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BACKGROUND: Successful introduction of new anticancer agents into the clinic is often hampered by a lack of qualified biomarkers.
Studies have been conducted of 17 ELISAs representing a potential panel of pharmacodynamic/predictive biomarkers for drugs
targeted to tumour vasculature.
METHODS: The fit-for-purpose approach to method validation was used. Stability studies were performed using recombinant proteins
in surrogate matrices, endogenous analytes in healthy volunteer and cancer patient plasma. The impact of platelet depletion was
investigated.
RESULTS: Method validation focused on measuring precision and showed that 15 of the 17 assays were within acceptable limits.
Stability at �801C was shown for 3 months with all recombinant proteins in surrogate matrices, whereas under the same conditions
instability was observed with KGF in platelet-rich and platelet-depleted plasma, and with PDGF-BB in platelet-depleted plasma from
cancer patients. For measurement of extracellular circulating analytes, platelet depletion should be conducted before freezing of
plasma to prevent release of PDGF-BB, FGFb and VEGF-A. A protocol was developed to remove 490% platelets from plasma
requiring centrifugation at 2000 g for 25 min.
CONCLUSIONS: These studies highlight the need for assay validation and crucial assessment of sample handling issues before
commencement of biomarker analysis in clinical trials.
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Angiogenesis, the formation of new blood vessels from existing
vasculature, is required for tumour growth (Folkman, 1971, 1990)
and is orchestrated by coordinated release of multiple signals from
tumour, endothelial and stromal cells depending both on tumour
type and microenvironment (Bergers and Benjamin, 2003).
Following the hypothesis that inhibition of tumour angiogenesis
may represent a novel approach to treat cancer (Folkman, 1971),
numerous drugs targeting different facets of the angiogenic
process have been developed and evaluated in clinical trials
(Kerbel and Folkman, 2002). However, only a limited number are
FDA-approved for treatment of cancer, including bevacizumab, a
VEGF-specific blocking antibody, and the VEGF receptor tyrosine
kinase inhibitors sorafenib and sunitinib (Heath and Bicknell,
2009; Jain et al, 2009). Many key issues remain unresolved
regarding this class of drug, including the inability to stratify those
patients most likely to benefit (Jain et al, 2009), selection of
optimal dose and schedule, and how best to include vasculature-
targeted agents in drug-combination regimens.

Judicious implementation of multi-modality biomarkers (tissue,
imaging and blood-borne) could potentially enrich selection of
likely responders and allow real-time monitoring of drug effects

(Maruvada and Srivastava, 2006; Cummings et al, 2008). Although
putative biomarkers are being increasingly applied in clinical trials
of angiogenesis inhibitors, many have met with limited success
(Sessa et al, 2008) and few, if any, qualified biomarkers exist for
selecting cancer patients for antiangiogenic therapy (Sessa et al,
2008; Hanrahan et al, 2009; Jain et al, 2009). Imaging biomarkers
have provided useful pharmacodynamic information (O’Connor
et al, 2009), but these are expensive, restricted to clinical trial sites
with specialised expertise and less amenable to comprehensive
serial sampling than blood-based analyses.

Studies using circulating biomarkers of angiogenesis have
produced conflicting and often confusing results and this may
reflect complex biology, differences in antibody versus small-
molecule drugs and/or lack of assay validation (Twardowski et al,
2008; Backen et al, 2009; Treiber et al, 2009). Certainly, assay
validation data in the public domain are scarce. Few studies have
been reported where comprehensive, qualified panels of circulat-
ing factors associated with angiogenesis have been implemented
and consequently any additional power of a large biomarker panel
to predict or report drug effect is unclear. Such studies of
biomarker candidates measured with validated assays are
now warranted to discover and qualify optimised panel(s) of
biomarkers and thus improve the use of antiangiogenic drugs for
cancer treatment.

Method validation constitutes a crucial component in biomarker
research, and it is often the case that a biomarker can fail in the
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clinic not because of the underlying scientific rationale but rather
from poor assay choice and lack of robust validation (Pepe et al,
2001; Bast et al, 2005; Wagner et al, 2007). In this study, validation
studies were conducted on 17 ELISAs representing a panel of
potential pharmacodynamic and/or predicative biomarkers
pertaining to tumour vasculature-targeted drugs. The ‘fit-for-purpose’
approach to biomarker method validation was adopted, including
a faster track element used to explore assay capabilities, with
consideration to issues of stability, impact of platelets, sample
handling and method change (Lee et al, 2005, 2006).

