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Neuroprostheses could potentially recover functions lost due to neural damage. Typical neuroprostheses
connect an intact brain with the external environment, thus replacing damaged sensory or motor pathways.
Recently, closed-loop neuroprostheses, bidirectionally interfaced with the brain, have begun to emerge,
offering an opportunity to substitute malfunctioning brain structures. In this proof-of-concept study, we
demonstrate a neuro-inspired model-based approach to neuroprostheses. A VLSI chip was designed to
implement essential cerebellar synaptic plasticity rules, and was interfaced with cerebellar input and output
nuclei in real time, thus reproducing cerebellum-dependent learning in anesthetized rats. Such a
model-based approach does not require prior system identification, allowing for de novo experience-based
learning in the brain-chip hybrid, with potential clinical advantages and limitations when compared to
existing parametric ‘‘black box’’ models.

F
ast-paced research in the field of neuroprostheses places increasing emphasis on closing the loop between
the brain and artificial devices. Neuroprosthetic systems were first applied to substitute sensory inputs1 or
motor outputs2,3. More recently, neuroprostheses have been bidirectionally interfaced with the brain with

the aim of detecting predefined brain signals or states to instruct brain stimulation in improving the function of
motor neuroprostheses4, as well as ameliorating neurologic symptoms of Parkinson’s disease5 and epilepsy6.

Currently, such closed-loop neuroprostheses are considered for substitution of malfunctioning central brain
structures. However, examples of closed-loop systems are scarce, due to the difficulty of embodying a satisfactory
model of the central nervous functional circuit in an artificial device compact enough to be conceived as a
neuroprosthesis. Functional substitution of a brain circuit requires building a reliable model of its operation.
The best attempt so far has targeted the hippocampus7, which lends its extensively studied connectivity and
physiology to selective substitution of its substructures. Achieving this and extending the approach to even more
complex brain circuits (like the prefrontal cortex of non-human primates8) was possible by adopting powerful
general-purpose non-linear system-identification techniques like Volterra series, which effectively lump possibly
very complex dynamics into a limited set of kernels. In this sense, these efforts could be classified as ‘‘black box’’
approaches.

However, there is clearly potential in trying to capture the dynamic principles at work in the brain substruc-
tures to be substituted. The good knowledge of the modular functional connectivity of the cerebellum9 offers an
opportunity for an approach to cerebellar neuroprostheses rooted in theoretical modeling (e.g., refs. 10–15). Such
models have previously been embedded in robots, allowing them to acquire and execute ‘‘adaptive’’ motor
behaviors based on their ‘‘experiences’’ in physical environments10,11,15. Rather than applying a black box
approach, such systems by and large utilize learning rules derived from putative mechanisms of the biological
cerebellar system, and could thus be considered ‘‘neuro-inspired’’. Learning in such robotic systems depends on
artificial sensors (e.g., cameras, infra-red sensors) to provide the neuronal model with cues. Conversely, a neuro-
inspired closed-loop system must rely on real, dynamic neuronal sensory representation, and could thus serve as
an additional means to evaluate the performance of a model – which is by definition an incomplete representation
of a neural circuit. In this respect, the current study provides additional support for the functionality of a
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cerebellar model previously embedded in a robotic device that suc-
cessfully acquired conditioned motor responses (CRs)10.

Here, a similar model was bidirectionally interfaced with the
brains of anesthetized rats, and reproduced cerebellum-dependent
learning of the temporal relationship between a benign auditory
conditioned stimulus and a noxious somatosensory unconditioned
stimulus, such that brain-chip hybrids gradually acquired anticip-
atory CRs, the onset latency of which roughly coincided with the
onset of the unconditioned stimulus. Thus, this study provides a
proof-of-concept demonstration of a neuro-inspired model-based
neuroprosthetic system capable of real-time experience-driven de
novo learning without prior system identification. This is in contrast
to previous black box systems, which reproduced behavior that was
previously learned by the biological brain, but did not show de novo
learning in brain-machine hybrids7,8. Importantly, the artificial cere-
bellar model was designed to imitate essential synaptic plasticity
mechanisms underlying cerebellar learning while maintaining the
necessary simplicity that would allow for it to be embedded, together
with filtering and detection stages required for deciphering the cere-
bellar inputs, in a small and low-power VLSI chip, thereby paving the
way for implantable neuroprostheses.

