was connected to the vascular

model. The catheter was mounted in the vascular model and the proximal wire of the stent was fixed to the gripper. The force generated by

pulling the proximal wire of the stent was measured using an automatically motorized stage with a fixed load cell.

FIGURE 4

One of several graphs measuring the pulling force according to

the movement distance of the motorized stage for each stent.

The value when the stent starts to move is regarded as the initial

force, and the highest value is considered as the maximum force

while the stent is moving. The graph shows that Eric’s pulling

force is the highest and fluctuates widely. *Indicates the

maximum force of each stent.

experimental results on the difference in pulling force for each

stent seem appropriate.

On the other hand, the maximum pulling force during

the experiment was not the point at which the stent moved.

This result was contrary to common sense that the maximum

static friction force is higher than the kinetic friction force. We

speculate that the curvature of the vascular model may have

influenced the pulling force. The frictional force can change

TABLE 1 Retrieval frictional forces associated with three stent

retriever devices.

Stent Initial

force (N)*

Maximum

force (N)**

Total pulling

energy

(N·cm)**

Trevo 0.09± 0.04 0.36± 0.07 0.40± 0.10

Solitaire 0.25± 0.07 0.54± 0.06 0.65± 0.10

Eric 0.33± 0.21 0.80± 0.13 0.87± 0.14

*By the Dunnett T3 test, P < 0.001 in Trevo – Solitaire, P = 0.035 in Trevo – Eric, P =

0.699 in Solitaire – Eric.

**P < 0.05 in all comparisons between stents.

according to the curvature (33). Our vascular model has several

curvatures, and frictional force may have changed according to

the changed vascular curvature as the stent moved. Since the M1

of our vascular model has a small curvature, we speculate that a

higher frictional force can occur compared to the initiation of

stent retrieval at the high curvature after passing through the

M1. Additional studies should be considered to confirm a clear

correlation between the change in pulling force according to the

curvature of blood vessels.

Our study has several limitations. First, it was in vitro study.

We designed an artificial plastic vascular model. Although it

was designed based on an actual human vessel, interaction

with the inner surface of the model might not be comparable

with the human endothelium. Second, it is difficult to identify

exactly how the results of this experiment are related to an

actual clinical environment. Together with the frictional force

of stent retrievers, there are many factors to affect the injury
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FIGURE 5

Initial and maximum pulling force comparison for three stents.

FIGURE 6

Total pulling energy comparison for three stents.

to the surrounding vessel in the real SRT practices, such as

vessel diameter, presence of underlying atherosclerotic stenosis,

anatomic tortuosity, clot characteristics, and etc. Further studies

on artificial vessel models considering those variables seem

warranted to overcome these limitations.

Conclusion

We experimentally found that the retrieving frictional force

is different depending on the stent retriever; the Trevo XP stent

showed the lowest frictional force during retrieval and the Eric

4 showed the highest. A realistic vascular model was used for

this experiment. Although this was a pilot study for this vascular

model, we believe this experiment shows the value of such

realistic models for future studies.
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