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Dynamics and orientation 
selectivity in a cortical model of 
rodent V1 with excess bidirectional 
connections
Shrisha Rao, David Hansel & Carl van Vreeswijk

Recent experiments have revealed fine structure in cortical microcircuitry. In particular, bidirectional 
connections are more prevalent than expected by chance. Whether this fine structure affects 
cortical dynamics and function has not yet been studied. Here we investigate the effects of excess 
bidirectionality in a strongly recurrent network model of rodent V1. We show that reciprocal 
connections have only a very weak effect on orientation selectivity. We find that excess reciprocity 
between inhibitory neurons slows down the dynamics and strongly increases the Fano factor, while for 
reciprocal connections between excitatory and inhibitory neurons it has the opposite effect. In contrast, 
excess bidirectionality within the excitatory population has a minor effect on the neuronal dynamics. 
These results can be explained by an effective delayed neuronal self-coupling which stems from the 
fine structure. Our work suggests that excess bidirectionality between inhibitory neurons decreases 
the efficiency of feature encoding in cortex by reducing the signal to noise ratio. On the other hand it 
implies that the experimentally observed strong reciprocity between excitatory and inhibitory neurons 
improves the feature encoding.

Cortical neurons with similar functional properties have a high probability of being connected1–7. Experimental 
techniques that allow labeling and identifying different cell types has led to the discovery of patterns in cortical 
wiring at a scale finer than cortical columns. For instance, discrete subsets of neurons are more strongly inter-
connected than dictated by similarities in their functional properties: cortical networks embed motifs formed 
by strongly connected groups of neurons and groups of neurons receiving common feedforward input. As a 
result there are significantly more reciprocal connections between excitatory neurons than expected by chance. 
Likewise there is also an excess of other motifs involving groups of three or more highly interconnected excitatory 
neurons. This has been shown to be the case in layer 2/38 and layer 59–11. As for excitatory and fast spiking inhib-
itory neurons, the probability that their connections are reciprocal is close to one1. This raises the question: what 
are the contributions of such fine structures to cortical dynamics and fonction?

Previous theoretical studies investigating the dynamics of model cortical networks have assumed that the 
probabilities of connection are independent. In these networks, the probability of connection of a neuron A to a 
neuron B does not depend on the rest of the network graph, including whether there is a connection from neu-
ron B to neuron A. For instance, a great deal of theoretical studies assume a directed Erdös-Rényi graph as the 
network architecture, in which the probability of connection depends solely on the neuronal type, excitatory or 
inhibitory, of the pre and postsynaptic neuron. It should be noted, however, that if the probability of connections 
are independent, the network has no fine structure. Thus these studies cannot shed light on the dependence of 
cortical dynamics and function on the fine structures in the connectivity.

Here we study the effect of excess bidirectionality in a model of layer 2/3 in rodent primary visual cortex (V1). 
The network is highly recurrent with strong synapses12–14. In the absence of excess bidirectionality the dynamics 
exhibits irregular spiking closely resembling experimental observations15–17 and the firing rates of the neurons 
depend on stimulus orientation. Using numerical simulations, we investigate the effects of introducing extra 
reciprocal connections on both the dynamics of the network and the selectivity properties of the neurons.
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Results
The network consists of two populations of neurons, one excitatory (E) and the other inhibitory (I). Each neuron 
is described by a single compartment conductance-based model. The connectivity of the network is random with 
the neurons in both populations receiving on average K excitatory and K inhibitory recurrent inputs. Excitatory 
and inhibitory neurons also receive feedforward inputs from, on average, α =αK E I( , )ff  randomly chosen excit-
atory L4 neurons. The responses of L4 neurons to elongated stimuli are orientation selective (OS) with uniformly 
distributed preferred orientations (POs) (see Methods).

Without excess bidirectionality, the probability, →P i j( ), that neuron i connects to neuron j is K N/ A, where NA 
=A E I( , ) is the number of neurons in the population to which neuron i belongs. The probability of a bidirec-

tional connection, → ∧ →P i j j i( ), satisfies: → ∧ → = → →P i j j i P i j P j i( ) ( ) ( ). As previously shown12–14, if 
the interactions are strong the network automatically finds an operating point where total excitatory and inhibi-
tory inputs to the neurons approximately cancel, i.e. balance each other. Thus, in the balanced state the net input 
to neurons consists of mean and fluctuations that are of the same magnitude as that of rheobase current 
( Threshold( )). The temporal firing pattern of neurons in balanced networks is dominated by the fluctuations and 
is thus irregular (Fig. 1a).

