Published online 22 November 2017

Nucleic Acids Research, 2018, Vol. 46, No. 3 el8
doi: 10.1093/narlgkx1175

Jointly aligning a group of DNA reads improves
accuracy of identifying large deletions

Anish M.S. Shrestha', Martin C. Frith'2:3, Kiyoshi Asai''?> and Hugues Richard*’

'Department of Computational Biology and Medical Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi,
Chiba, Japan, 2Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and
Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, Japan, 3Computational Bio Big-Data Open Innovation Laboratory
(CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan and “Sorbonne
Universités, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative

(LCQB), 4 place Jussieu, 75005 Paris, France

Received May 17, 2017; Revised September 06, 2017; Editorial Decision November 08, 2017; Accepted November 16, 2017

ABSTRACT

Performing sequence alignment to identify structural
variants, such as large deletions, from genome se-
quencing data is a fundamental task, but current
methods are far from perfect. The current practice
is to independently align each DNA read to a refer-
ence genome. We show that the propensity of ge-
nomic rearrangements to accumulate in repeat-rich
regions imposes severe ambiguities in these align-
ments, and consequently on the variant calls—with
current read lengths, this affects more than one third
of known large deletions in the C. Venter genome.
We present a method to jointly align reads to a
genome, whereby alignment ambiguity of one read
can be disambiguated by other reads. We show this
leads to a significant improvement in the accuracy
of identifying large deletions (=20 bases), while im-
posing minimal computational overhead and main-
taining an overall running time that is at par with
current tools. A software implementation is available
as an open-source Python program called JRA at
https://bitbucket.org/jointreadalignment/jra-src.

INTRODUCTION

The usual first step in analyzing high-throughput sequenc-
ing assays involves alignment of short DNA reads to a
larger reference sequence (e.g. the reference genome, the
genome of a matching somatic cell, or of a closely related
species). This alignment step is crucial as it precedes im-
portant subsequent analyses such as the identification of se-
quence conservation between species (1), the estimation of
allele fluctuation among a population of individuals (2), or
the characterization of somatic and causal mutations in the
genome of tumoral cells (3).

Standard alignment-based workflows independently
align billions of reads, each a few hundred base-pairs long,
onto a reference sequence in order to identify sequence
variations such as single nucleotide variants, small indels, or
structural variants (e.g. large deletions or translocations).
Split-alignments, which are alignments where two different
portions of a read align to disjoint genomic locations on
the reference, are direct evidence of structural variants
(SV), and is the focus of this work.

Accurately computing split-alignments remains a very
challenging problem (4,5). The main difficulty stems from
the highly repetitive nature of genomes and the propensity
of genomic rearrangements to accumulate in the vicinity of
repeats (6). Additionally, reads contain sequencing errors
and library artefacts. These factors lead to ambiguities in
pairwise alignments: positional ambiguity due to a portion
of a read aligning to more than one region in the reference
(Figure 1A, SI-S1.1), and breakpoint ambiguity due to mi-
crohomologies surrounding the SV locus (Figure 1B, SI-
1.2). The former hinders the identification of true SV with
certainty, while the latter is a major cause of redundancies in
variant call sets (7). To estimate the severity of ambiguities,
we examined the variants reported in the Venter genome
(8). Our analysis reveals that, even under ideal conditions of
no sequencing errors and very high coverage, 40% of dele-
tions >32 bp cannot be identified with certainty by pairwise
alignments of 100 bp-long reads (13% for paired-end reads,
SI-S1.1). This alarming result shows that alignment ambi-
guity issues cannot be ignored.

These issues highlight two major shortcomings of cur-
rent techniques based on split-alignments. First, all cur-
rent split-aligners align reads independently of each other.
They lack a principled way to effectively combine, the joint
information contained in reads belonging to the same ge-
nomic region. Since those reads are in fact highly correlated,
utilizing information from the group as a whole, can miti-
gate misalignment issues arising due to repeat-rich genomic

“To whom correspondence should be addressed. Tel: +33 1 4427 7325; Fax: +33 1 4427 7336; Email: hugues.richard@upme.fr

© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

https://bitbucket.org/jointreadalignment/jra-src

el8 Nucleic Acids Research, 2018, Vol. 46, No. 3

A - positional ambiguity

-

reads 2l
3 E—
—td
sampled genome | [
//\\
reference AN

breakpoint

PAGE 2 OF 9

B - Breakpoint ambiguity

C - Joint Read Alighment strategy

Local alignment
to the reference

Filter low-confidence X
alignments

Enumerate candidate splits

Construct Profile from
reads sharing a
structural variant

Profile Alignment

Step 1
X * % X —_—
* Step 2
r, {all, a12, a13} {al1, al4}
ald al3 al2 “
| | I
a32 a3l
1;{a31, a32}
* Step 3
p————
P ——
a
C= ¢
13
* Step 4
acgt*

Figure 1. (A) Example of a typical deletion locus. The left flank in the sampled genome possesses many similar regions in the reference (represented as
blocks of similar colors), causing portions of read, for example 71, to align to several positions, leading to ambiguity about the true deletion. (B) Ambiguity
in identifying the exact breakpoint position. Here, the suffix of the left block matches the prefix of the right (colored in gray), making it impossible to
pinpoint the exact deletion site. (C) The main steps of our Joint Read Alignment strategy, detailed in Section Workflow.

context of SVs or due to sequencing errors. Although lo-
cal realignment and local assembly (9,10) combine infor-
mation from multiple reads, they are limited to substitu-
tions and small indels in a specific contiguous region, and
cannot handle SVs that span large portions of the genome.
The idea of borrowing information across reads has also
been proposed in the context of resolving conflicting predic-
tions from paired-end reads (11-13). However, these meth-
ods choose between candidate alignments, but themselves
do not compute (split-) alignments. Also, as is the general
case with non-split alignments of paired-end reads, they do
not precisely identify the breakpoint of SVs or shed light on
the sequence context at immediate locus of the SV.