MATERIALS AND METHODS

Single-plex sandwich ELISAs

Seventeen ELISA kits (Quantikine Human - Sandwich ELISA –
Immunoassay; R&D Systems Europe Ltd, Abingdon, UK) repre-
senting a comprehensive panel of putative biomarkers of
angiogenesis were evaluated (see Table 1 for abbreviations). Kit
expiry dates were logged and kits were stored at 2 –81C before use.
Once opened, the kit contents were stored at 2 –81C for up to 1
month. The ELISAs were run essentially according to the
manufacturer’s instructions, with the exception that plates were
all washed using an automated plate washer (Columbus, Tecan
Trading AG, Switzerland) and a standard ELISA wash buffer was
obtained from PEVIVA (Bromma, Sweden). ELISA plates were
analysed using a Dynex MRXII reader using the Revelation
software (version 4.03). Performance of the plate reader was
qualified each month using a Dynex calibration plate certified by
the UK National Physics Laboratory (NPL, Rugby, England).
Lyophilised Quantikine ELISA Kit Controls (QCs; R&D systems)
were stored at 2 –81C before reconstitution at the recommended
concentration using the appropriate Calibrator Diluent pertaining
to each analyte. All QCs were discarded immediately after use.

Multiplex ELISA assays

Mindful of minimising patient sample volume, the Searchlight
Multiplex ELISA system was also included (Aushon BioSystems,
Boston, MA, USA) allowing further validation and a more
comprehensive evaluation of sample stability. Two multiplex
ELISAs were used: a 5-plex comprising VEGFR1, VEGFR2, IL8,
keratinocyte growth factor (KGF) and PIGF, and a 4-plex
comprising platelet-derived growth factor (PDGF-BB), HGF,
FGFb and VEGF-A. Plex expiry dates were logged and plexes
stored at 2– 81C before use. Both assays were used according to the
manufacturer’s instructions and had been subjected to extensive
method validation by our laboratory before this study
(Backen et al, 2009). The plexes were imaged using a SearchLight
Plus CCD (charge-couple device) Imaging System and images
were analysed using the SearchLight Array Analyst software
(version 2.2). The software and camera were subjected to
installation, operational and performance qualification (IQ, OQ
and PQ) for use in clinical trials (Backen et al, 2009).
PQ was performed monthly using a Glowell low-light imaging
standard (UVP, Cambridge, UK; catalogue number GLO-014)
and calibrated annually by SP Technical Research Institute of
Sweden. The standards for each of the nine multiplexed
angiogenesis biomarkers (supplied with the kits) were stored,
diluted and handled as recommended in the manufacturer’s
instructions.

Fit-for-purpose validation of single-plex ELISA assays

The performance of the 17 different single-plex ELISA assays in
terms of precision was determined using quality-control (QC)
samples at three different concentrations corresponding to the low
end, middle and top end of the calibration curve for each analyte
as detailed in Figure 1.

Table 1 Fit-for-purpose method validationa of 17 different ELISAs representing potential biomarkers of antivascular drugs using QC samples

Stage-1: Determine QC precision
(% CV) (n¼ 16 repeat analyses)b

QC concentrations

Stage-2:
Set target acceptance

limits for QCs
Precision

% CV

Stage-3:
Do additional assays pass
QC acceptance criteria

Number of assays
2–3Analyte Low Mid High

CD105 4.83 4.53 8.58 20 Yes
VEGF-A 5.93 8.33 4.72 20 Yes
PlGF 5.68 6.07 5.91 20 Yes
VEGF-receptor-1 (R1) 10.1 12.3 10.9 20 Yes
VEGF-receptor-2 (R2) 5.29 3.15 4.21 20 Yes
Angiopoetin-1 (Ang-1) 2.67 2.98 2.25 20 Yes
Angiopoetin-2 (Ang-2) 7.73 3.17 10.4 20 Yes
TIE-2 4.77 5.04 6.47 20 Yes
VEGF-D 14.0 13.1 7.08 20 Yes
PDGF-BB 11.1 8.86 10.6 20 Yes
FGFb 3.30 3.53 3.75 20 Yes
IL-8 16.2 16.5 6.62 20 Yes
SDF-1a 4.40 4.96 6.25 20 Yes
HGF 15.8 9.39 7.10 20 Yes
Osteopontin (OPN) 6.91 7.52 6.83 20 Yes
KGF 17.6 11.0 5.00 20 No
VEGF-C 11.7 14.4 15.8 20 No