The preferred orientations of the Layer 4 inputs arriving at a Layer 2/3 neuron are randomly distributed. Thus 
the total feed-forward input consists of a large component which is untuned to stimulus orientation and a tuned 
component whose amplitude is comparable to the neuronal threshold. Since the network is in the balanced state, 
the untuned component of the feed-forward is canceled by the average recurrent input. As a result, the net input 
in Layer 2/3 neurons as an untuned component, modulation with orientation and temporal fluctuations, all of 
which are comparable to the rheobase. Hence, neurons in the network exhibit orientation selectivity (Fig. 1b) and 
irregular firing18.

To change the amount of bidirectionality we rearrange the recurrent connectivity such that the probability, 
→ ∧ →P A B B A( ), is equal to →pP B A( ) without changing the in-degree distributions (see Methods). If 

> →p P A B( ), the connectivity exhibits excess bidirectionality. Excess bidirectionality increases the number of 
loops embedded in the network connectivity which may effect both the spatial and temporal components of input 
fluctuations.

We study the effect of increasing the amount of bidirectionality for excitatory to excitatory (EE), inhibitory 
to inhibitory (II) and between excitatory and inhibitory (EI) connections. We first show that the network is still 
in the balanced state. Then we consider for each case the effect on the spike statistics and the tuning properties.

Excess bidirectionality leads to non negligible effective self coupling.  The average number of 
small loops in this network remains finite in the large NA limit. For instance, a given neuron participates in pK 
loops of length two. These loops will give rise to an effective self-coupling of  Threshold( ). While this does not 
effect the population average firing rates (see Supplementary Fig. S1) it can effect the rate distribution and 

Figure 1.  Activity in the network without excess bidirectionality. Other parameters are given in Methods section. 
(a) Sample voltage trace of cells (firing rates: top, E: 5.36 Hz, bottom, I: 8.7 Hz). (b) Population averaged tuning 
curves for both populations (E: black; I: Red). The tuning curves are normalized to the peak rate. (c) Distribution of 
orientation selectivity index (OSI) for excitatory (black) and inhibitory (red) neurons. Unlike in van Vreeswijk and 
Hansel18, the average number of feedforward inputs from layer 4 in excitatory and inhibitory neurons are different: 

=K 100ff
E , =K 800ff

I . Inhibitory neurons receive more but weaker feedforward inputs leading to less selectivity in 
their response.
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temporal statistics. To see how loops in the network connectivity can contribute effects of Threshold( ) , let us 
consider one excitatory neuron in the excitatory population. When p is not too large, loops of length two will 
dominate the effective self-coupling. If neuron i emits a spike at time t, this will increase the input to all the excit-
atory neurons it projects to by an amount J K/EE , which will on average elicit ξ J K/E EE  extra spikes. Here ξE is the 
average gain of the excitatory neurons. Since on average pK of these neurons project back to neuron i, the spike of 
neuron i at time t will result in an extra feedback input with some delay whose integral is given by 

ξ ξ=pK J K J K pK J( / ) ( / )E EE EE E EE
2 .

Similarly, with excess bidirectionality between inhibitory neurons, the effective self coupling has an integral 
ξpK JI II

2, while for excess bidirectionality between excitatory and inhibitory neurons the integral of the effective self 
coupling is ξpK J JI EI IE for the excitatory neurons and ξpK J JE EI IE for the inhibitory population. Here we have 
assumed the network to be sparse. When the network is dense i.e. when K is comparable to NE and NI, excess 
bidirectionality has the same effect. Analysis of the dense network, however, is more involved.

Although the effective self-coupling in the input which is induced by excess bidirectionality is non negligible, 
it does not destroy the balanced state because it is of the same order as the other components of the net input, 
namely  Threshold( ). It is, however, sufficiently strong to potentially affect the spike statistics and tuning 
properties.