The second shortcoming of current methods is that they
do not properly account for alignment uncertainties that
could be computed using probabilistic model of sequence
alignments (14). Most aligners performing split-alignments,
either report only a single best alignment or enumerate
all high-scoring ones (15). To our knowledge, only LAST
(16) reports confidence values (error probabilities) of split-
alignments. The SV calling phase is also usually oblivious to
alignment uncertainty, relying on ad-hoc thresholds such as
the number of reads covering an SV. Some post-processors
(e.g. CLEVER (12)) model alignment uncertainty, but they
assume semi-global alignment of reads and cannot be di-
rectly applied to the case of split alignments.

PAGE 3 0F 9

Here we take a slight departure from the conventional
align-and-call workflow, and propose a new framework of
Jjointly aligning a group of reads identifying a common ge-
nomic structural variant. We define a statistically sound
scoring scheme for joint alignment that models both evo-
lutionary divergence and sequencing errors, and propose
an alignment algorithm corresponding to this scheme. Our
method also measures the uncertainty of each reported joint
split-alignment, based on a probabilistic model of sequence
alignment. This enables users to directly control the trade-
off between sensitivity and specificity of variant prediction,
rather than having to guess ad-hoc threshold values such
as read support. Additionally, we show how to incorporate
paired-end reads in our workflow by using pairing informa-
tion to improve the confidence value of a prediction.

We demonstrate the advantages of our method over other
split-aligners, by applying it to the problem of identify-
ing medium to large-sized deletions (>20 bp) from typical
human genome resequencing datasets, both simulated and
real. We also contrast our technique of bolstering otherwise
ambiguous split alignments by combining read group and
paired-end information to the conventional method of de-
tecting deletions through discordant alignments of paired-
end reads. Quite surprisingly, we find that these conven-
tional methods have lower sensitivity in practice, as they
miss a majority of deletions in their attempt to account for
variability in fragment size. We show that our method in-
curs only a small computational overhead and maintains
an overall running time that is well within the range of con-
temporary methods.

MATERIALS AND METHODS
A joint alignment model for the detection of rearrangements

We begin by describing how our joint split-alignment prob-
lem can be formulated as a profile-to-sequence alignment
problem.

Let us first consider the split-alignment problem in its ba-
sic form: given a reference genome G and a set R of reads
originating from a region # in the sampled genome that
contains an SV, we wish to find the split-alignment of H
to G which determines the position of the SV as well as the
sequence of H in the SV locus. Figure 1A shows a typical
instance of this problem.

Note that this problem is different from the classical pair-
wise split-alignment in which an alignment is computed be-
tween each read and G, rather than between H and G.

If indeed we had a fairly long and accurate sequence
of H, we could score its pairwise alignment according to
a scheme that accounts for the evolutionary divergence
between G and H. Such a score Syenome(A4; H, G) is usu-
ally defined as the sum over contributions from individual
aligned bases and indels that are penalised with affine cost
functions. Other types of rearrangements, such as large in-
dels or translocations are assigned specific penalties. SVs
can be identified by finding an alignment that maximizes
Sgenome(A; H, G).

However, we only have at hand an approximate repre-
sentation of H in the form of short and possibly erroneous
reads, and our task is to determine the sequence of H and its
alignment to G. Towards this, let us assume first that the true

Nucleic Acids Research, 2018, Vol. 46, No. 3 el8

multiple sequence alignment of R is known, and it spans ¢
columns. We can report at each position the number of let-
ters from D = {a, c, g, t, *} (x denotes the gaps occurring
within reads) and store it in a (5 x £) matrix C. Let H be an
¢-length string over D, with H,; corresponding to column i
in C. This string represents the reconstructed sequence of
the sampled genome around the SV locus. We score H and
an alignment A of the matrix C to G as:

S(H9 4;G, R) :Sgenome(A; H, g)

Z (1)
+ Z Z Cyi X Ssequencer(H,’, x),

i=1 xeD

where Sgenome accounts for the H-to-G evolutionary diver-
gence, and Sequencer accounts for the base-pair (dis-) simi-
larities expected due to the sequencer.

The parameters used in the scoring schemes are shown in
Figure 2A. Sgenome consists of a substitution matrix, affine
gap penalties for small indels, and a constant penalty for
large splits, and Ssequencer cOnsists of a substitution matrix
and linear gap penalties. The values in both scoring schemes
can be adjusted to reflect the relative importance of the ref-
erence genome and of the read sequences. Our split penalty
is similar to previous work for breakpoint detection in the
context of pairwise alignment, for instance in (17). We show
an application of our scoring model on a toy example in
Figure 2B. Note that the choice of linear gap penalties al-
lows us to express ((1)) equivalently as the score of C-to-G
alignment, with each column of C treated independently. A
formal description of the scoring scheme is provided in SI-
S2, and an exact alignment algorithm in SI-S3.

We have made two non-trivial assumptions so far: that we
can extract from the massive set of reads, those originating
from the region H, and that we can construct their multiple
sequence alignment. In the next section, we provide approx-
imate solutions to these by incorporating information from
seed alignments, which are local pairwise alignments of the
reads to G.

Workflow

Our method progresses in several steps as depicted in Fig-
ure 1C. First, we perform local pairwise alignment of each
read to G (Figure 1C Step 1). Next, we extract reads that are
likely to have originated from SV sites by enumerating can-
didate SVs that can be inferred from their local alignments
(Step 2). We group these reads according to the candidate
variant site they point to. Each group along with G forms
an instance of the joint split-alignment problem described
in the previous section. We solve each instance by construct-
ing a profile matrix of the reads (Step 3), and finding its
maximum-scoring alignment to G (Step 4). Finally, we com-
pute a confidence value for the joint split-alignments (Step
5). In the following, we describe these steps in more detail.