Results
The cerebellar learning microcircuit as a target for functional
rehabilitation. To present reliable indices of functional recovery,
we chose to experiment with a learning function localized in a
discrete brain microcircuit. This requirement is met by the
cerebellar microcircuit learning to time a discrete movement
(Fig. 1). This function is often tested by employing the eyeblink
conditioning paradigm, consisting of repeated trials comprised of a
conditioned stimulus (CS) paired with an unconditioned stimulus
(US) - typically an auditory CS preceding a periorbital-airpuff US by
several hundred ms (Fig. 2a), and by monitoring the acquisition of
eyeblink-CRs triggered by the CS9,16. The necessary microcircuit is
located in the cerebellar hemispheres, lesions of which permanently
prevent and abolish eyeblink conditioning9,17. Conditioned motor
responses are not expressed under general anesthesia18 (see also
Supplementary Figs 1 and 2a), and therefore the observed motor
responses of the brain-chip hybrids would depend on deep brain
stimulation controlled by the on-chip synthetic cerebellar circuit,
rather than on biological compensation mechanisms or spared
cerebellar function that would be expected in surgical or chemical
lesion studies.

Figure 1 | System overview. (A), A sagittal section illustrating brainstem-cerebellum input and output pathways underlying eyeblink conditioning: The

pontine nucleus (PN) and inferior olive (IO) relay the auditory conditioned stimulus (CS) and somatosensory unconditioned stimulus (US) to the

cerebellum, respectively. Following conditioning, a conditioned response (CR) is generated by the cerebellum, and is relayed via the red nucleus (RN) to

the motor facial nucleus (FN) which elicits a blink. (B), Schematic depiction of the neural circuitry. Arrows and bars represent excitatory and inhibitory

synapses, respectively. The PN-CS signal is relayed to cerebellar granule cells (GC) via mossy fibers (mf), and then through parallel fibers (pf) to both

Purkinje cells (PUs) and inhibitory interneurons (IN). The IO-US signal is relayed to PUs via climbing fibers (cf). Convergence of CS and US signals on a

PU causes LTD at the pf-PU excitatory synapse (CS-PUE; dashed rectangle). If only the CS signal arrives at the PU the CS-PUE synapse undergoes LTP.

PUs regularly inhibit deep cerebellar nuclei (DN) neurons, and DN disinhibition results in elicitation of a conditioned blink via the FN, as well as IO

inhibition. (C), Brain-chip interface. Recording electrodes were implanted in the PN and IO, to detect CS and US events during eyeblink conditioning.

Eyeblink CRs were elicited via a stimulating electrode implanted in the FN. (D), Performance of the cerebellar model during two trials. Detection of CS

onset (1) triggered a slowly decaying PU response, with a starting level proportional to the weight of the synthetic CS-PUE synapse; when PU activity

dropped below a threshold (2) it triggered a CR; CS detection resulted in LTP expressed as an increase in CS-PUE synaptic weight; US events not

coinciding with CS detection caused no change in synaptic weight (3); concomitant CS and US detection (4) resulted in LTD, expressed as a reduction of

CS-PUE synaptic weight; when CRs overlapped with US events, the latter were masked, simulating IO inhibition by the DN, driving LTP rather than LTD

(5), which, in the subsequent trial (6), defined the starting amplitude of the PU trace and the delay to threshold crossing (7).
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Cerebellar conditioning follows well-known dynamics, which pro-
vide reliable indices by which to evaluate the performance of brain-
chip hybrids. Initial eyeblink-CRs are infrequent and not adaptive in
the sense that they tend to follow, rather than precede, the onset of
the expected US. As learning progresses, CR rate increases and CR
onset latency decreases19–21 (but see ref. 22). Eventually, CR rate
stabilizes at an asymptotic level, substantially ,100% in rats, with
the peak of CR amplitude adaptively coinciding with the US’s
onset16,21,23. Subsequent delivery of CS-alone trials (i.e. unpaired with
USs) leads to gradual extinction of CRs. This learning paradigm is
therefore suitable for demonstrating gradual, experience-related
plasticity in a synthetic neuroprosthesis, strongly correlated with
its output behavior.

Construction of the neuro-inspired cerebellar model. The
challenge was to construct a prosthetic chip which would acquire
and perform anticipatory CRs by relying on essential mechanisms of
the biological cerebellum. The cerebellar model was previously
described10,24. Briefly, in each acquisition trial, CS and US signals
are relayed through the brainstem pontine (PN) and inferior olive
(IO) nuclei, respectively19, and converge on specific Purkinje cells
(PUs) in the cerebellar cortex. When no stimuli are presented,
spontaneous PU activity inhibits the output neurons of the deep
cerebellar nuclei (DN)25,26. When a CS is presented, it drives PU
activity through excitatory (CS-PUE) and inhibitory synapses27,28

(Fig. 1b). During the initial conditioning trials, PU neurons
respond with continuous firing, and thus inhibit the output DN
neurons throughout the entire CS-period. The concurrent arrival
of the US signal to PUs causes long-term depression (LTD) of CS-
PUE synapses29,30. The result is trial-by-trial reduction in the net
excitatory drive, causing a gradually shorter PU response to the CS
signal, followed by an absolute pause in PU firing for the rest of the
CS period - or until the US signal arrives at the PU. DN neurons thus
experience gradually earlier disinhibition, to which they respond
with elevated activity which excites motor pathways, thus
triggering a motor-CR21,31,32.