E-to-E bidirectionality has negligible effect on spike statistics.  Excess E-to-E bidirectionality 
should lead to delayed positive self-coupling which may give rise to temporal correlations in the fluctuations. 
Surprisingly, we found that in our numerical simulations, introducing excess bidirectionality in E-to-E connec-
tions does not lead to any observable changes in the statistics of the fluctuations in the network. For each popula-
tion, the spike time autocorrelation (AC) function was computed for the neurons and averaged. Figure 2a displays 
for different values of p the averaged autocorrelation for the excitatory and inhibitory population. There is no 
perceptible change as p is increased. The Fano factor distributions (Fig. 2b) of the neurons in the two populations 
remain unchanged and so do the distributions of the coefficients of variation, CV (Fig. 2c) and CV2 (Fig. 2d).

I-to-I bidirectionality induces positive serial correlations in inter-spike intervals.  As for EE excess 
bidirectionality, I-to-I bidirectionality gives rise to a positive effective self-coupling. This self coupling is due an 
effective self-disinhibition. Consider neuron (i, I). After it has fired a spike, it hyperpolarizes its postsynaptic 
inhibitory neurons by a small amount, slightly decreasing their probability of spiking. Since a fraction p of those 
neurons project back to neuron (i, I), this decreases the amount of inhibition the latter receives, thereby increas-
ing the probability that it will spike again.

Our numerical simulations show that this significantly affects the dynamics. The inter-spike intervals (ISIs) 
of inhibitory neurons become positively correlated and they now have a tendency to fire in bursts (Fig. 3a). This 

Figure 2.  Bidirectionality in E-to-E has negligible effect on spiking irregularity. (a) Population averaged 
autocorrelation functions for excitatory and inhibitory populations for different values of p. (b) Fano factor 
distributions different values of p. (c) Distribution of CV. (d) Distribution of CV2 (see Methods). In all 
subfigures the top panel is for the excitatory population and the bottom one is for the inhibitory population.
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is reflected by an increase in their average CV with hardly any change in their CV2 (Fig. 3d) for p as large as 0.5. 
Such serial correlations in the spike trains also lead to increasing trial-to-trial variability (Fig. 3b). Furthermore, 
the serial correlations affect the spike AC. It now decays to its asymptotic value with a time constant that increases 
with p (Fig. 3c and Supplementary Fig. S3). The positive correlations in the inhibitory ISIs also produce slow 
fluctuations in the inhibitory feedback to the excitatory neurons. This leads to positive correlations between 
excitatory ISIs yielding in similar but smaller changes in the dynamics of the excitatory population (Fig. 3b–e).

E-I bidirectionality introduces negative auto-correlations.  There is strong experimental evidence 
that the probability of excess bidirectionality in the connectivity of PV+ interneurons and pyramidal cells is close 
to one1. Using similar arguments as before, it is clear that such E-I bidirectionality produces an effective negative 
self-coupling for neurons in both populations. This leads to negative serial correlations in the ISIs.

In our numerical simulations, the population averaged AC functions now show a distinct negative undershoot 
before they converge to their asymptotic values (Fig. 4a). The magnitude of the undershoot increases with p while 
its duration is unchanged. The distribution of CV hardly changes with p indicating that on the time scale of the 
neuronal input integration the input statistics has a very weak dependence on p (Fig. 4c). The changes in CV2 are 
also small because correlations between consecutive ISIs are weak (Fig. 4d). There are also negative correlations 
between more distant ISIs. Because these accumulate in the Fano factor (Eq. 16), its reduction is more significant 
(Fig. 4b).

Tuning properties are qualitatively preserved in the presence of bidirectional connectivity.  
The positive self-coupling for bidirectionality within a population α (E or I) increases the modulation with stimu-
lus orientation of the time averaged net input into neurons. This suggests an increase in the orientation selectivity 
index (OSI, see Methods) of neurons in population α.

The amount of sharpening depends on the magnitude of the effective positive self-coupling, which can be 
fairly large when I-to-I connections are bidirectional. In our simulations, excess reciprocity in I-to-I connections 
has a noticeable but nevertheless small effect on the degree of tuning of excitatory as well as inhibitory neurons. 
When excess I-to-I reciprocal probability is increased from 0 to 0.8, the mean OSI increases by 24% for the inhib-
itory neurons. In contrast, for the excitatory population it decreases by 11% (Fig. 5b).