Step 1: Preliminary local pairwise alignment and filtering.
We begin by identifying for each read, a set of its pairwise
local alignments that are above a certain minimum score
threshold. These alignments will provide primary informa-
tion to detect candidate SV sites and to perform joint align-
ment in the following steps.

el8 Nucleic Acids Research, 2018, Vol. 46, No. 3

PAGE 4 OF 9

A O¢t aa,g A 50 + 25(5 Cc

H-to-G | Sequencer e

(Sgenome (Ssequencer) b tatc?taczgg M ga?c . 9 al 1
substitution o o' A | | | I | X | | c 3 2 3
deletion open 0o - tatcgtga- 9¢ H 3 B) 3
deletion extend Se & - g
insertion open € - tcgtge gc t|1 18 3
insertion extend € € ttcgtg>* gc x 1 1
split A - ta*cgtgc gc

201, +6 30,

g

Figure 2. Scoring a joint split-alignment. (A) Parameters of the scoring scheme. (B) Toy example with an alignment A4 of three reads identifying two
deletions (dashed boxes). Computation of the score is indicated on some columns of the alignment—highlighted in gray, with contributions from Sgenome
and Ssequencer at the top and at the bottom, respectively. (C) The matrix C for the example (a 15-bp count profile). The choice of linear gap penalties in
Ssequencer allows us to express the joint split-alignment as the alignment of C to G, with columns of C treated independently. The gray columns match the

ones in (B).

Due to the tendency of SVs to occur in repeat-rich re-
gions, a large number of alignments will be reported for a
single read (Figure 1A and SI-S1), most of which are un-
informative about the true location of SVs. To keep only
confident ones, we filter the local alignments based on their
error probability (16) (Figure 1C step 1). The use of a prob-
abilistic measure to filter alignments allows us to easily bal-
ance sensitivity and specificity. It also helps to reduce run-
ning time by avoiding unnecessary candidates. As opposed
to the general practice among split-aligners of relying on
ad-hoc thresholds such as the number of multi-mappings,
our probability-based filter prioritizes propitious candidate
split reads, an ingredient which is unique to our method.

Step 2: Candidate SV enumeration and read grouping. In
the set of remaining high-quality local alignments of a read,
we search for (pairwise) split-alignments, i.e. a set of two or
more local alignments of the read to disjoint regions of G,
indicating an SV. These split-alignments serve a dual pur-
pose of reducing the search space for the joint alignment
algorithm by providing candidate SV sites and also aiding
the grouping of related reads.

Different subsets of local alignments of the same read
could indicate different SVs — for example, in Figure 1C,
step 2, alignment subsets {ay, a2, @13} and {ay, aj4} of
read r; suggest different deletion events. We enumerate and
record all such events implied by the local alignments of
each read. For the case of large deletions, this enumeration
problem can be solved by defining a simple binary relation
on the set of local alignments and traversing the order in-
duced by this relation. We provide the problem definition
and a description of the algorithm in SI-S4.

Finally, we group together reads with split-alignments us-
ing the following rule: if two reads have alignments overlap-
ping in G, they are placed in the same group.

Step 3: Profile construction. At this point, we have several
groups of reads, each group containing reads likely to have
been sequenced from the same SV site. We represent each
read group R by a profile matrix C of size 5 x £, where
the rows correspond to the characters in D = {a, c, g, t, *},
the columns correspond to the columns in a multiple align-
ment of the reads, and C,; contains the number of times x
appears in column 7 of the multiple alignment (Figure 1C
step 3). This definition requires finding a multiple sequence
alignment of the reads in R, which is known to be compu-

tationally expensive. Instead, we utilize information from
local pairwise alignments of the reads to construct C, using
the following principle: all positions aligning to the same
position in G contribute to the same column of C (see SI-S5
for more details).

Step 4: Joint alignment. Next we align C to G using the
scoring scheme described in Equation (1). We devise a dy-
namic programming algorithm to find a maximum-scoring
pair 4, H, as a simple extension to the traditional pairwise
semi-global alignment. Recurrence formulas are given in SI-
S3.

The time complexity of our exact dynamic programming
algorithm is O(|G|?-£-|D|), which is not practical for large
datasets. To reduce time consumption, we use a speed-up
heuristic (see SI-S5) that restricts the dynamic programming
only to regions surrounding the candidate SV sites enumer-
ated in Step 2. In essence, the algorithm chooses among the
candidate SVs provided by pairwise alignments, the one that
best matches the profile C which contains information from
all the reads in the group.

Step 5: Joint alignment error probability. Let A be the split-
alignment of C to G reported by our joint alignment algo-
rithm, and let Ay, ..., Ay be parts of 4 that align blocks of
C to disjoint regions Gy, ..., G, of G. Associated with each
A; is a set L; of local alignments from the (pairwise) split-
alignments enumerated in Step 2, that align segments of
reads in R to the same region G;. For each alignment in L,
its uncertainty is reported by LAST (16). Our computation
of the error probability of 4 combines these (un)certainties
associated with separate pairwise alignments into a single
confidence value for the joint alignment. We describe this
method in SI-S6.