In conclusion, in our model the learning-related LTD in the CS-
PUE synapses is responsible for the following cascade of events:
reduction in the net excitation of PUs by the CS; shortening the delay
from CS onset and the CS-evoked pause in PU activity; shortening
the delay to DN disinhibition; and finally, shortening the onset
latency of motor-CRs until they precede the US onset in a well-
conditioned organism19–21. The DN also exerts an inhibitory feed-
back on the IO32,33 (see Fig. 1b). In the final stage of learning, when
DN disinhibition results in an anticipatory CR, the elevated DN
activity is also appropriately timed to inhibit the US signal at the
IO level, thus blocking the US signal from reaching the cortical
PU33–35; in these trials, only the CS signal reaches the PU, causing
long-term potentiation (LTP) of CS-PUE synapse. In subsequent
trials, this LTP increases net PU excitation and thus delays DN dis-
inhibition until DN-IO inhibition is once again too late to block the
US signal at the IO level, reestablishing LTD at the CS-PUE synapse.
This cyclic process stabilizes DN disinhibition and CRs in an oscil-
latory manner, such that the CR onset latency jitters around the
predicted time of US onset while CR rate is kept below 100%. CS-
alone trials cause LTP, which results in extinction of the CR by the
aforementioned mechanism.

To adjust the neuro-inspired model for learning the CS-US asso-
ciation in real-time, the circuitry programmed onto a field-program-
mable chip24 was reduced to its most basic elements (Fig. 1d). The
combined effect of CS-evoked excitation and inhibition of PUs was
modeled as a descending trace of PU activity. When this trace dropped
below a certain (arbitrary) threshold, it was considered to represent a
PU pause, disinhibiting the DN; note, however, that prior to learning,
CS presentation never caused the PU trace to cross this threshold. The
chip acquired and processed the raw multi-unit activity recorded from

the rat’s PN and IO (Fig. 2 and Supplementary Fig. 3) and extracted
the CS and US events, respectively, in real-time (Fig. 2d). The detected
CS event was directed to a single excitatory CS-PUE synapse while the
weight of this synapse defined the starting amplitude of the descend-
ing PU trace. If a US was detected during the CS period, synaptic
weight was decreased, representing learning-related LTD, such that in
subsequent CS detections, the starting amplitude of the PU trace
would be lowered; if only a CS was detected, synaptic weight was
increased, representing extinction-related LTP; if only a US was
detected, no synaptic change was induced.

The cerebellar chip did not include an explicit DN component that
would generate excitation of motor pathways. Rather, capitalizing on
the dependence of the DN disinhibition on the level of CS-PUE

synaptic weight, a threshold PU response level was defined, below
which detected CSs triggered eyeblink CRs by applying an electrical
train to the facial motor nucleus. When this train overlapped with
would-be detection of a US event it generated electrical artifacts
which masked US-evoked IO activity. Therefore, USs could not be
detected for 150 ms following CR onset, and therefore could not
induce LTD. Thus, masking of the US signal by the electrical artifact
served as an effective implementation of DN disinhibition-related

Figure 2 | Event detection. (A), Paired CS (blue; 400 ms) and US (red;

100 ms) presentation. Onsets and offset (black) are shown as vertical lines

in b-d (time 0 5 CS onset). (B–C), Multiple-unit activity recorded from

the PN (B) and IO (C) of hybrid #20 was rectified and thresholded

(3*mean), and peri-stimulus time histograms (PSTHs) were created from

multiple trials (56 in this example) to determine and characterize reactivity

to stimuli. This data was then used to parameterize on-chip event detection

for the real-time experiment. (D), Single-trial event detection example.

The signals from the PN electrode were amplified, band-pass filtered (0.3–

3.0 kHz) and the 3 channels were summed to yield the top trace; this was

rectified (second trace), and then band-pass filtered (0.2–1.6 Hz; third

trace); hysteretic thresholds (two gray horizontal lines) were then applied

to yield the detected CS event in the bottom trace; the delay of onset

detection, here ,50 ms, is due mainly to the time taken to aggregate

information before making a decision, a consequence of the choice of filter

band; the hysteretic threshold captures the duration of the CS event (after

the onset delay) without detecting false alarms from the smaller threshold

incursions. Additional examples of individual trials and further response

analyses are presented in Supplementary Fig. 3.
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blocking of the US signal at the IO level. In this respect, the present
system differs from its predecessors10,24, in that it does not include a
built-in delay in DN-IO inhibition, in the order of tens of ms33. As a
result, following CR acquisition, CR latency in the hybrids would be
expected to stabilize such that CR onset would roughly coincide with
the onset of the US. This is in contrast to the intact animal, in which
CR onset precedes the US by 100–200 ms, such that the CR reaches
its peak amplitude around the time of the expected US20,22.