Abbreviations: CV¼ coefficient of variation; FGF¼ fibroblast growth factor; HGF¼ hepatocyte growth factor; IL¼ interleukin; KGF¼ keratinocyte growth factor;
PDGF¼ platelet-derived growth factor; QC¼ quality control; VEGF¼ vascular endothelial growth factor. aFit-for-purpose assay validation was conducted as described in
Figure 1 and essentially consisted of three stages. In the first stage precision in the QCs was determined experimentally. In stage-2, a target CV acceptance limit was set against
which the performance of future assays was evaluated. Stage-3 required that 2–3 additional assays fell within these target CVs for the QCs, to consider the assay valid for analysis
of clinical trials samples. bCV was calculated as a percentage using the following formula: the standard deviation in the 16 replicates divided by the mean value of the 16 replicates,
multiplied by 100.
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QC and batch-to-batch variation

Throughout the duration of the studies, validation experiments
were performed upon introduction of either a new batch of kit(s)
or a new batch of QCs (Figure 1). In either case eight replicates of
high, medium and low QCs were run; the mean value, standard
deviation (s.d.) and coefficient of variation (CV) were determined
and compared with values obtained with the previous batches of
ELISA kits or QCs. A difference of o25% from the mean value was
required to accept the new batch.

Stability of recombinant protein standards in surrogate
matrices

Lyophilised carrier-free recombinant (r) protein standards were
stored at �201C before reconstitution in a surrogate matrix for the
stability studies. The reconstituted r-proteins were spiked at a
mid-range concentration into porcine/bovine plasma and serum
stocks (Scipac, Sittingbourne, UK) and 300-ml aliquots were stored
at room temperature (RT), 41C, �201C or �801C for up to 12
months. At defined intervals samples were retrieved for analysis in
duplicate by single-plex ELISA, with instability being defined as a
significant reduction in concentration (X25%) occurring between
two time points. Freeze –thaw samples were analysed in triplicate
before freezing to �801C and after defrosting at RT for up to three
cycles. Freeze/thaw intolerance was defined as a significant
reduction in concentration of X25%.

Stability of endogenous angiogenesis analytes in human
plasma collected from healthy volunteers

Normal human plasma (prepared in EDTA) from two healthy
volunteers was obtained from Scipac Ltd. Upon receipt the plasma
samples were analysed by multiplex ELISA using eight replicates;
they were then stored in aliquots at �80 1C for 8 months before
re-analysis by multiplex ELISA (n¼ 8). Instability was defined as a

significant reduction in concentration (X25%) between the two
time points.

Stability of endogenous angiogenesis analytes in plasma
collected from colorectal cancer patients

All studies using patient samples were performed under ethical
committee approval and all patients provided informed consent
(REC Ref: 06/Q1406/117). Plasma samples for stability studies were
obtained from five patients with colorectal cancer. Four aliquots
were prepared from each patient sample by different centrifugation
protocols, including platelet-depleted plasma (see below); they
were analysed in triplicate upon receipt by multiplex ELISA and
stored at �801C for 3 months before re-analysis by multiplex
ELISA. Instability was defined as a significant change in
concentration (X25%) between the two time points.

Effect of platelet inclusion/exclusion and freeze thaw on
angiogenesis analyte concentration determined in plasma
collected from colorectal cancer patients

To evaluate the impact of platelets on the measurement of the
panel of angiogenesis-related analytes by ELISA, blood was
collected from 20 patients with metastatic colorectal cancer who
were receiving conventional chemotherapy at The Christie NHS
Foundation Trust (Manchester, UK). A 20-ml volume of venous
blood was withdrawn from each subject and transferred to an
EDTA vacutainer and labelled as the whole-blood (WB) specimen.
Aliquots of the WB specimen were retained for platelet count by
the Haematology Department of The Christie. The WB specimen
was centrifuged at 2000 g for 10 min at RT to separate the plasma (A).
Aliquots of sample-A were retained for platelet counts or stored
at �801C for both single- and multiplex ELISA analysis.
The remainder of sample-A was divided into three aliquots,
each to be centrifuged further at RT by one of three procedures:
2000 g for 15 min (AþB), 2000 g for 20 min (AþC) or 10 000 g

QC values/ranges supplied

YesNo

Characterise
imprecision:

N=16;
2 assays

No

Batch
availability

limiting

Yes

Move to
validation

Kit to kit QC
adjust

QC ranges

No

Analyst must demonstrate
competence with 2–3
consecutive assays;

4:6 rule

Use
supplied

range

YesSet
benchmark

CV %
for

acceptance
criteria

Fit-for-purpose

Assay performs
within

manufacturer’s
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Figure 1 Fit-for-purpose biomarker ELISA validation for use in clinical trials. Fit-for-purpose biomarker method validation was essentially a demonstration
that a commercially available assay consistently performs within specification (either manufacturers or set in-house) using QCs before patient sample analysis
and consisted of three stages. In the first stage the precision (as % CV) in the QCs was determined experimentally. In stage-2, a target CV acceptance limit
was set against which the performance of future assays was evaluated. Stage-3 required that 2–3 additional assays fell within these target CVs for the QCs,
to consider the assay valid for analysis of clinical trials samples. In the light of present data enhancement to this scheme is now recommended
(see Discussion).
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for 10 min (AþD). Aliquots of each were retained for platelet
count or stored at �801C for both single- and multiplex ELISA
analysis. A final confirmation study was performed in the same
way using blood from three healthy volunteers comparing WB and
sample-A (2000 g for 10 min) using a single centrifugation of WB at
2000 g for 25 min (E). The effect that freezing plasma sample-A
to �80oC before re-centrifugation (at 2000 g for 15 min) had
on angiogenesis analyte concentrations was also investigated
by multiplex ELISA.