Incorporating paired-end information

When available, we can utilize information from paired-end
reads to strengthen the confidence value of local alignments
in Step 1. For each local alignment of a read, we substitute
the error probability of an alignment by that of an align-
ment of its mate read if the latter is lower and if the follow-
ing conditions are fulfilled: (i) the mate is aligned on its full
length and no other read block is aligned in-between (ii) the
mate is within the distance [+ zp; 05 p + zp9 o], where
i and o are respectively the mean and standard deviation

PAGE 50F 9

of the fragment size distribution, and z, is the quantile of
level a for the normal distribution A(0, 1) and (iii) there is
no other candidate alignment within the same range of [
t 20105+ Z09 0]

RESULTS

We evaluated our Joint Read Alignment (JRA) framework
of computing split alignments by comparing its perfor-
mance to three other pairwise split-alignment tools: Sege-
mehl (18), Splazers (19), and LAST (16). Additionally we
investigated the effect of incorporating paired-end informa-
tion in the JRA workflow by comparing its performance
with Lumpy (20) and Delly (21), which are commonly used
structural variant detection tools that can combine infor-
mation from discordant alignments of mate pairs as well
as split alignments. Further, to compare our strategy to lo-
cal assembly and local realignment techniques, we included
Platypus (10) in the evaluation. Platypus also combines hap-
lotype and multi-sample information to make variant pre-
dictions, but we did not explore this aspect of Platypus as it
is out of the scope of this work. Parameter settings for all
tools are detailed in SI-S8.

Datasets

We used both simulated and real datasets for evaluation.

Our simulated dataset is based on the set of high-
confidence variants in the diploid genome of a single indi-
vidual (J. Craig Venter) (8). Since this dataset is derived from
Sanger sequencing, it avoids the ambiguity issues faced by
short erroneous reads, making it ideal for benchmarking of
split alignments. We reconstructed Chromosomes 1 and 2 of
the diploid Craig Venter genome from hgl9 using a work-
flow similar to (22). Single-end and paired-end error-free se-
quencer reads of 100bp were simulated by random draws
from the reconstruction. We chose the read length to be 100
bp as it is still the most commonly used setup for genome
resequencing — take for instance, the last published SV an-
notations within the 1k genome project (23). To reproduce
the proportion of low quality reads of real sequencing ex-
periments, errors were then introduced according to the per-
base phred quality values observed in a real dataset (dataset
SRR067577, see SI-S7).

We emphasize that this benchmarking scheme is much
more fitted to the challenges of SV identification than sim-
ply placing variants randomly, accounting only for their
length distribution, as the latter would grossly underesti-
mate the proportion of ambiguous regions (Supplementary
Figures S1 and S6). In addition, this setup allows us to se-
quentially assess the effect of two major problems arising in
split alignment: ambiguities due to genomic repetitions and
artifacts from sequencer errors. The datasets are available
for download at the JRA project homepage.

Additionally we used the short read dataset SRX652547
generated from the CHMI cell line, which is derived from
a haploid genome. It contains Illumina paired-end reads
of length 101 bp sequenced at a 41-fold coverage. Interest-
ingly, a list of variants was compiled for the same cell line
by sequencing conjointly single-molecule long reads with
Pacific Biosciences instrument (PacBio) at a 54-fold cover-

Nucleic Acids Research, 2018, Vol. 46, No. 3 el8

age (24). We used this list of variants to evaluate the qual-
ity of the predicted deletions. We would like to point out
that although the long reads from PacBio instrument com-
bined with the high coverage ensure a good confidence of
the calls made, the variant calling methodology seems to
have its own biases, and therefore there is no warranty that
the annotation is complete (discussed later).

Evaluation of accuracy

For the simulated dataset, the set of positive examples con-
sists of all deletions from the C. Venter genome located in
Chromosomes | and 2 and spanning at least 20bp (2130
deletions). For the real dataset of CHM1, we compare the
predicted deletions to the list of deletions derived from
PacBio sequencing (11273 deletions). The length distribu-
tion of the deletions for the two genomes are compared in
Figure 4A and B.

For most deletions, it is not possible to unambiguously
pinpoint its start and end coordinates. We describe this is-
sue in SI-S1.2, where we associate each deletion with break-
point ambiguity intervals. We count a predicted deletion as
true positive if its start and end coordinates are within the
breakpoint ambiguity intervals of a true deletion. Break-
point ambiguity also means that multiple predictions may
in fact be pointing to the same deletion event, and we make
sure to avoid such multiple-counting issues when reporting
the number of true positives.

Sensitivity is defined as the proportion of deletions recov-
ered, and the positive predictive value (PPV) as the propor-
tion of correct deletions in the set of predicted ones.

Performance of deletion calling

We first assessed the performance of the four split-
alignment tools at various coverage values for 100bp
reads under two simulation scenarios: no sequencing er-
rors and with an error profile derived from the real dataset
SRR067577. For Splazers and Segemehl, we used the scripts
provided by the authors to make deletion calls (SI-S8). For
LAST, we use as threshold the maximum error probability
over the local alignments constituting the split-alignment,
and identify as redundant, deletion calls with matching start
and end coordinates.

Overall, JRA shows the best performance over the whole
range of simulations and parameter values (Figure 3).
Splazers, due to its exhaustive search strategy, manages to
detect, in some cases, slightly more deletions but at the cost
of many more false calls. For instance, with coverage 10,
and looking at all predicted deletions, a very slight increase
in sensitivity with Splazers (4% or 5%), comes at the cost
of a 4- to 5-fold increase in the amount of false detections
(PPV of 67% with JRA compared to 29% with Splazers for
the sequences with errors). Given the clinical implications
of SV detection, it is important that those are made with
high specificity.