The activity becomes more butsty with increasing p, which results in an increase in the temporal fluctuations 
in the input. This leads to a reduction in the neuronal gain. In the excitatory population this broadens the tuning 

Figure 3.  Bidirectionality in I-to-I slows down fluctuations and increases response variability. (a) Example 
voltage trace of an inhibitory cell for p = 0.8 (firing rate: 8.8 Hz). Dependence on p of the Fano factor (b), 
population averaged autocorrelation functions (c), CV and CV2 in (d). Top panels: Excitatory population. 
Bottom panesl: Inhibitory population. (e) Decorrelation time (see Methods) of the network activity as a 
function of p.
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curves. In the inhibitory neurons the situation is more subtle. The reduction in their gain is comparable to the one 
of the excitatory neurons but their self-coupling tends to also increase the selectivity of the time averaged input. 
In our simulations, the latter dominates and the tuning of the inhibitory neurons sharpens. (see Supplementary 
Fig. S4).

Figure 4.  Bidirectionality in E-to-I connections leads to rapid decorelation and reduced response variability.  
(a) Population averaged autocorrelation functions for different values of p. (b) Average Fano factor decreases 
with p. The distributions of CV (c) and CV2 (d) have negiligible dependance on p. Top panels: Excitatory 
neurons. Bottom panels: Inhibitory neurons.

Figure 5.  Bidirectionality has a weak effect on feature selectivity. (a and c) Excess bidirectionality within the 
excitatory population (a) and between excitatory and inhibitory populations (c) have no effect on the selectivity 
of excitatory (top) and inhibitory (bottom) neurons. Excess bidirectionality between the inhibitory neurons 
slightly decreases the selectivity of excitatory neurons (b, top) while it slightly increases the selectivity in 
inhibitory population (b, bottom).
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As was the case for network dynamics, our simulations show that E-to-E bidirectionality has negligible effects 
on the neuronal tuning properties even when p is close to one. At bidirectional probability as high as = .p 0 8, 
there is no noticeable change in the OSI distributions in both populations (Fig. 5a,c).

Excess bidirectionality between excitatory and inhibitory neurons leads to negative self-coupling, suggesting a 
decrease in the mean OSI of both populations. Since this excess has a moderate effect on the dynamics, one would 
expect a moderate change in orientation selectivity. However, simulations show no noticeable change in the OSI 
distributions when p is increased. The reason for this is that negative serial correlations in the spike statistics 
reduce the fluctuations in the inputs leading to a larger gain. This increase in gain counterbalances the decrease in 
the modulation of the time averaged inputs due to the effective negative self-coupling.

Discussion
Previous theoretical studies of cortical networks have mostly considered connectivities described by a directed 
Erdös-Rényi like graph where reciprocal connections occur by chance. To our knowledge, this is the first study 
which investigates the impact on cortical dynamics and functional properties of fine structure in the connectivity. 
We considered a conductance-based model of layer 2/3 of rodent V1 in which neuronal interactions are strong. 
We studied the effect of excess bidirectionality in this model. Excess bidirectionality results in an effective 
self-coupling of Threshold( ) . Thus, although the network with excess reciprocal connections operates in the 
balanced state similar to when reciprocity occurs by chance, the neuronal self-coupling can affect the network 
activity.

In our simulations, we found that excess bidirectional connections in the excitatory population have negligi-
ble effect on the dynamics and function. Extra reciprocal connections between inhibitory neurons increase the 
selectivity of inhibitory cells but decrease that of excitatory ones. They slow down the temporal fluctuations in the 
activity of the inhibitory and, to a lesser extent, the excitatory population. This results in spike autocorrelations 
that decay slowly. In contrast, excess bidirectionality between excitatory and inhibitory neurons gives rise to an 
undershoot in the spike autocorrelations but negligibly affects orientation selectivity.