Interfacing the prosthetic chip with cerebellar inputs and output.
Embedding the prosthetic chip in its biological milieu required its
interface with the inputs and outputs of the cerebellar microcircuit
underlying eyeblink conditioning. The cerebellar inputs are well-
mapped, and accordingly, auditory-CSs and airpuff-USs were
extracted from multiple-unit records from the PN and IO,
respectively, both considered immediate precerebellar nuclei19,26.
Occasionally, US events were extracted from records in the sensory
trigeminal nucleus upstream of the IO36, to evaluate the performance
of the hybrid under improved US detection conditions. Eyeblink-
CRs were triggered by delivering electrical trains to the facial nucleus
(See Supplementary Figs 2b and 4) or to the zygomatic branch of the
facial nerve downstream of the facial nucleus37.

Learning by the hybrid system. The progress of learning was tested
in anesthetized rat-chip hybrids during acquisition (paired CS-US
trials; inter-stimulus interval 5 300 ms) and extinction (CS-alone
trials). In hybrids #20 and #21, recording electrodes were placed in
the precerebellar PN and IO nuclei and stimulating electrodes were
placed in the motor facial nucleus. Fig. 2b–c shows peri-stimulus
time histograms of hybrid #20’s PN and IO responses to paired
CS-US trials delivered during the parameterization stage (see
Methods) – i.e. prior to the acquisition block, during which the
cerebellar chip did not undergo any plasticity and the hybrid
showed no eyeblinks. The PN responded both to the CS and to the
US, consistent with the sensory converging properties of the PN38,
with a phasic component of ,25 ms in duration, followed by a
sustained period of elevated activity lasting throughout the
duration of both stimuli. The IO responded selectively to the US
with a phasic component of 15–20 ms in duration, comparable

Figure 3 | Conditioning in brain-chip hybrids. (A), Progression of

learning across all hybrids (n 5 3; mean 6 s.e.m.). Only CRs triggered by

true CS detections are depicted. CR rate increased during acquisition and

decreased during extinction; CR onset latency was negatively correlated

with CR rate. Points without error bars indicate that this value was derived

from a single hybrid (#21) – as other hybrids exhibited no CRs during these

periods, and were not included in calculating the correlation between CR

rate and latency. (B–D), Trial-by-trial data for each hybrid. Vertical blue,

red and black lines indicate CS onset (time 0), latency to US onset, and co-

termination of both stimuli, respectively. Acquisition (top) and extinction

(bottom) blocks are separated by a red horizontal line. US detections

outside periods of detected CSs or following a CR did not induce LTD (see

Figure 1c), and are marked as ‘‘neutral’’. (B), Hybrid #15. Acquisition: 145

paired CS-US trials. Extinction: 73 CS-alone trials. (I): Stimuli detections

and produced CRs. (II): The weight of the synthetic synapse (represented

as an analogue voltage) dropped gradually during acquisition, and

stabilized from around trial 80 onwards; in the extinction block it rose back

to its maximum value within 15 trials. (III): CR onset latencies relative to

detected CS onsets. The vertical black line is the median of detected CS

offsets. CR onset latency followed the synaptic weight trajectory. (IV): CR

onset latencies relative to actual CS onset, for CRs produced by true CS

detections (within 150 ms from CS onset). The larger variability in CR

latencies compared to III is the result of variable CS detection delay. Black

squares show results by groups of 10 trials. (C), As in b(I, II and IV), but for

hybrid #20. Acquisition: 145 trials; extinction: 156 trials. (D), As in c, but

for hybrid #21. Blue circles indicate that the PN response recorded in this

hybrid was phasic, and therefore CS detection was assigned a fixed

duration of 400 ms. Acquisition: 60 trials; extinction: 123 trials. During the

last extinction period, false US detections during the CS period caused a

recurrence of CRs.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8451 | DOI: 10.1038/srep08451 4



with IO responses previously observed by us and others39,40. To test
the performance of the hybrid under more favorable US detection
conditions, in hybrid #15 the recording electrodes were placed in the
PN and in the trigeminal nucleus, upstream of the IO36, where a
larger proportion of true positive US detections was observed (see
below). During chip parameterization (see Methods), LTD and LTP
magnitudes were set to produce CRs with latencies <300 ms within
60 trials24 (note that a physiologically realistic number of trials would
be 300–500 in the rat21,23, and a few tens of trials in humans20).