Relying on the number of supporting reads to call a dele-
tion can improve the specificity of calls but discards many
bona-fide deletions. Indeed coverage alone is not able to
discriminate between a deletion called by only a few reads
which are split-aligned perfectly on both flanks and another

el8 Nucleic Acids Research, 2018, Vol. 46, No. 3

no errors with errors
1200 |
800 o
) [e]
<
400 -
g 1 f 3
[0
=
= 0
[7] B y
2 1200 |
(0]
2
= 800 // 3
) [e]
<
400| £ 3
1 & 1
of} ;
0 500 1000 1500 0 500 1000 1500

False positives

= JRA = Last = Segemehl -+ Splazers

Figure 3. Number of true positive and false positive deletions for JRA (red
circles), LAST (green triangles), Splazers (blue crosses) and Segemehl (or-
ange squares) for different values of expected coverage (top: 10, bottom:
20) and different simulation scenarios (left: error-free reads, right: reads
with errors).

one called by many reads but with sub-optimal alignments.
This is well illustrated when comparing JRA and Splazers
results. At the same level of false positive (FP) predictions
(coverage 10, 250 FP, JRA error probability of 0.08), we ob-
served that more than a third of the true deletions called by
JRA are only supported by one read (60% by less than two
reads) in the Splazers predictions.

Additionally, the error probability reported by JRA in-
tegrates the uncertainties of alignments of single reads at
the SV site, enabling the user with a more accurate choice
when deciding a threshold. Of the tools we compared, only
LAST reports a similar probability, but it does not incor-
porate group information. We compared the sensitivity and
the PPV between JRA and LAST for varying probabili-
ties, and JRA had consistently better sensitivity and slightly
lower PPV at the same probability threshold (Supplemen-
tary Figure S12)

We also evaluated the accuracy of the sequence of the
deletion locus reconstructed by JRA from the dataset with
sequencing errors. For each true positive prediction, we
counted the number of mismatches when comparing the
predicted sequence to the corresponding true sequence
in the Venter genome. Averaged over a range of error-
probability thresholds, we observed an average per-base
mismatch rate of just 0.6 %. This number is remarkable
given that the sequencing dataset has a per-base average er-
ror rate of around 10% (Supplementary Figure S11).

Performance on paired-end data

Paired-end libraries are often generated with the goal of dis-
entangling ambiguities due to repetitive regions and to in-
crease sensitivity of SV calls. Thus, multiple strategies for
SV detection rely on the detection of discordant mate pairs,
i.e. pairs where the alignment on the reference disagree with
the expected fragment size properties. These methods have a
sensitivity directly related to the variability of the fragment

PAGE 6 OF 9

A C1500
2000 | |
-
c
>
Q 1000 c
(&) -2 1000
©
°
0 c
c
0 100 200 300 400 500 ©
'] —
B Deletion size S 500
5
2000
-
3 /
3 1000 / /
= o[Ll e
g = mTD'Ertm-m 0 1000 2000 3000 4000

20 40 60 80 100
Deletion size

No CHM1 annotation

== JRA (PE) == last-rs1 == Lumpy -~ Platypus
C. Venter CHM1 = JRA == |ast-rs5 == Delly Plat. assembly

Figure 4. Left: Length distribution of the deletions annotated in the
CHMI (red) and the Craig Venter genome (blue) at two different scales
(A: 20-500 bp, B: 20-100 bp). The two distributions strongly agree, except
in the range from 20 to 36 bp, which are not reported in the CHM1 anno-
tation, but consitute a large set in Venter. (C) Performance of the different
tools JRA (paired-end mode: red, default mode: pink), LAST with a mini-
mum read support of 1 (dark green) or 5 (light green), Lumpy (ocre), Delly
(orange) and Platypus in default mode (light blue) or with the assembly
option activated (dark blue).

lengths. We chose Lumpy (20) and Delly (21), as they both
combine discordant paired-end alignments with split align-
ments, and compared it with the results of JRA, and of a
modified JRA where we integrate evidence from mate pair
alignment. We also compared it to Platypus, which addi-
tionally integrates information from local realignment and
local assembly. The results for different sizes of deletions are
given in Table 1.

Deletions with size between 20 and 250 bp account for
a large majority (66.67%) of all Venter deletions. In this
range, JRA clearly outperforms Delly and Lumpy, detect-
ing at least 2.5 times more true deletions. It is well known
that discordant alignments are not very informative in this
range, but it is surprising that they can be so detrimental,
as witnessed by the drastic loss in sensitivity. This could be
attributed to the fact that Delly, for instance, uses its paired-
end module and split alignment module in a cascading fash-
ion, such that split alignment is performed only on the re-
gions that is detected by the paired-end module to likely
contain SVs.

Platypus, in its default mode, detects short deletions (<50
bp) with a very good accuracy, on par with JRA, but with
half of its sensitivity. However, in this mode, it does not re-
turn any longer deletion. Adding the use of local assembly
allows us to get a few longer predictions but with a sensitiv-
ity that is around half of the other methods. Additionally,
calls between 50 and 250 bp are very poor, maybe owing to
the specifics of the local assembly construction.

For deletions larger than 250 bp, Delly and Lumpy show
results comparable with paired-end mode of JRA. This can
be expected since the signal coming from discordant pairs
needs to account for fragment length variability and there-
fore becomes effective only for longer deletions. However,
it is surprising that almost no additional deletions are de-
tected by Delly or Lumpy with respect to JRA.

This result also suggests that the gain in using paired-end
information declines for larger deletions. It turns out that
in the Venter deletion set, the proportion of deletions that