In our model, excitatory interactions are weaker that in inhibitory ones. Moreover, since the firing rate of the 
excitatory neurons is smaller than for the inhibitory neurons, the gain of the former is smaller than that of the 
latter. As a result, excess bidirectionality between the excitatory neurons has a much weaker effect that between 
inhibitory neurons. In principle, the effect of excess reciprocity in the excitatory population can be enhanced. For 
example, decreasing the number of recurrent EE connections and increasing their synaptic efficacy by the same 
factor could make the effect of E-to-E bidirectionality stronger. Alternatively, the gain of the excitatory neurons 
can be enhanced by changing the parameters so that their firing rate is increased. Both scenarios are biologically 
plausible. Whether there is a reasonable mechanism that leads to an appreciable effect of excess bidirectionality 
between excitatory neurons is an open question.

The effects of symmetric connectivity on the network dynamics and emergence of multistability has been 
studied in diluted Spin Glass (SG) models19–21. Although, a direct analogy between our model and SG models is 
unwarranted (for instance, Dale’s law is violated in the latter model), the analytical results from those models may 
provide insights for interpreting our results. A connectivity matrix with bidirectional probability of one is a sym-
metric matrix. With symmetric connectivity matrices, it has been shown that SG phase is stable in the low tem-
perature regime. The SG phase is characterized by non-decaying temporal correlations and dependence on initial 
conditions. In presence of asymmetry the SG phase is stable only at zero temperature. For finite temperature, the 
temporal correlations decay to zero. Correlation time increases with the level of symmetry p, in this dependence 
is well approximated by a power law in 1 − p. In our model, the decorrelation time shows approximately similar 
power law behavior (see Supplementary Material; Fig. S2a).

In balanced networks, the inhibitory population is the main source of fluctuations. The variance of input fluc-
tuations could be seen as a temperature-like quantity. With fast synapses the variance of the input fluctuations is 
large, i.e. the “temperature” is high. Slow synapses have a filtering effect. Input fluctuations now decorrelate over 
the time scale of synaptic time constant, which has the consequence of reducing the variance. But, since the net-
work is operating in the balanced regime, the variance remains  Threshold( ). Hence, although slower synapses 
play the role of lowering the “temperature”, the temperature stays finite. In general, our result is consistent with the 
theoretical prediction that the SG phase is unstable at finite temperature and asymmetry, i.e. there is no multista-
bility (see Supplementary Material). Slow synapses and excess bidrectionality in the inhibitory population leads 
to increase in Fano factor (Fig. S2b). As a consequence, the measurement time window now required to achieve 
the same error bounds in estimating firing rates with slow synapses is increased compared to that with fast syn-
apses. On the scale of a few hundreds of seconds, this can be effectively regarded as multistability.

How could excess bidirectionality affect biological functions? Since only excitatory neurons project to other 
cortical areas, we only need to consider the effect of excess bidrectionality on the excitatory population. For 
example, let us consider the ability of an “optimal observer” to estimate the orientation of a stimulus in rodent 
V1. Excess I-to-I bidirectionality increases the Fano factor of both populations, which leads to a reduction in the 
decoding accuracy. In addition, it tends to decrease the average OSI of the excitatory neurons. For a one dimen-
sional stimulus feature such as orientation, the Fisher information is inversely proportional to the tuning width22. 
These two factors together imply a reduction of decoding accuracy. On the other hand, bidirectionality between 
excitatory and inhibitory neurons decreases the Fano factor while it hardly affects the tuning properties. This 
suggests that EI bidirectionality increases the decoding accuracy. A quantitative answer to the question of how 
connection reciprocity affects coding necessitates a systematic study, which is not the focus here.
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Methods
Model of rodent L2/3 with excess bidirectionality.  Neurons in the L2/3 of rodents show strong orien-
tation selectivity (OS) already at eye opening. They are arranged in a salt and pepper fashion so that each inte-
grated inputs from neurons of all preferred orientations(PO) (i.e. the rodent V1 lacks an orientation map or 
functional architecture). To investigate the effect of bidirectionality on the spiking irregularity and functional 
properties of the cortex, we used a modified version of a conductance based spiking model of rodent L2/3 devel-
oped in Hansel and Vreeswijk18. They showed that strong OS does not require a functional architecture, provided 
that the cortex is operating in the balanced regime. Connection probability between neurons was fixed such that 
each neuron neuron recieved on average K synaptic inputs. L4 neurons were assumed to be OS and L2/3 neurons 
received feedforward inputs from randomly selected L4 neurons with different POs. Hence the total input that 
each L2/3 neurons receives has a large untuned component and a comparably weak tuned part. In the model, the 
recurrent dynamics of the network is such that the total inhibitory and excitatory currents cancel each other. 
Hence, the large untuned component is dynamically suppressed. The tuned component which is Threshold( )  is 
now revealed rendering the neurons in the network selective to orientation of the external stimulus.