RESULTS

Fit-for-purpose validation of single-plex ELISA assays

The process developed to validate the panel of 17 ELISAs using
QCs is described schematically in Figure 1. The first stage was to
characterise assay performance (mean value±precision) by
analysis of 16 replicates of each of three different QCs representing
high-, mid- and low-range concentrations on the calibration curve.
To complete this stage at least two separate assays were performed.
The second stage was to set ‘benchmark’ acceptance limits against
which the performance of subsequent assays was evaluated.
Changes in batches of ELISA kits or QCs required batch-to-batch
analysis (n¼ 8 replicates) and often resulted in adaptation of
acceptance limits. Finally, in stage three an analyst was required to
show in 2 –3 consecutive assays that all three QCs continued to fall
within their acceptance limits, using a 4 : 6 rule.

Results on the above validation process for the 17 ELISAs are
reported in Table 1. Precision was always less than 20% and in
most cases less than 15% for each QC (Table 1); thus the
‘benchmark’ acceptance limit of 20% was set around the mean
experimental value. In the subsequent 2– 3 assays only 15 of the 17
assays showed consistency. VEGF-C and KGF failed validation at
this stage and were not taken forward for further validation
experiments, including analysis of cancer patients’ samples.

Stability studies of angiogenesis analytes

Stability studies were conducted in three stages: first by adding a
known concentration of a r-protein to a surrogate matrix; second
by measuring endogenous angiogenesis analytes in plasma
collected from healthy volunteers and third by re-analysis

of plasma samples taken from cancer patients. The stability of
r-proteins spiked into plasma and serum, and stored at RT, 41C,
�201C and �801C, is reported in Table 2. With the exception of
PlGF stored at 41C, there was no difference in stability profiles
between serum and plasma. All analytes were unstable at RT and
41C, with PlGF being particularly unstable at RT. The data suggest
that storage of samples at 41C for longer than 7 days is not
recommended in general, and specifically, that PDGF-BB, PlGF and
VEGF-A should be kept at 41C for no longer than 24 h (Table 1).
With the exception of SDF-1a at �801C and PlGF at �201C, all
other analytes investigated (nine in total; Table 1) were stable for at
least 3 months at both temperatures and for three freeze– thaw
cycles (data not shown).

Endogenous analytes were measured in pooled healthy volunteer
plasma (n¼ 8 replicates), before storage at �801C and after 8
months. Statistical differences between these two time points were
determined by Student’s t-test. However, an acceptance limit for
significance was imposed at a 25% increase or decrease in

Table 2 Duration of stabilitya of recombinant standards of angiogenesis biomarkers spiked in porcine plasma (P) and serum (S) and stored at different
temperatures

Stability of angiogenesis biomarkers in porcine plasma (P) and serum (S)

Room temperature 41C �201C �801C

P S P S P S P S

VEGF-A 1 da 1 d 7 d 1 d 1 y 1 y 1 y 1 y
PlGF o1 d o1 d 7 d o1 d 1 m 1 m 1 y 1 y
PDGF-BB 1 d 1 d 1 d 1 d 1 y 1 y 1 y 1 y
Ang-1 3 m 3 m
Ang-2 3 m 3 m
TIE-2 7 d 7 d 7 d 7 d 1 y 1 y 1 y 1 y
FGF-b 1 d 1 d 21 d 21 d 6 m 6 m 1 y 1 y
SDF-1a 7 d 1 d 7 d 7 d 1 m 1 m 1 m 1 m
IL-8 7 d 7 d 7 d 7 d 1 m 3 m 3 m 3 m
OPN 1 d 1 d 7 d 7 d 3 m 3 m 1 y 1 y
CD105 9 m 9 m