PAGE 7 OF 9

Nucleic Acids Research, 2018, Vol. 46, No. 3 el8

Table 1. No. of true positives (TP), and positive predictive value (PPV) in percentage for different categories of deletion lengths, when combining paired-
end alignment information in JRA, and comparison with other tools that use multiple sources of information for SV calling. JRA results are for maximum

allowed error probability value set to 0.01. Total number of deletions is 2130

Coverage 10x

Coverage 20x

No errors W. €ITors No errors W. errors

TP PPV TP PPV TP PPV TP PPV
Length range 20-50 bp (1419 deletions)
JRA (PE) 733 87 654 88 813 87 744 87
JRA 635 88 571 89 739 89 680 89
Platypus 421 91 330 91 577 90 505 91
Platypus (assembly) 438 85 352 83 583 85 520 85
Delly 120 86 100 89 295 86 281 86
Lumpy 13 92 9 90 37 82 27 84
Length range 51-250 bp (438 deletions)
JRA (PE) 90 73 69 72 107 67 89 68
JRA 67 74 55 73 90 70 76 71
Platypus - - - - - - - -
Platypus (assembly) 16 18 12 15 19 18 13 13
Delly 36 50 26 55 62 40 52 44
Lumpy 34 50 25 50 47 47 43 50
Length range 251-500 bp (174 deletions)
JRA (PE) 101 90 99 95 108 90 105 90
JRA 99 91 98 96 102 88 102 91
Platypus - - - - - - - -
Platypus (assembly) 38 58 32 66 46 63 42 65
Delly 89 68 78 63 114 62 106 63
Lumpy 101 84 96 83 103 79 101 80
Length range > 500 (99 deletions)
JRA (PE) 36 42 36 48 38 31 38 39
JRA 34 44 34 50 38 33 38 40
Platypus - - - - - - - -
Platypus (assembly) 13 41 11 42 15 42 14 35
Delly 35 26 34 30 38 20 37 24
Lumpy 35 63 35 66 35 44 35 53

are located in regions that would result in ambiguous align-
ments of reads, is much higher for longer deletions than
shorter ones. This is the case even if we assume hypothetical
reads of length 275 bp, which we can think of as modeling
the best case scenario for paired reads from similarly long
fragments (SI-S1.1.2 and Figure S3).

In summary, over the whole range of deletions sizes, our
joint split-alignment method performs better than conven-
tional align-and-call techniques and local realignment and
local assembly techniques.

Evaluation on real sequencing data

For evaluation on the CHM 1 dataset, we compared the pre-
dictions of JRA with Last and the tools used for variant de-
tection: Delly, Lumpy and Platypus, which were provided
with the alignments computed by BWA. We omitted the
other aligners Splazers and Segemehl because the former
failed on larger datasets and the latter required too much
running time (see Computational costs).

First, comparing the length distribution between the
deletions annotated for CHM1 (24) and for the C. Venter
genome (8) (Figure 4A and B), we can observe that glob-
ally, both annotations strongly agree. However, strikingly
the shorter deletions in the range 20-35 bp are not reported
at all in CHM 1. We therefore limited ourselves to predicted
deletions which are between 36 and 20 000 bp for all tools.
The results are shown in Figure 4C.

The plots show that JRA is in general more accurate than
all of the other tools reaching up to 30% more sensitivity in
detecting bona fide deletions. Interestingly, Platypus man-
ages in default mode to give more specific results on the first
few hundreds deletions, but those are limited to medium size
deletions as we previously noticed on simulated data. Also
in line with simulated data, most of the gain in accuracy for
JR A comes from deletion that are shorter than 250 bp, while
the results become more comparable with Lumpy (and to a
lower extent Delly) for longer deletions (Supplementary Ta-
ble S1).

However, simulated and real data disagree regarding the
proportion of calls identified as correct. For all tools, the
proportion of calls with a CHMI1 annotation is drastically
lower than the positive predictive value on simulated data
(Figure 3 and Table 1). This observation, along with the dis-
crepancy in the deletion length distributions suggest that the
CHMI1 annotation might be missing many deletions.

To further validate the behavior of our framework on
other real genomic data, we used reads sampled from se-
quencing dataset (SRX1567556) of the Ler-0 strain of the
plant A. thaliana, and performed deletion calling with re-
spect to the A. thaliana reference genome. We monitored
the number of deletions called as a function of the confi-
dence of the call, and observed similar behavior as in the
simulated case (Supplementary Figure S14).

el8 Nucleic Acids Research, 2018, Vol. 46, No. 3

~
a

Time (min)

[}
€
0 |I|| ||| .|I|| .|I|| .|I|| | & ””l ""l 1l 1 |

12346 1845 12345 1245 12345 12345 12345 123%6 12345 1% 12&45 12345 1845 12345

z 5 § % = 2 2 3

< 3 = g 2 g < 3 = 2 2 g
o © [} £ z 3 5 E % 3 E 5 3 §
= — (=) 3 s = >] - a 3 ks = =3
a0 § Lo g

o
100 o 20
= 75 s
~ £
GE) 50 @ 10
ey)| | < <l WL L
o /HNEmE < 0
o
LGRSO IGZRY LHSRY LY O ICBSRY CB2RY CH2RE <H2RY
C8522 T8s23 CEsog Lhoog CRSE3 T8s2g C8s2a LRoeg
S-GES S-GEZ SSGER SAGES S-U0ES SH0ES SRR S-S
Js Js Js Js Js Js Js Js
o o o o o o o o
cov.5 cov.10 cov.15 cov.20 cov.5 cov.10 cov.15 cov. 20

2nd Pass [l 1st Pass

Figure 5. Growth of running time and memory usage of different meth-
ods for down-sampled A. thaliana dataset containing 1 through 5 mil-
lion reads (top) and human whole genome dataset containing reads cor-
responding to coverage 5 through 20 (bottom). For JRA, first pass refers
to LAST gapless alignments, 2nd pass refers to our joint alignment phase.
For LAST, first pass refers to gapped alignment. For Delly, Lumpy and
Platypus, Ist pass refers to BWA alignment, and 2nd pass refers to vari-
ant calling including tasks such as sorting of BWA alignments, discordant
alignment extraction. For Splazers, the first pass alignment is performed
by Razers, which gives reads that it cannot fully align to Splazers for the
second alignment phase. We did not run Splazers and Segemehl on the
whole genome dataset because of insufficient memory for the former and
extremely long running time for the latter.