Single neuron dynamics.  The single neuron dynamics are described by an one compartment conductance 
based model with sodium and potassium currents responsible for spike generation23. The membrane potential Vi

A 
of a neuron i in population A is described by,

= − − − − + + +C dV
dt

I I I I I I I (1)m
i
A

L i
A

Na i
A

K i
A

adapt i
A

rec i
A

ff i
A

b i
A

, , , , , , ,

where Cm is the membrane capacitance, IL is the leak current given by −g V V( )L
A

i
A

L . The voltage dependent 
sodium and potassium currents are given by = −∞I g m h V V( )Na i

A
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i
A

Na,
3  and = −I g n V V( )K i

A
K
A

i
A

K,
4 . We assume 

that the activation of the sodium current is instantaneous, α α β= +∞m V V V( )/( ( ) ( ))m m m . The gating variable 
h and n have the following kinetics24

α β= − −
dx
dt
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The external input to a neuron has three components: the recurrent synaptic input from within layer 2/3, Irec i
A

, , the 
feedforward input from layer 4 into layer 2/3 θ= −I g t V V( , ) ( )ff i

A
ff i
A

i
A

E, ,  and, a background term Ib i
A
, , which 

accounts for the input from other cortical regions. Given the connectivity matrix =C 0, 1ij
AB , the recurrent cur-

rent into neuron (i, A) due k spikes emitted by a neuron (j, B) at times tj k
B
,  is

∑ ρ ρ= − − + − −I g t V V V V( ) [ ( ) (1 )( )]
(4)rec i

A

B
i
AB

i
A

B L B,

∑ ∑τ
τ= − −g t g C t t( ) exp[ ( )/ ]

(5)
i
AB

AB

syn j
ij
AB

k
j k
B

syn,

The background input is

∑ ρ ρ= − − + − −I g t V V V V( ) [ ( ) (1 )( )]
(6)b i

A

B
b i
A

i
A

E L E, ,

η=





+






g t g K R R

K
t( ) ( )

(7)
b i
A

b
A

b
A b

A

b i
A

, ,

where η t( )b i
A
,  is a zero mean Gaussian noise with temporal correlation, η η τ〈 ′ 〉 = −| − ′|t t t t( ) ( ) exp( )/2b i

A
b i
A

syn, , . The 
feedforward input into neuron (i, A) for an external stimulus orientation θ of contrast C is given by θI t( , )ff i
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where, ξA depends on the tuning strength of layer 4. The random variables xi
A, zi

A, Δi
A are independently drawn 

from, a standard normal distribution, −ze
z2
2  and, an uniform distribution on the interval [0, π] respectively. R ff

0  is 
baseline activity of layer 4 neurons in the absence of a stimulus and = +R R Clog ( 1)ff ff

1 1 10  is the amplitude of th 
layer 4 response to stimulus. The strength of recurrent synaptic interactions were scaled as =gAB

G
K

AB , and the 

feedforward input as =g ff
A G

c K
ff
A

ff
A

 where =cff
A K

K
ff
A

.

Parameters used.  The average conductances and leak currents are compatible with experimental reports25. 
We set, =g mS cm100 /Na

2, =V mV55Na , =g mS cm40 /K
2, = −V mV80K , = −V mV65L , µ=C F cm1 /m

2, 
= .g mS cm0 1 /L

2. Only excitatory neurons had adaptation current with = .g mS cm0 5 /adapt
2 and τ = ms60adapt . 

The synaptic time constant τsyn was set to 3 ms. = .G 0 15EE , = .G 0 45IE , = .G 2 0EI , =G ms mS cm3 /II
2. ξ = .0 8A , 

=C 100, =R Hz2ff
0 , =R Hz20ff

1 . =K 50026, =K 100ff
E , =K 800ff

I .