Abbreviations: Ang¼ angiopoetin; FGF¼ fibroblast growth factor; IL¼ interleukin; KGF¼ keratinocyte growth factor; OPN¼ osteopontin; PDGF¼ platelet-derived growth
factor; VEGF¼ vascular endothelial growth factor. ad¼ day/s; m¼month/s; y¼ year/s. Recombinant proteins were spiked at a mid-range concentration and stored at room
temperature, 41C, �201C or �801C for different durations of time up to 12 months in the case of �801C. At defined intervals samples were retrieved for analysis by singleplex
with instability being defined as a significant reduction in concentration (X25%) occurring between two time points.
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Figure 2 Stability of endogenous angiogenesis analytes in healthy-
volunteer plasma. Plasma from healthy volunteers was analysed by
multiplex ELISA (n¼ 8 replicates per time point) before and after storage
at �801C for 8 months. Instability was defined as a significant change in
concentration X25% between the two time points (Student’s t-test:
*Po0.05; **Po0.01 and ***Po0.001). The greatest degree of instability
was shown with PDGF-BB (89% decrease) and KGF (115% increase).
Smaller (425% but o38%) but significant changes also occurred with
VEGFR1, FGFb, PlGF and VEGF-A.
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concentration to take account of assay variability (see Figure 2).
Under these criteria, small (425% but o38%) but significant
changes occurred with VEGFR1, FGFb, PlGF and VEGF-A
(Figure 2). The greatest degree of instability was recorded with
KGF (115% increase) and PDGF-BB (�89% decrease).

To evaluate stability in cancer patients’ plasma, angiogenesis
analytes were measured in four replicate plasma samples collected
from five different patients: a study design that allowed between-
patient comparison to be made in platelet-rich (Figure 3A and B)
and platelet-depleted plasma (Figure 3C and D). Stability was
assessed at �801C by analysing the samples immediately after

storage and 3 months later. Instability is defined as above for
healthy plasma except that statistical significance was evaluated by
the Wilcoxon signed-rank test.

After 3 months, a significant change (increase) in concentration
was detected consistently in all five patients with only one analyte
in both platelet-rich (KGF, Po0.0001; Figure 3B, 26–62%) and
platelet-depleted plasma (KGF, P¼ 0.002; Figure 3D, 24–73%).
However, a consistent reduction in PDGF-BB concentrations was
also recorded in platelet-depleted plasma (P¼ 0.006; Figure 3C,
35–82%). With all the other seven analytes studied, more sporadic
changes were evident both in platelet-rich and platelet-depleted
plasma. Nonetheless, these data show that unexpected fluctuations
in the concentrations of angiogenesis analytes can occur in
individual patients: for example a 74% increase was seen in FGFb
in patient-327 (Figure 3A) and a 74% increase was observed in
VEGFR2 in patient-388 (Figure 3D), even after 3 months of storage
at �801C. Importantly, these changes would not have been
predicted from the stability studies using r-proteins in surrogate
matrices. These data indicate that r-protein and surrogate matrices
are not sufficiently predictive of the clinical situation.

Effect of platelet inclusion or removal, and freeze –thaw,
on angiogenesis analyte concentrations measured in
cancer patients’ plasma

Cancer patients’ plasma was centrifugated in stages to determine
the minimum duration and optimal speed to remove platelets
effectively from plasma. The protocols adopted in this study
yielded four different plasma samples: each was subjected to a
standard procedure, but three samples received an additional spin
of either increasing duration or centrifugal force (see Methods and
Figure 4). The standard procedure adopted to separate plasma,
2000 g for 10 min at RT, did not significantly deplete platelets as
compared with that in WB. However, further centrifugation at
2000 g for 15 min at RT effectively removed 93% of platelets
(Po0.05: ANOVA, corrected using Bonferroni Multiple Comparison
Test) (Figure 4). A spin at 2000 g for 20 min increased this value to
99%, although the difference between the two procedures was not
significant (ANOVA). Likewise, high-speed centrifugation at
10 000 g for 10 min offered no further advantage (ANOVA)
(Figure 4). A subsequent study confirmed that centrifugation of
WB at 2000 g for 25 min (E; Po0.05: ANOVA, corrected using
Bonferroni Multiple Comparison Test) was an equally effective
protocol for platelet removal, without recourse to high-speed
centrifugation equipment or a two-step preparation method.