Computational costs

We examined running time and memory usage behavior of
the four tools using reads from the SRX 1567556 A. thaliana
dataset and the ERR037900 human whole-genome dataset.
From the former, we constructed small datasets by sampling
1 through 5 million reads, in order to understand the growth
rate of running time and memory usage. From the latter,
we sampled reads to construct datasets of coverages 5, 10,
15 and 20, in order to investigate the performance of the
tools on larger-scale input data. All experiments were con-
ducted on a machine with Intel(R) Core(TM) i7-4710MQ
CPU and 32GB main memory running Ubuntu 14.04, and
time measurements are for single-threaded operations.

Results are shown in Figure 5. Overall running time for
JRA consists of time taken by LAST for performing pre-
liminary gapless alignments and time taken for joint align-
ment. We can observe that it grows linearly with input size
and that it compares well against other tools. It also worth
noting that the joint alignment phase imposes only a small
overhead.

Memory usage of the joint alignment phase depends on
the number of reads involved in candidate SV sites, and we
can see that it grows linearly with the number of reads. For
large-size genomes, we observe that peak memory usage oc-
curs during the preliminary alignment phase. Overall peak
memory usage compares well against other tools.

Together with the results from performance evaluation,
reasonable computational costs further justify the use of
JRA as tool for detecting large-sized deletions, even from
large datasets.

PAGE 8 OF 9

DISCUSSION

We have provided a general framework to incorporate in-
formation from a set of error-prone short reads covering an
SV site, in order to compute an alignment of this SV re-
gion to the reference, while simultaneously reconstructing
the SV sequence. We have demonstrated a proof of concept
of our joint alignment strategy by applying it to the prob-
lem of identifying large deletions and showing its advantage
over independent pairwise alignments and over calling tools
that rely on such alignments. Given that almost all sequence
datasets today are of this nature, it is surprising that current
methods rely on pairwise alignments, and that no grouped
alignment approach has been proposed before. We hope to
have initiated a step in this direction.

It is worth noting that in line with our preliminary obser-
vation on SV ambiguity (SI-S1), none of the aligners man-
aged to recover more than half of the deletions annotated
in the Venter genome, even when considering flawless se-
quencing. This points out the challenges posed by genomic
repetitions and the importance of accounting for them dur-
ing alignment. We use a sound probabilistic framework to
incorporate ambiguity information at two key steps: for fil-
tering initial SV candidates and when assessing the confi-
dence of a joint-split alignment. We believe these unique
features of JRA contribute to its overall better performance
over other existing tools, and makes it a practical choice for
split-alignment based SV prediction.

JRA is an alignment tool, and as such does not make any
assumption on the number of reads needed to support a
split alignment. JR A can thus detect heterozygous deletions
as well. And indeed, a sound percentage of the calls are true
heterozygous deletions (5% rate predicted in JRA against a
9% rate expected in Venter). This suggests that JRA could
also be successfully applied to the annotation of somatic or
tumor deletions, provided there is enough coverage.

Paired-end data are often recommended for SV detec-
tion as leading to higher sensitivity. However, most of the
tools exploiting this information are limited to using dis-
cordant mate pairs. Even when allowing for modest vari-
ability in fragment size, JRA outperforms the most com-
mon paired end/split alignment framework for deletions of
medium lengths (20-250 bp), while having the same accu-
racy for longer lengths. We also observed that the benefit
from paired information declines for longer deletions, as the
proportion of deletions which are located in regions where
even paired-end reads cannot resolve alignment ambiguity
is much higher for longer deletions.

The generality of our framework provides many poten-
tial avenues for enlarging the scope of our current work. An
immediate extension would be to apply it to more complex
SVs involving multiple chromosomes or containing more
complicated events such as inversions and duplications. We
started out by targeting deletions because this restriction
implies that the joint alignments we seek are co-linear (i.e.
left-to-right on both query and reference), which simpli-
fies several steps. It allows enumerating candidate variant
sites (Workflow Step 2) by defining a simple binary relation
on the set of local alignments and traversing the order in-
duced by this relation (SI-S4). It also simplifies the dynamic
programming algorithm, which takes a form similar to the

PAGE 9 OF 9

familiar classical semi-global alignment dynamic program-
ming (SI-S3). These are key steps in the current JRA, and to
allow complicated evolutionary transformations such as in-
versions and duplications would require generalizing these
steps (See SI-S4 and SI-S3 for further discussions). These
are interesting challenges. Another area of improvement is
the profile construction step, which currently does not tol-
erate a high indel error rate. By borrowing ideas from the
rich literature in multiple sequence alignment, the scope of
application can be expanded to reads with high indel error
rates.

Another application of our idea of joint alignment is
to long read datasets obtained from PacBio or Oxford
Nanopore technologies. Long reads allow capturing large
variants more accurately, and it also has the added benefit
that a single read may span multiple such variants. However,
they are known to have high error rates, and therefore shar-
ing information among reads may lead to more accurate
alignments and consequently accurate variant calls. How-
ever, the data structures and profile construction methods
currently employed in JRA are suited only for variant site
loci of a few hundred base pairs, and it is a stimulating chal-
lenge to make them computationally viable for longer reads
that can span thousands of base pairs.

AVAILABILITY

A software implementation is available as an open-
source Python program called JRA at https://bitbucket.org/
jointreadalignment/jra-src.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.

ACKNOWLEDGEMENTS

We thank Dr Elodie Laine for her careful reading of the
manuscript. We also thank the three reviewers whose com-
ments have substantially improved the manuscript.

FUNDING

Japanese Ministry of Education, Sport, Science and Tech-
nology [MEXT KAKENHI 16H06279]; Japan Society for
the Promotion of Sciences [PE11014 to H.R.]. Funding for
open access charge: University funding.

Conflict of interest statement. None declared.