Fig. 3a shows the progression of learning throughout acquisition
and extinction across hybrids (n 5 3). To allow for better compar-
ison between hybrids, the number of trials per learning block
(acquisition and extinction) was divided into 3 equal periods. As
expected by system design, CR rate increased with the number of
paired trials during the acquisition block, and decreased as CS-alone
trials were delivered during the extinction block (block*period inter-
action, F(2,4) 5 9.2, P 5 0.03; repeated measures ANOVA). In
addition, throughout learning, CR rate and CR latency were nega-
tively correlated (r 5 20.75, P 5 0.01; one-tailed Pearson’s test).

The results obtained from hybrid #15 offer the best example of the
learning process in a single hybrid (Fig. 3b). The weight of the CS-
PUE synapse gradually decreased along acquisition trials; the first
eyeblink CR appeared in the 53rd trial, and in subsequent trials CR
latency shortened (Fig. 3b, III and IV). During the last period of
acquisition, CR rate reached 45.2%, and CR onset grossly coincided
with the US onset (mean 6 s.e.m of CR latency 5 313 6 0.01 ms).
During the extinction block, synaptic weight rose to its original value
within 15 trials, with the last CR observed in the 5th extinction trial
(trial 150 overall). In hybrid #20 (Fig. 3c), the first CR appeared in the
56th trial, and thereafter learning was less effective than in hybrid
#15, with CR rate and latency reaching 22.5% and 342 6 0.01 ms,
during the last period of acquisition, respectively. During the extinc-
tion block, synaptic weight rose to its original value within 40 trials,
with the last CR observed in the 17th extinction trial (trial 163 over-
all). In hybrid #21 (Fig. 3d), CRs were acquired faster than expected,
with the first CR appearing in the 17th trial. During the last period of
acquisition, CR rate and latency were 50% and 169 6 0.01 ms,
respectively. During the extinction block, synaptic weight initially
rose, but slower than expected, and did not reach its original value.
Moreover, after 81 extinction trials, synaptic weight began to decline,
and during the last extinction period a 10% CR rate was observed (as
compared to 0% in hybrids #15 and #20).

Deviations from the expected progress of learning – as predicted
during chip parameterization, were presumably the result of incon-
sistent detection of CS and/or US events (see also Supplementary Fig.
5). Since LTD depended on concomitant CS and US detection, mis-
detections of either stimulus would obstruct acquisition; CS misde-
tection would prevent expected LTD, while US misdetection would
promote LTP. Conversely, false detection of either or both stimuli
would increase the chance of concomitant detection, resulting in
excessive LTD, obstructing extinction. To assess the quality of event
detection in each hybrid, we examined the True Positive Proportion
(TPP) and False Positive Rate (FPR) for both CS and US detections
from PN and IO/trigeminal records, respectively (Supplementary
Fig. 6). TPP was defined as the proportion of trials in which a stimu-
lus was detected within a predefined time window. FPR was defined
as the rate (in Hz) in which stimuli were detected outside of the TPP
window. The width of the CS detection window was set at 150 ms, to
allow for robust detection on one hand and a minimal interval of
150 ms between CS and US detection on the other hand – consistent
with the minimal inter-stimulus interval allowing for robust cerebel-
lar learning in the awake animal9,22. The width of the US detection
window was set at 60 ms, since IO population responses are typically
phasic, peaking within this period40.

In hybrid #15, CS TPP was 71%, and CS FPR was 0.1 Hz; US TPP
and FPR were 93% and 0.57 Hz, respectively. In hybrid #20, CS TPP

and FPR were 40% and 0.1 Hz, respectively, and US TPP and FPR
were 29% and 0.23 Hz. As compared to hybrids #15 and #21, hybrid
#20 showed the lowest TPP for both stimuli, leading to relatively poor
acquisition. In hybrid #21, CS offset could not be reliably detected,
due to a reduced sustained component of PN activity; thus the CS was
considered to last for a fixed duration (5 400 ms). CS TPP and FPR
were 55% and 0.02 Hz, respectively, and US TPP and FPR were 43%
and 0.96 Hz. The high US FPR led to excessive LTD which, during
acquisition, caused properly detected CSs to elicit CRs with onset
latencies that were shorter than the pre-defined latency range, and
also contributed to slow and incomplete extinction in this hybrid.