Of the analytes investigated, removal of platelets reduced
significantly the plasma concentrations of PDGF-BB (mean
reduction in five different patients of 77%), FGFb (63%) and
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Figure 3 Stability of endogenous angiogenesis analytes in both platelet-
rich and platelet-depleted plasma in cancer patients. Plasma from five
different colorectal cancer patients was analysed by multiplex ELISA before
and after storage at �801C for 3 months. The platelet-rich and platelet-
depleted samples were produced as described in Figure 4. Instability was
defined as a significant change in concentration X25% between the two
time points (Wilcoxon signed-rank test). The Wilcoxon signed-rank test
assessed consistent trends within the group of five patients. Only in the
case of KGF was consistent instability (manifest as an increase in
concentration) observed in both platelet-rich (Po0.0001) and platelet-
depleted (P¼ 0.002) plasma, whereas consistent reduction in PDGF-BB
concentrations was recorded in platelet-depleted plasma (P¼ 0.006).
Sporadic changes or X25% were measured in individual patients with a
number of other analytes such as a 74% increase in FGFb in platelet-rich
plasma in patient-327 and a 74% increase in VEGFR2 in platelet-depleted
plasma in patient-388. For PDGF-BB, HGF, FGFb, VEGF-A and VEGFR1 see
panel A for platelet-rich plasma and panel C for platelet-depleted plasma,
and for VEGFR2, IL8, KGF and PlGF see panel B for platelet-rich plasma
and panel D for platelet-depleted plasma.
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VEGF-A (43%) (Figure 5A; Po0.05: ANOVA, corrected using
Bonferroni Multiple Comparison Test). Although there was a trend
towards reduction in Ang-1 concentrations upon removal of
platelets (Figure 5A), this did not reach statistical significance.
SDF-1a concentration in plasma has also been reported to be
affected by the presence of platelets, but in this study removal
appeared to have little effect (data not shown). Linear regression
analysis showed a strong correlation between platelet numbers and
plasma concentrations of PDGF-BB (P¼ 0.0002), FGFb (P¼ 0.0001)
and VEGF-A (P¼ 0.042).

The data show that removal of platelets reduced the plasma
concentration of certain angiogenesis-associated factors, if the
platelets were removed before freezing plasma samples. Once
plasma samples were frozen and platelets presumably ruptured,
then centrifugation was without effect on angiogenesis analyte
concentrations (see Figure 5B). The results of these studies provide
data to guide decisions concerning platelet removal protocols and
highlight the importance of documenting the presence or absence
of platelets to optimise data analysis.

DISCUSSION

With the eventual objective of qualifying biomarkers to facilitate
the clinical development of drugs targeted to the tumour
vasculature, a panel of ELISAs for circulating angiogenesis
associated factors was validated (see Table 1) (Jain et al, 2009).
Specifically, a ‘fit-for-purpose’ method validation was undertaken
with the aim of identifying and minimising variability associated
with the sample analysis cycle, often the cause of biomarker failure
in the clinic (Pepe et al, 2001; Bast et al, 2005; Wagner et al, 2007).
In the UK and Europe method validation is a requirement of the
Clinical Trials Regulations (Cummings et al, 2008). Thus, in this
study our focus was to develop a strategy to validate a large panel
of ligand binding (sandwich ELISA) assays (LBAs) (Shah, 2007)
and to characterise sample handling issues associated with analysis
of circulating soluble angiogenesis regulators such as stability and
influence of platelets (Nayeri et al, 2002; Findlay, 2009; Mahler
et al, 2009).

The strategy adopted (Figure 1) used QCs to monitor
performance (Lee et al, 2005, 2006). Preliminary studies were
conducted to characterise the error associated with each assay to
set realistic acceptance criteria against which to judge the
performance of subsequent assays, rather than imposing rigid
guidelines in advance such as in bioanalytical method validation
(Shah et al, 1991, 2000). In this context, ‘fit-for-purpose’ for use in
clinical trials was defined essentially as a measure of assay
precision (Cummings et al, 2008) and under this definition 15 of
17 assays proved to be fit-for-purpose for use in clinical trials.

The success of this validation approach relies heavily on an
accurate determination of the total error associated with each
assay. Total error for an LBA is assumed to follow a normal
distribution and consist of a systematic component (bias,
measured as percent relative error (%RE)) and a random
component (precision, measured as the coefficient of variation
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(%CV)) (Findlay et al, 2000; DeSilva et al, 2003; Findlay, 2009). If
acceptance limits for the QCs are imposed at a mean value±a fixed
CV (e.g. 15%) before total error is quantified (Shah et al, 2000) and
the total error is subsequently established as being close to the
fixed CV, then the acceptance limit is effectively set at 1 s.d. for the
error in the assay. In this scenario, 2 out of 6 QCs and assays (33%)
would be expected to fail randomly. To compensate, a 4 : 6:X rule is
applied where only 4 out of the 6 QC are required to fall within the
acceptance limit (X) and is an integral component of the fit-for-
purpose approach (Lee et al, 2005, 2006). However, a problem
arises when the total error is underestimated either by conducting
too few experimental studies or by not taking sufficient account of
batch-to-batch variability. Here an assay, which might well exhibit
acceptable performance in the analysis of patients’ samples, may
nevertheless fail at the pre-study validation stage due to adoption
of inappropriate acceptance criteria (Findlay, 2009).