REFERENCES

1. Kuzniar,A., van Ham,R.C.H.J., Pongor,S. and Leunissen,J.A.M.
(2008) The quest for orthologs: finding the corresponding gene across
genomes. Trends Genet., 24, 539-551.

2. 1000 Genomes Project Consortium, Abecasis,G.R., Altshuler,D.,
Auton,A., Brooks,L.D., Durbin,R.M., Gibbs,R.A., Hurles,M.E. and
McVean,G.A. (2010) A map of human genome variation from
population-scale sequencing. Nature, 467, 1061-1073.

3. Stephens,P.J., McBride,D.J., Lin,M.-L., Varela,l., Pleasance,E.D.,
Simpson,J.T., Stebbings,L.A., Leroy,C., Edkins,S., Mudie,L.J. et al.
(2009) Complex landscapes of somatic rearrangement in human
breast cancer genomes. Nature, 462, 1005-1010.

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

Nucleic Acids Research, 2018, Vol. 46, No. 3 el8

. Alkan,C., Coe,B.P. and Eichler,E.E. (2011) Genome structural

variation discovery and genotyping. Nat. Rev. Genet., 12, 363-376.

. Medvedev,P, Stanciu,M. and Brudno,M. (2009) Computational

methods for discovering structural variation with next-generation
sequencing. Nat. Methods, 6(Suppl), S13-S20.

. Treangen,T.J. and Salzberg,S.L. (2012) Repetitive DNA and

next-generation sequencing: computational challenges and solutions.
Nat. Rev. Genet., 13, 36-46.

. Wittler,R., Marschall, T., Schonhuth,A. and Mékinen,V. (2015)

Repeat- and error-aware comparison of deletions. Bioinformatics, 31,
2947-2954.

. Levy.S., Sutton,G., Ng,P.C., Feuk.L., Halpern,A.L., Walenz,B.P.,

Axelrod,N., Huang,J., Kirkness,E.F., Denisov,G. et al. (2007) The
diploid genome sequence of an individual human. PLoS Biol., 5,
e254.

. Homer,N. and Nelson,S.F. (2010) Improved variant discovery

through local re-alignment of short-read next-generation sequencing
data using SRMA. Genome Biol., 11, R99.

Rimmer,A., Phan,H., Mathieson,l., Igbal,Z., Twigg,S.R.,
Wilkie,A.O., McVean,G. and Lunter,G. (2014) Integrating mapping-,
assembly- and haplotype-based approaches for calling variants in
clinical sequencing applications. Nat. Genet., 46, 912-918.
Hormozdiari,F., Alkan,C., Eichler,E.E. and Sahinalp,S.C. (2009)
Combinatorial algorithms for structural variation detection in
high-throughput sequenced genomes. Genome Res., 19, 1270-1278.
Marschall, T., Costa,l.G., Canzar,S., Bauer,M., Klau,G.W.,
Schliep,A. and Schonhuth,A. (2012) CLEVER: clique-enumerating
variant finder. Bioinformatics, 28, 2875-2882.

Canzar,S., Elbassioni,K., Jones,M. and Mestre,J. (2016) Resolving
conflicting predictions from multimapping reads. J. Comput. Biol., 23,
203-217.

Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press.

Nielsen,R., Paul,J.S., Albrechtsen,A. and Song,Y.S. (2011) Genotype
and SNP calling from next-generation sequencing data. Nat. Rev.
Genet., 12, 443-451.

. Frith,M.C. and Kawaguchi,R. (2015) Split-alignment of genomes

finds orthologies more accurately. Genome Biol., 16, 106.
Abyzov,A. and Gerstein,M. (2011) AGE: defining breakpoints of
genomic structural variants at single-nucleotide resolution, through
optimal alignments with gap excision. Bioinformatics, 27, 595.
Hoffmann,S., Otto,C., Kurtz,S., Sharma,C., Khaitovich,P., Vogel.J.,
Stadler,P. and Hackermueller,J. (2009) Fast mapping of short
sequences with mismatches, insertions and deletions using index
structures. PLoS Comput. Biol., 5, ¢100502.

Emde,A.-K., Schulz,M.H., Weese,D., Sun,R., Vingron,M.,
Kalscheuer,V.M., Haas,S.A. and Reinert,K. (2012) Detecting
genomic indel variants with exact breakpoints in single- and
paired-end sequencing data using SplazerS. Bioinformatics, 28,
619-627.

Layer,R.M., Chiang,C., Quinlan,A.R. and Hall,I.M. (2014) LUMPY:
a probabilistic framework for structural variant discovery. Genome
Biol., 15, R84.

Rausch,T., Zichner,T., Schlattl,A., Stiitz,A.M., Benes,V. and
Korbel,J.O. (2012) DELLY: structural variant discovery by integrated
paired-end and split-read analysis. Bioinformatics, 28, 1333.
Talwalkar,A., Liptrap,J., Newcomb,J., Hartl,C., Terhorst,J.,
Curtis,K., Bresler,M., Song,Y.S., Jordan,M.I. and Patterson,D.
(2014) SMaSH: a benchmarking toolkit for human genome variant
calling. Bioinformatics, 30, 2787-2795.

Sudmant,P.H., Rausch,T., Gardner,E.J., Handsaker,R.E.,
Abyzov,A., Huddleston,J., Zhang,Y., Ye.K., Jun,G., Fritz,M. H.-Y.
et al. (2015) An integrated map of structural variation in 2,504
human genomes. Nature, 526, 75-81.

Chaisson,M.J.P., Huddleston,J., Dennis,M.Y., Sudmant,P.H.,
Malig,M., Hormozdiari,F., Antonacci,F., Surti,U., Sandstrom,R.,
Boitano,M. et al. (2015) Resolving the complexity of the human
genome using single-molecule sequencing. Nature, 517, 608-611.

https://bitbucket.org/jointreadalignment/jra-src