We cannot exclude the possibility that conditioning resulted in
plasticity in the cerebellum, pre-cerebellar recording sites, or
upstream of them (e.g. ref. 41). However, such plasticity could only
affect the performance of the brain-chip hybrids by altering the
neuronal signals recorded from the pre-cerebellar nuclei during con-
ditioning. Analyses of event detection throughout conditioning ses-
sions did not reveal any systematic effect of time or learning stage on
detection quality that could have been driven by biological plasticity
(Supplementary Fig. 6). Thus, it seems unlikely that such plasticity
would have contributed to successful learning in the hybrids.
Importantly, due to anesthesia, rats did not exhibit any blinking that
was not a result of electrical stimulation of motor pathways, while
stimulation parameters were set to reliably produce eyeblinks
(Supplementary Figs 2b and 4). Thus, the hybrids’ motor responses
(i.e., eyeblinks) were exclusively controlled by the neuroprosthesis.

Discussion
In this proof-of-concept study, we sought to integrate existing sci-
entific and technical knowhow in developing a closed-loop neuro-
prosthetic system capable of reproducing a cerebellar learning
function. An artificial cerebellar synapse was implemented as an
analogue circuit in a VLSI chip. Neuronal signals from precerebellar
nuclei were continuously fed to the chip and processed in real time to
extract CS- and US-evoked responses, which instructed learning in
the synthetic synapse. The weight of the artificial synapse determined
both the rate and latency of eyeblink CRs, which were elicited by the
chip via electrical stimulation of motor pathways downstream from
the cerebellum. The on-chip implementation was based on a neuro-
inspired model of a cerebellar microcircuit. The design, construction
and application of the model could be realized for a number of
reasons. First, cerebellar micro-connectivity has been mapped well
enough for bottom-up modeling, while essential physiological func-
tions have been studied at all levels of the cerebellum, allowing for
top-down modeling10–15. This allowed us to capture, albeit in a sim-
plified form, the cerebellar mechanisms essential for the function to
be substituted (the effective dynamics of PU activation, and the LTD/
LTP at the CS-PUE synapse). Second, the sensory- CS and US inputs
and the motor-CR output of the cerebellum follow distinct anatom-
ical pathways9,17, which enabled bidirectional brain-chip interfacing.
Finally, the replaced cerebellar microcircuit acquires a discrete
motor-CR35, the learning curve of which was used to constrain the
model’s parameters. The neuroprosthesis reproduced the acquisition
and extinction learning functions in a real-time in-vivo context, con-
sistently with the theoretical model on which our design was
based10,24.

The growing interest in closed-loop brain-chip systems is moti-
vated by their potential contribution to basic science and trans-
lational advantages42. As mentioned in the Introduction, previous
implementations of central neuroprostheses were based on ‘‘black-
box’’ models7,8 - i.e. parametric models of the input-output relation-
ship for a circuit to be replaced. We contrast such implementations
with our neuro-inspired model-based approach, as each approach
has distinct advantages and limitations that should be considered in
the context of prospective clinical developments. Neuro-inspired
neuroprostheses may be limited by incomplete anatomical and
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physiological mapping or by the diffuse localization of the function
to be replaced, while black-box models can compress input-output
relationships for very complex circuitry without explicit knowledge
of its elements. Black-box models depend on system identification,
requiring extensive a-priori sampling of training input-output sig-
nals from the intact system. This has the advantage of reproducing
individual-specific adaptations - e.g. retrieval cues for memory-
related tasks previously learnt by the individual7,8, enabling rehab-
ilitation of the cognitive behaviors that are directly based on these
adaptations. However, it is difficult to envision situations motivating
a preemptive characterization of the model of a given brain structure
in view of a forthcoming disease, while when the brain structure to be
substituted is already damaged, the opportunity to exploit an indi-
vidualized model determination would be substantially reduced.
Moreover, existing parametric models are incapable of learning
new adaptations to support new behaviors. Conversely, a neuro-
inspired model could potentially replace already damaged tissue -
although with a generic functional substrate lacking pre-existing
individual experience-based adaptations, and support the acquisi-
tion of new behaviors. In neuropsychological terms, the hybrids
based on existing parametric black box models could be considered
to display symptoms of anterograde amnesia disorder, whereas the
hybrids based on the present neuro-inspired model could be con-
sidered to display symptoms of retrograde amnesia disorder. Clearly,
a closed-loop system that could both capture existing adaptations
and acquire new ones would be clinically advantageous.

Closed-loop neuroprostheses share some technological challenges
with other brain-machine interface systems, including detection of
functionally-relevant neuronal signals for chronic periods. We based
detection on a multi-unit signal, which provides a more stable popu-
lation signal but may be less selective than single units. The real-time
in-vivo setup brought about uncontrolled non-stationarities in the
recorded neuronal signals, affecting signal processing and event
detection, and consequently varying rates of acquisition and extinc-
tion. An autonomous adaptive parameter setting strategy (e.g., ref.
43) would be a desirable development for the future. On the stimu-
lation side, the closed-loop system is prone to lose periods of input
data due to contamination by stimulation-induced artifacts, espe-
cially when prolonged, high-frequency electrical trains are used5; a
solution will require either enhanced signal-processing to clean the
input data or stimulation modes that do not introduce electrical
artifacts, such as optogenetic stimulation6.