Evaluation of error and choice of acceptance limits was based on
the results from 2 –3 assays of eight replicate measurements of
the QCs per run, which tended to weight the validation towards
within-day/intra-assay precision. As this performance parameter
often shows less variability than between-day/inter-assay preci-
sion, it is possible that the true level of imprecision was
undervalued. Nonetheless, 15 of 17 assays did pass this stricter
validation regime. However, an assessment of the errors associated
with accuracy and bias, the systematic component in the total error
model, was confounded by the fact that commercially available QC
standards were used. These were provided by the manufacturer not
at a nominal concentration together with a certificate of analysis
but at high, medium and low concentration ranges, and thus could
not be added at known concentrations. The issue of poorly
characterised, or non-representative (recombinant proteins or
peptide fragments), reference materials reconstituted in simple
assay buffers to act as calibration standards and QCs in LBAs
remains a perennial problem (Lee et al, 2006; Nowatzke and Wood,
2007; Findlay, 2009). As a consequence, most LBAs of biomarkers
that use such reference materials can only be classified as
producing relative quantitation in patient samples (Lee et al, 2005).

To counteract the possibility of underestimating error during a
typical fit-for-purpose biomarker method validation, a revised
strategy based on the data here is proposed for future studies. The
most important point in the revised strategy is the adoption of a
confidence interval (2 s.d.; 95% confidence interval) favoured in
diagnostic biomarker QC (Westgard et al, 1994). In future, QC
acceptance limits will be set provisionally at 2 s.d. on the basis of
running four replicates on five separate assays (DeSilva et al,
2003). As before, three subsequent assays must fall within
specification to consider the assay fit-for-purpose for use in
clinical trials (Lee et al, 2006). Performance of the QCs should then
be continually monitored, cumulative precision profiles plotted
and acceptance limits modified until a ‘precision plateau’ –
representing the total error – is reached. Acceptance criteria
should then be fixed and changed only if batch-to-batch issues
arise. It will be especially important to apply this revised approach
as a biomarker progresses from research tool during early drug
development, through proof of principle/concept during early
phase trials, until becoming a fully qualified surrogate endpoint
that can predict or report drug response in later phase trials, when
QC issues become much more crucial (Lee et al, 2005; Cummings
et al, 2008).

The stability of soluble protein biomarkers for analysis by ELISA
assay is often assumed and studies of the effect of long-term
storage of patient specimens before analysis (Aziz et al, 1999) are
rarely conducted. In the good laboratory practice (GLP) environ-
ment, extensive characterisation of sample stability is required by
the regulators (James and Hill, 2007), and these should be
conducted in a matrix that mimics the characteristics of the test
samples (Nowatzke and Wood, 2007). Analyte depletion or a
matrix that is otherwise altered is not considered acceptable

to the FDA. However, there are many reasons why protein
instability occurs: bacterial contamination; protease/caspase
degradation; denaturation; chemical instability (methionine
oxidation, de-amidation, disulfide bond cleavage); folding/unfolding;
insolubility; complex formation of a ligand with a soluble receptor
and protein aggregation (Findlay, 2009; Mahler et al, 2009; Maity
et al, 2009; Wu et al, 2009). Antibody-based assays, such as
ELISAs, that depend on epitope recognition involving not only
sequence but conformation are particularly susceptible to many of
the above variables (Ling et al, 2007). Changes in protein
conformation can manifest in either a decrease in concentration
and apparent instability or an apparent increase in concentration
(Nayeri et al, 2002; Cummings et al, 2007). Due to abnormalities in
blood chemistry, including elevations in proteases and caspases,
the stability profiles of protein biomarkers measured in cancer
patients’ plasma are likely to vary significantly from those
obtained in ‘cleaner’ matrices, especially buffers and even plasma
from healthy controls (Deligezer et al, 2006; Findlay, 2009).

In this study, stability was assessed in three different contexts:
recombinant protein in a surrogate matrix (porcine plasma/
serum); endogenous analytes in healthy volunteer plasma and
endogenous analytes in cancer patients’ plasma. Not surprisingly
the greatest stability was observed in the surrogate matrix with
recombinant proteins. In the healthy volunteers’ plasma, a marked
decrease in PDGF-BB concentration occurred after 8 months at
�801C, whereas an equally substantial increase in KGF occurred
over the same time frame. Smaller changes were also recorded in
VEGF-A, PlGF and FGFb, but these were closer to our acceptance
limit of a 25% change for instability. Platelet-derived growth factor
is a dimeric protein held together by two disulfide bonds, which
are essential for correct folding and stability of the protein
(Ostman et al, 1993). The native monomeric sequence of the KGF
has been shown to be unstable in plasma due to aggregation even
at moderate storage temperatures (Hsu et al, 2006). Members of
the FGF family have a short half-life in vivo due to denaturation at
temperatures close to physiological (Zakrzewska et al, 2009).