Generating excess bidirectionality in the connectivity matrix.  To generate the connectivity matrix 
with an excess bidirectionality of p, a neuron i from population A and neuron j from population B were connected 
reciprocally with a probability of = + −p p p(1 )ij

AB K
N

K
NB B

2

2
. Unidirectional connections were made with a proba-

bility = − −( )p p(1 ) 1ij
AB K

N
K
NB B

. This gives a connectivity matrix with each neuron receiving K inputs on aver-

age with pK number of bidirectional connections. Whereas, a random network has K
N

2
 bidirectional connections 

on average.

Orientation selectivity index (OSI).  The selectivity of a neuron that has a firing rate r(θk) has an OSI given 
by 

θ
| |

∑

z
r( )k k

 where θ θ= ∑z r i( )exp(2 )k k k . A broadly tuned neuron has an OSI close to zero and neurons which are 
more selective have an OSI closer to one.

Fano factor.  Given the spike count Nk of a neuron in trial k, Fano factor (FF) of that neuron is defined as,

=
〈 − 〉

= 〈 〉FF N N
N

N N( ) , (10)
k k

k k

2

where 〈 ⋅ 〉k is the average over all trials. We repeated the simulation with different initial conditions while keeping 
the input stimulus fixed. The Fano factor was then determined for all neurons by computing the mean spike count 
and spike count variance upon repeated stimulus presentation over hundred simulated trials.

Autocorrelation (AC).  Given a spike train δ= ∑ −S t t t( ) ( )k
k , the autocorrelation function is defined as,

τ τ= 〈 + 〉C S t S t( ) ( ) ( ) , (11)t

where 〈 ⋅ 〉t is the average over time. We binned the spike train in Δ =t ms1  bins. Let the spike count in the nth bin 
be Ni(n). The population averaged autocorrelation function is defined as,

τ
τ

=





〈 + 〉

Δ







AC N t N t
t T

( ) ( ) ( )

(12)
i i t

i

where τ = Δn t, = Δt m t, T is the duration of simulation in seconds, and ⋅[ ]i is the average over the population. 
The peak at zero was removed and the AC normalization is such that at long time lags the AC function of individ-
ual neurons converge to their respective mean activity squared. −AC r( )2  was plotted vs time on a loglog plot and 
the slope of the linear region was estimated by linear regression. This slope is considered to be the decay time of 
AC(τdec). Where, ri is the mean firing rate of the ith neuron. In the figures, AC was normalized such that it con-
verges to the mean activity.

Coefficient of variation (CV and CV2).  CV is the ratio of the standard deviation and mean of the spike ISIs. 
Given a spike train with N spikes occurring at times ti, the ISIs are given by,

Δ = − −t t t (13)i i i 1

and the CV of the ISIs is defined as:

=
〈 Δ − Δ 〉

Δ
Δ = 〈Δ 〉CV

t t
t

t t
( )

, (14)
i i

i i

2

For a renewal process, FF is given by,

=FF CV (15)2

and for a stationary non-renewal process,

∑= +FF CV SRC(1 2 )
(16)i

i
2
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where SRCi is the Spearman rank order correlation coefficient of order i. Each ISI was replaced by its rank among 
all ISIs. The rank of ISIk is rk if there are exactly rk − 1 smaller intervals. SRC1 is the correlation between the ranks 
of adjacent ISIs. SRCi is the correlation between the ranks of pairs of intervals, −ISI ISI( , )k k i , which are separated 
by i − 1 intervals. It is a measure of serial correlations in the spike trains. Positive serial correlations increase FF 
and negative serial correlations reduce FF. If a regular spike train has a slowly modulated firing rate, the CV 
obtained will be high even though the spike train is regular. To overcome this problem another measure, CV2, is 
usually adopted to quantify the intrinsic variability16. CV2 for the spike train is defined as:

=
|Δ − Δ |

Δ + Δ
+

+
CV

t t
t t

2
(17)

i i

i i i
2

1

1

where 〈 ⋅ 〉i stands for averaging over all the N spikes.
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