Another common issue is how to utilize neural data to drive bio-
logically-relevant behavior. Here, only one very simple behavior was
generated by the closed-loop system, and so the present system
should clearly not be considered to fully restore cerebellar function.
Moreover, to allow for a robust interface between the brain and a
small, low-power and potentially implantable VLSI chip, the system
was implemented using a highly-simplified cerebellar model. For
instance, our model contained a single plastic parallel fiber-PU syn-
apse whereas similar learning in the biological cerebellum possibly
relies on plasticity occurring in hundreds of thousands - perhaps
even millions of such synapses across multiple PU neurons, as well
as on plasticity in other types of cerebellar synapses, which likely
contributes to the fine-tuning of CRs (for reviews, see ref. 44, 45).
Furthermore, our system did not contain an explicit DN component,
whereas it has been suggested that PU-DN control may follow com-
plex rules based on the synchrony of inhibitory PU-DN inputs,
which are also subject to plasticity46,47. The complexity of the driving
forces affecting the DN, which constitutes the sole cerebellar output
in motor conditioning, is most likely critical for the finely-timed and
graded control of motor pathways12. Therefore, it should be noted
that while the present system reproduced cerebellar-like behavior in
the sense that the brain-chip hybrids learned to produce anticipatory
CRs based on the CS-US interval, CR kinematics were not controlled
by our system. Rather, the chip’s output was a step function with a

fixed duration and amplitude, and plasticity in the synthetic synapse
only affected the probability and timing of step initiation. Thus, our
simple neuro-inspired system can only be considered as a proxy for
the to-be-replaced neuronal circuit. It does, however, provide a
demonstration that a model of a specific element of the circuit to
be substituted can be embodied in a chip and integrated into the real-
time dynamics of its neural context. We envisage that incremental
implementation of richer and more refined neuro-inspired models,
bi- (or multi-) directionally interfaced with the brain, would promote
a more systematic examination of theoretical models, as well as more
robust rehabilitation of behavior.

The current study was performed in deeply anesthetized animals,
and therefore all observed behavior (i.e., blinking) was driven by the
neuroprosthesis and there were no movement artifacts that could
potentially disrupt the neuronal records. While this setup allowed us
to examine the feasibility of recovering behavior using the current
neuroprosthetic architecture, it has obvious limitations. For instance,
the increased baseline activity and reduced synchronicity in the PN
of the awake rat48 is expected to result in less robust PN reactivity to
tone and lower proportion of correct detections as compared with the
anesthetized preparation. Similarly, IO activity evoked by spontan-
eous motor activity and by sensorimotor information related to
unconditioned motor responses49,50 could potentially obstruct the
detection of US-evoked IO activity, as well as complicate the tem-
poral representation of the US, affecting CR latency. Hence, future
studies in awake animals with cerebellar lesions or deteriorated cere-
bellar function would be necessary to both demonstrate robustness
with respect to sensory and behavioral interferences, and to advance
the brain-based features of the neuroprosthesis, e.g. recovering more
behaviorally complex cerebellar functions that would presumably
rely on similar anatomical and physiological architecture51,52, or
incorporating knowledge concerning bidirectional communication
of the cerebellum with other brain areas such as the amygdala and
neocortex23,41,50,52–56, the input-output functions of which are likely to
be affected by anesthesia (e.g. refs. 57, 58).

In conclusion, a single VLSI chip contained the core circuitry
needed to go from raw multi-unit input activity, through filtering,
event detection, implementation of synaptic plasticity, and triggering
of the CR. We have gone beyond our previous demonstrations10,24 by
having the chip operating autonomously in real time, taking signals
from and returning stimulation to the living brain to close the loop
and produce de novo, experience-based learning in the hybrid. While
the present findings should not be considered as proof that the cere-
bellar model we implemented accurately mimics biological cerebellar
learning mechanisms, they do demonstrate that this model can per-
form in-vivo, and thus provide a feasibility demonstration that quali-
fies our system as a precursor to an autonomous, implantable
cerebellar neuroprosthesis.

Methods
A system performing offline learning based on stored neuronal data was previously
described24. The following is a summarized description of a similar system used in the
current on-line closed-loop study.

Animals. All procedures were approved by the Tel Aviv University Animal Care and
Use Committee (P-07-017), and carried out in accordance with Israeli law and
institutional guidelines. Experiments were performed in naı̈ve 3 month old male
Sprague Dawley rats, anesthetized with xylazine and ketamine hydrochloride (5 mg/
kg and 100 mg/kg, respectively, i.p.) and head-fixed in a stereotaxic apparatus.
Supplementary doses of anesthetics were administered throughout to maintain a deep
state of anesthesia based on the absence of flexion responses to hind-paw pinches.
Consequently, blinks (spontaneous, unconditioned, or conditioned) were never
observed during the experiments unless elicited by the neuroprosthesis.