In cancer patients’ plasma consistent increase in KGF concen-
tration was also evident, even after 3 months of storage at �801C,
whereas a consistent decrease in PDGF-BB was recorded but only
in platelet-depleted plasma. Sporadic changes (either increases or
decreases in concentration) occurred with other analytes
(VEGFR2, FGFb, HGF and VEGFR1) more randomly. These data
would indicate that KGF is unstable in cancer patients’ plasma and
that PDGF-BB in the absence of platelets (where the majority of
PDGF is normally located) is also unstable in plasma. The sporadic
instability observed with other analytes may be caused by
biological variables – such as disease stage, age or treatment
regimen – additional to the duration of storage at �801C. It should
be noted, however, that different analytical platforms were used to
conduct the stability studies. Single-plex ELISA was used with the
recombinant proteins and multiplex ELISA was used for both
healthy volunteer and cancer patients’ samples. Therefore, some
of the differences in stability profiles observed may be due to
cross-platform variability.

In conducting stability studies, both statistical significance using
the Wilcoxon signed-rank test and an increase or decrease greater
than a predefined acceptance limit of 25% were required. This
latter value was chosen as it is the default value for random error
(imprecision) recommended in the fit-for-purpose approach to
biomarker method validation (Lee et al, 2005, 2006). As a rule the
imprecision in the assays used was below this value, both for
the single plex and the multiplex. A notable exception was for
PDGF-BB where this value could approach 30% (Backen et al,
2009). However, the fact here that there was statistical significance
and a consistent change occurring in all five patients adds
confidence to this result.

Platelets are known to sequester a number of angiogenesis-
regulatory proteins including FGFb, PDGF-BB, VEGF, VEGFR1,
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Ang-1, HGF and SDF-1a (Nayeri et al, 2002; Brill et al, 2004;
Klement et al, 2009). Thus, if the objective is to measure the ‘true’
level of free circulating protein it would be crucial to remove
platelets and prevent the release of their contents before removal.
Here a protocol is reported for effective removal of 490% of
platelets that does not require recourse to a high-speed
centrifugation step. The data also show that platelet removal
should be performed before freezing plasma samples. Allowing
blood to clot to harvest serum will also result in the release of
angiogenesis analytes from platelets and haemolysis in plasma
should be avoided. It is now evident that several circulating
angiogenic cytokines are stored in platelets (Klement et al, 2009;
Solanilla et al, 2009) and as platelet counts are elevated in cancer
patients (Nash et al, 2002; Klement et al, 2009), there is perhaps a
case for measurement of ‘free plus platelet-sequestered’ angiogen-
esis-associated factors (Klement et al, 2009). Whichever approach
is taken, interpretation of the resultant data will require clarity on
the inclusion or exclusion of platelets.

As most ELISAs are capable of only relative quantitation,
one might expect different platforms, indeed even the same assay
but sourced from different manufacturers, to yield discrepancies in
the absolute concentrations measured in equivalent groups of
patients (Cummings et al, 2008). Indeed, several previous cross-
platform studies involving antibody-based ELISA technologies,
including Endogen/Aushon Multiplex and singleplex ELISA R&D
assays (as used in this present study), Meso-Scale Discovery (MSD)

and Luminex beads, have shown that these differences can be as
great as two- to five-fold (Urbanowska et al, 2006; Toedter et al,
2008; Chowdhury et al, 2009). Thus, cross-comparisons of
antibody-based technologies show the true relative nature of the
concentrations they report, and mandate the need to restrict
analysis of clinical trial samples to a single platform. In this
scenario the principal performance indicator becomes the
sensitivity of the analytical platform to detect a meaningful
(relative) change in biomarker concentration that is causally
linked to a biological endpoint such as the effect of drug action.
This ability will depend on the level of variation associated with the
biomarker within the patient population as well as analytical
issues. An assessment of within-day variation can be conducted by
analysis of two separate samples collected from the same patient
within a relatively short space of time, in the absence of drug
treatment (Cummings et al, 2006). We have previously determined
this value to be 13–14% for cell death biomarkers comprising
different molecular forms of the protein cytokeratin-18
(Cummings et al, 2005, 2006). The ‘signal-to-noise’ values for the
angiogenesis-associated analytes are the subject of ongoing
investigation.

In summary, the studies reported here have highlighted the need
to conduct assay validation and to address sample handling issues,
such as stability and the impact of platelet removal, before
commencement of clinical trials if such biomarkers are to yield
information useful for drug development and patient care.
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