Electrophysiology and experimental setup. The experimental setup is illustrated in
Fig. 1c. Classical delayed eyeblink conditioning was employed in anesthetized rats.
The paired CS-US trials were delivered at either fixed (4 s; hybrid #20) or randomized
(4–8 s; hybrids #15 and #21) inter-trial interval. The CS was a 400 ms long white-
noise (70 dB), with a 10 ms rising/falling gate, delivered to the right ear through a
hollow ear-bar of the stereotaxic head holder. The US was 100 ms long periorbital
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airpuff, co-terminating with the auditory-CS, delivered through a nozzle positioned
,2 cm from the right cornea, with a pressure of 1.5 bar at the source. Stimulus
delivery was controlled by a Power1401 mkII lab interface and Spike2 software (CED,
UK).

Neuronal activity was recorded from the PN and IO precerebellar nuclei, which
have been shown to relay the CS and US signals to the cerebellum, respectively19. In
order to sample the spiking activity (output) of large populations of neurons from
these nuclei, multiple-unit activity was recorded. Multiple-unit activity was recorded
from the left PN using 3 twisted platinum wires (each with an internal diameter of
0.17 mm, ,120 kV), and from the left IO using a single tungsten electrode (5 MV, A-
M systems, USA); in hybrid #15, the tungsten electrode was positioned in the tri-
geminal nucleus instead of the IO. Neuronal signals were amplified (10 k) and band-
pass filtered (0.3–3.0 kHz) online (MCP-plus, Alpha Omega, Israel), and digitized at
15 kHz (Power1401 mkII, CED, UK). To determine the presence of an evoked res-
ponse, multiple-unit activity was rectified and thresholded (3 times the average
amplitude), and peri-stimulus time histograms were created (Fig. 2b–c). In order to
generate eyeblink-CRs, stimulating electrodes (2 twisted platinum wires, ,120 kV)
were implanted in the right facial motor nucleus, with final location determined by
verifying an eyeblink response to a 150 ms long electrical train of pulses (0.1 ms, 200–
300 mA delivered at 80–140 Hz; Grass SD9, Grass Inst., USA).

Experiments consisted of chip parameterization, followed by conditioning con-
sisting of acquisition and extinction blocks. Parameterization began with recording
PN and IO responses to paired CS-US trials in anaesthetized animals. Responses were
used to parameterize the chip’s detection of the CS and US events and the amplitude
of LTD/LTP steps at the CS-PUE synapse, using bespoke procedures implemented in
MATLAB (Mathworks, USA). Typically, it was necessary to re-parameterize the chip
when the records showed high variance over time; however, this was never done while
a learning session was in progress. Conditioning followed with the parameterized
chip attached bidirectionally (i.e., in a closed-loop) to the inputs and output of the
animal’s cerebellum. Paired trials were applied and the chip sampled the inputs from
the PN and IO channels, detected the CS and US events and processed the simulated
cerebellar LTD/LTP step on each trial, and at its output the chip controlled the timing
of eyeblink-CRs by triggering electrical stimulation of the facial nucleus. The
acquisition block continued until the simulated synapse reached a minimal value and
remained stable for several trials, and was immediately followed by the extinction
block. Extinction trials were identical to acquisition trials, except that no USs were
presented.

Histology. Following conditioning, marking lesions were made by passing anodal
direct currents through the electrodes for 10 s (1 mA for PN and facial nucleus,
0.5 mA for IO). Rats were perfused transcardially with 9% formalin. Brains were
removed, sliced into 30 mm coronal sections, and stained with thionine blue. Sections
were examined under a light microscope to determine the final location of electrodes.

Signal processing and chip design. Computations were implemented by a field-
programmable mixed-signal array on a bespoke VLSI chip (Supplementary Fig. 7).
Filters were constructed based on switched-capacitor circuit elements and amplifiers.
The model was constructed using the same elements, plus digital logic where
appropriate. All processes were implemented in parallel and clocks were provided by
independent oscillator elements.

The chip received amplified and filtered data from the MCP-plus amplifiers. For
the multi-channel electrode in the PN, the signals were summed according to a
weighting calculated following offline parameterization. Neuronal signals were rec-
tified and band-pass filtered by the chip (0.2–1.6 Hz for the PN, and 1–6.4 Hz for the
IO; these bands were chosen heuristically, and were varied between experiments) to
yield a measure monotonically related to the energy over a small window of time (the
energy envelope). Then, thresholds were applied to detect CS and US onsets, and in
some cases also the CS offset.
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